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Abstract. We extend some methods developed by Albeverio, Brzeźniak and
Wu and we show how to apply them in order to prove existence of global
strong solutions of stochastic differential equations with jumps, under a lo-
cal one-sided Lipschitz condition on the drift (also known as a monotonicity
condition) and a local Lipschitz condition on the diffusion and jump coef-
ficients, while an additional global one-sided linear growth assumption is
satisfied. Then we use these methods to prove existence of invariant mea-
sures for a broad class of such equations.
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1. EXISTENCE OF GLOBAL SOLUTIONS UNDER LOCAL LIPSCHITZ CONDITIONS

Consider a stochastic differential equation in Rd of the form

(1.1) dXt = b(Xt)dt+ σ(Xt) dWt +
∫
U

g(Xt−, u) Ñ(dt, du).

Here b : Rd → Rd, σ : Rd → Rd×d, g : Rd×U → Rd, (Wt)t0 is a d-dimensional
Wiener process, (U,U , ν) is a σ-finite measure space and N(dt, du) is a Poisson
random measure on R+ × U with intensity measure dt ν(du), while Ñ(dt, du) =
N(dt, du)− dt ν(du) is the compensated Poisson random measure. We denote by
(Xt(x))t0 a solution to (1.1) with initial condition x ∈ Rd. The main result of the
present paper is Theorem 2.1, where we prove existence of invariant measures for
a certain class of such equations.

However, we first discuss the existence of strong solutions to (1.1), in the con-
text of the paper [1] by Albeverio, Brzeźniak and Wu. We will prove the following
result, where ‖ · ‖HS denotes the Hilbert–Schmidt norm of a matrix.
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THEOREM 1.1. Assume that the coefficients in (1.1) satisfy the following local
one-sided Lipschitz condition: for every R > 0 there exists CR > 0 such that for
any x, y ∈ Rd with |x|, |y| ¬ R we have

(1.2) 〈b(x)− b(y), x− y〉+ ‖σ(x)− σ(y)‖2HS +
∫
U

|g(x, u)− g(y, u)|2ν(du)

¬ CR|x− y|2.

Moreover, assume a global one-sided linear growth condition: there exists C > 0
such that for any x ∈ Rd we have

(1.3) 〈b(x), x〉+ ‖σ(x)‖2HS +
∫
U

|g(x, u)|2 ν(du) ¬ C(1 + |x|2).

If in addition b : Rd → Rd is continuous, then there exists a unique global strong
solution to (1.1).

The one-sided Lipschitz condition (1.2) above is sometimes called a mono-
tonicity condition (see e.g. [7] or [11]), a weak monotonicity condition ([12] or
[16]) or a dissipativity condition ([13], [17] or [20]), although the term “dissipa-
tivity” is often restricted to the case where (1.2) is satisfied with CR < 0. We
call (1.2) one-sided Lipschitz condition regardless of the sign of the constant, and
use the term “dissipativity” only if the constant is negative. Note that the above
theorem is a generalization of the following classical result.

THEOREM 1.2. Assume that the coefficients in (1.1) satisfy a global Lipschitz
condition: there exists C > 0 such that for any x, y ∈ Rd we have

(1.4) |b(x)−b(y)|2+‖σ(x)−σ(y)‖2HS+
∫
U

|g(x, u)−g(y, u)|2 ν(du) ¬ C|x−y|2.

Moreover, assume a global linear growth condition: there exists L > 0 such that
for any x ∈ Rd we have

(1.5) |b(x)|2 + ‖σ(x)‖2HS +
∫
U

|g(x, u)|2 ν(du) ¬ L(1 + |x|2).

Then there exists a unique strong solution to (1.1).

Theorem 1.2 is very well-known and its proof can be found in many textbooks:
see e.g. [9, Theorem IV-9.1] or [2, Theorem 6.2.3]. Note that we present it here as
it appears in [9] and [2], but if (1.4) holds, then the linear growth condition on b
and σ is redundant and (1.5) can be replaced by a weaker integrability condition
on g (cf. the discussion in [1, Section 2], in particular Corollary 2.1 therein). On
the other hand, Theorem 1.1 is not so popular and we had problems finding a
suitable reference. We finally learned that Theorem 1.1 can be inferred from [7,
Theorem 2], where a more general result is proved for equations driven by locally
square integrable càdlàg martingales taking values in Hilbert spaces.
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Nevertheless, many authors use existence of solutions to equations like (1.1)
under a one-sided Lipschitz condition for the drift (see e.g. [13], [17], [19], [20],
to name only some recent papers) claiming that this result is well-known, without
giving any proper reference. Books that cover this context include e.g. [4] and [18]
which, admittedly, contain various interesting extensions of Theorem 1.2, but not
one where the Lipschitz condition is replaced with one-sided Lipschitz condition
and the linear growth with one-sided linear growth. Moreover, Albeverio, Brzeź-
niak and Wu [1, Theorem 3.1] proved the following.

THEOREM 1.3. Assume that for any R > 0 there exists CR > 0 such that for
any x, y ∈ Rd with |x|, |y| ¬ R we have

(1.6) |b(x)− b(y)|2 + ‖σ(x)− σ(y)‖2HS ¬ CR|x− y|2,

and there exists L > 0 such that for any x, y ∈ Rd we have

(1.7)
∫
U

|g(x, u)− g(y, u)|2 ν(du) ¬ L|x− y|2.

Finally, assume the global one-sided linear growth condition (1.3): there exists
C > 0 such that for any x ∈ Rd we have

〈b(x), x〉+ ‖σ(x)‖2HS +
∫
U

|g(x, u)|2 ν(du) ¬ C(1 + |x|2).

Then there exists a unique global strong solution to (1.1).

It is clear that Theorem 1.3 is less general than Theorem 1.1 and thus it is also
a special case of [7, Theorem 2]. Nevertheless, the proof in [1] is clearer and more
direct than the one in [7]: the result in [7] is obtained by showing that (1.1) can
be represented as an equation driven by certain Hilbert-space-valued martingales,
whereas in [1] all the calculations are done directly for integrals with respect to
Poisson random measures. The main idea in [1] is to modify the locally Lipschitz
coefficients in such a way as to obtain globally Lipschitz functions that agree with
the given coefficients on a ball of fixed radius. Then using Theorem 1.2 one can
obtain a solution in every such ball and then “glue” such local solutions by using
the global one-sided linear growth condition to obtain a global solution. It is im-
portant to mention that the authors of [1] also use their methods to prove existence
of invariant measures for a broad class of equations of the form (1.1).

In view of all the above comments, we find it necessary to give a direct proof of
Theorem 1.1. In the spirit of the proof in [1], we show how to extend the classical
result (Theorem 1.2) step by step to obtain Theorem 1.1. Then we explain how
to use the methods of [1] to obtain existence of invariant measures in our case
(see Theorem 2.1). This is a new result with potential applications in the theory of
SPDEs (see Example 2.2).

To prove both Theorems 1.1 and 2.1 we need the following auxiliary result
regarding a possible modification of the coefficients in (1.1).
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LEMMA 1.1. Assume that the coefficients in (1.1) satisfy the local one-sided
Lipschitz condition (1.2) and are locally bounded, i.e., for everyR > 0 there exists
an MR > 0 such that for all x ∈ Rd with |x| ¬ R we have

(1.8) |b(x)|2 + ‖σ(x)‖2HS +
∫
U

|g(x, u)|2ν(du) ¬MR.

Then for every R > 0 there exist functions bR : Rd → Rd, σR : Rd → Rd×d and
gR : Rd × U → Rd such that for all x ∈ Rd with |x| ¬ R we have

(1.9) bR(x) = b(x), σR(x) = σ(x) and gR(x, u) = g(x, u) for all u ∈ Rd.

Moreover, bR, σR and gR satisfy a global one-sided Lipschitz condition: there ex-
ists a constant C(R) > 0 such that for all x, y ∈ Rd we have

(1.10) 〈bR(x)− bR(y), x− y〉+ ‖σR(x)− σR(y)‖2HS

+
∫
U

|gR(x, u)− gR(y, u)|2 ν(du) ¬ C(R)|x− y|2

and they are globally bounded in the sense that there exists M(R) > 0 such that
for all x ∈ Rd we have

(1.11) |bR(x)|2 + ‖σR(x)‖2HS +
∫
U

|gR(x, u)|2 ν(du) ¬M(R).

Then, combining Theorem 1.2 and Lemma 1.1, we prove existence of solutions
when the coefficients in (1.1) are bounded and satisfy a global one-sided Lipschitz
condition.

THEOREM 1.4. Assume that b is continuous and that the coefficients in (1.1)
satisfy a global one-sided Lipschitz condition: there exists K > 0 such that for all
x, y ∈ Rd we have

(1.12) 〈b(x)− b(y), x− y〉+ ‖σ(x)− σ(y)‖2HS +
∫
U

|g(x, u)− g(y, u)|2 ν(du)

¬ K|x− y|2.

Additionally, assume that the coefficients are globally bounded: there existsM > 0
such that for all x ∈ Rd we have

(1.13) |b(x)|2 + ‖σ(x)‖2HS +
∫
U

|g(x, u)|2 ν(du) ¬M.

Then there exists a unique strong solution to (1.1).

The proofs of Lemma 1.1 and Theorem 1.4 can be found in Section 3. After
proving the above results, we proceed with the proof of Theorem 1.1 as in [1,
Proposition 2.9 and Theorem 3.1] (see also [7, p. 14] for a similar reasoning).
More details can be found at the end of Section 3.
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2. EXISTENCE OF INVARIANT MEASURES

The existence of an invariant measure for the solution of (1.1) is shown using
the Krylov–Bogolyubov method (see e.g. [8, Theorem III-2.1] and the discussion
in the introduction to [6]). For the existence of an invariant measure for a pro-
cess (Xt)t0 with a Feller semigroup (pt)t0 it is sufficient to show that for some
x ∈ Rd the process (Xt(x))t0 is bounded in probability at infinity in the sense
that for any ε > 0 there exist R, t > 0 such that for all s  t we have

(2.1) P(|Xs(x)| > R) < ε.

Therefore if we show that there exist constants M,K > 0 such that

(2.2) E|Xt(x)|2 ¬ |x|2e−Kt +M/K

for all t  0, then (2.1) follows easily by the Chebyshev inequality and we ob-
tain the existence of an invariant measure. Based on this idea, we can prove the
following result.

THEOREM 2.1. Assume that the coefficients in (1.1) satisfy the local one-sided
Lipschitz condition (1.2) and that there exist constants K,M > 0 such that for all
x ∈ Rd we have

(2.3) 2〈b(x), x〉+ ‖σ(x)‖2HS +
∫
U

|g(x, u)|2 ν(du) ¬ −K|x|2 +M.

Assume also that there exists a constant L > 0 such that for all x ∈ Rd we have

(2.4) ‖σ(x)‖2HS +
∫
U

|g(x, u)|2 ν(du) ¬ L(1 + |x|2).

Finally, suppose that the drift coefficient b in (1.1) is continuous. Then there exists
an invariant measure for the solution of (1.1).

We can compare this result with [1, Theorem 4.5].

THEOREM 2.2. Assume that the coefficients b and σ in (1.1) satisfy the local
Lipschitz condition (1.6) and that g satisfies the global Lipschitz condition (1.7).
Assume also the condition (2.3) as in Theorem 2.1. Then there exists an invariant
measure for the solution of (1.1).

REMARK 2.1. Observe that our additional condition (2.4) in Theorem 2.1 does
not follow from (2.3) since 〈b(x), x〉 can be negative. Therefore it would seem that
our result is not a straightforward generalization of [1, Theorem 4.5]. However, we
believe that the condition (2.4) is also necessary for [1, Theorem 4.5], at least we
have not been able to retrace the proof of Proposition 4.3 therein (which is crucial
for the proof of Theorem 4.5) without this additional condition. Therefore we are
convinced that (2.4) should be added to the list of assumptions of Theorem 4.5
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in [1] and that a result is indeed its strict generalization. This has been confirmed
in a private communication with one of the authors of [1].

REMARK 2.2. Note that the constant 2 in (2.3) is not necessary, since ob-
viously

2〈b(x), x〉+ ‖σ(x)‖2HS +
∫
U

|g(x, u)|2 ν(du)

¬ 2〈b(x), x〉+ 2‖σ(x)‖2HS + 2
∫
U

|g(x, u)|2 ν(du),

and therefore if we replace (2.3) with

〈b(x), x〉+ ‖σ(x)‖2HS +
∫
U

|g(x, u)|2 ν(du) ¬ −K|x|2 +M,

then (2.3) still holds with the right hand side multiplied by 2 and we can obtain (2.2)
with e−2Kt instead of e−Kt (see the proof of Theorem 2.1 and the calculations in
the proof of Lemma 2.2 below). We have chosen to state this assumption in the
form (2.3) to be consistent with [1], but note that we skip the constant 2 in all the
other one-sided conditions involving the drift in our calculations.

For the proof of Theorem 2.1 we first need the following fact, which can be
proved exactly as in [1, Propositions 4.1 and 4.2].

LEMMA 2.1. The solution (Xt)t0 to the equation (1.1) is a strong Markov
process and thus it generates a Markov semigroup (pt)t0.

Now we need the following lemma, which is a generalization of [1, Proposi-
tion 4.3] (see Remark 2.1 about inclusion of the assumption (2.4)).

LEMMA 2.2. Under the assumptions (1.2), (1.3), (2.4) and if b is continuous,
the semigroup (pt)t0 associated with the solution (Xt)t0 of (1.1) is Feller.

Once we prove the above lemma, we can easily conclude the proof of Theo-
rem 2.1, following [1, proof of Theorem 4.5], i.e., we just use the condition (2.3)
to show (2.2) and then use the Krylov–Bogolyubov method above. More details
can be found in Section 3.

REMARK 2.3. Note that the Krylov–Bogolyubov method gives us a tool to
prove existence of an invariant measure but does not provide any information about
its uniqueness or the rate of convergence of distributions of the solution of (1.1) to
equilibrium. However, if we replace (2.3) with a dissipativity at infinity condition,
which is a natural (although much stronger) counterpart of (2.3), i.e., if we assume
that there exist K,R > 0 such that for all x, y ∈ Rd with |x− y| > R we have

(2.5) 〈b(x)− b(y), x− y〉+ ‖σ(x)− σ(y)‖2HS +
∫
U

|g(x, u)− g(y, u)|2 ν(du)

¬ −K|x− y|2,
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then one can obtain uniqueness of the invariant measure. Namely, it has been
proved in [14] by the coupling technique (see Corollary 2.7 therein) that for a
certain class of SDEs of the form (1.1) satisfying (2.5) there exist constants c > 0
and C > 1 such that for any probability measures µ1 and µ2 on Rd and for any
t > 0 we have

(2.6) W1(µ1pt, µ2pt) ¬ Ce−ctW1(µ1, µ2),

where W1(µ1, µ2) is the standard L1-Wasserstein distance between probability
measures, (pt)t0 is the transition semigroup associated with the solution to (1.1)
and µpt(dy) =

∫
µ(dx)pt(x, dy). Note that if (2.5) holds for all x, y ∈ Rd, then

it is well-known that (2.6) holds (see e.g. [19, Theorem 1.1] and the references
therein). It is easy to see that (2.6) implies existence of a unique invariant mea-
sure for (pt)t0 (see e.g. [10, Section 3]) and exponential rate of convergence to
equilibrium in W1. However, the condition (2.5) is not necessary for uniqueness of
invariant measures, which has been obtained for certain classes of jump diffusions
under other assumptions e.g. in [15, Corollary 5.4] or in [3, Section 5.1, in par-
ticular Remark 5.1]. See also [12] for uniqueness in the infinite-dimensional case
without jumps under a weak dissipativity condition related to (2.5).

EXAMPLE 2.1. Fix α ∈ (0, 1) and suppose that the drift in (1.1) is given
by b(x) := −x|x|−α1{x 6=0}. Equations of this type are considered in [18, Ex-
ample 171]. It is easy to check that the function b defined above is not locally
Lipschitz, since it does not satisfy the Lipschitz condition in any neighbourhood of
zero. However, we can show that it satisfies the one-sided Lipschitz condition glob-
ally with constant zero. Indeed, following the calculations in [18, Example 171],
for any nonzero x, y ∈ Rd we have

〈x− y,−x|x|−α + y|y|−α〉 = −|x|2−α + 〈y, x|x|−α〉+ 〈x, y|y|−α〉 − |y|2−α

¬ −|x|2−α − |y|2−α + |y| |x|1−α + |x| |y|1−α

= (|x| − |y|)(|y|1−α − |x|1−α) ¬ 0,

where the last inequality holds since 1 − α ∈ (0, 1). Thus, if we consider an
equation of the form (1.1) with the drift b and any locally Lipschitz coefficients σ
and g, the condition (1.2) is satisfied. Moreover, if σ and g satisfy the global linear
growth condition (2.4) with some constant L > 0, then by replacing the drift b
defined above with b̃(x) := b(x)−Kx, where K > L, we obtain coefficients that
satisfy (2.3). More generally, we can take b̃(x) := b(x) − ∇U(x), where U is a
strongly convex function with convexity constant K > L. This way we obtain a
class of examples of equations for which our Theorem 2.1 applies, but Theorem
4.5 in [1] does not, since the local Lipschitz assumption is not satisfied.

EXAMPLE 2.2. Our results may have applications in the study of stochastic
evolution equations with Lévy noise on infinite-dimensional spaces, where the co-
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efficients are often non-Lipschitz (see e.g. [5] and the references therein). In par-
ticular, in [5] the authors consider SPDEs with drifts satisfying a local monotonic-
ity condition and use their finite-dimensional approximations, which may lead to
SDEs satisfying our condition (1.2) (cf. [5, condition (H2) and formula (4.4)].

3. PROOFS

In order to keep our presentation compact, we will only present the proof of The-
orem 1.1 in a slightly less general setting than that presented in the first section.
Namely, we will additionally assume that the diffusion coefficient σ and the jump
coefficient g in (1.1) satisfy a local Lipschitz condition separately from the drift b,
i.e., for every R > 0 there exists SR > 0 such that for any x, y ∈ Rd with
|x|, |y| ¬ R we have

(3.1) ‖σ(x)− σ(y)‖2HS +
∫
U

|g(x, u)− g(y, u)|2 ν(du) ¬ SR|x− y|2.

Obviously, (3.1) does not follow from (1.2), since 〈b(x) − b(y), x − y〉 may be
negative. However, requiring (3.1) seems to be rather natural in many cases. It is
possible to weaken this assumption and prove the exact statement of Theorem 1.1
using the methods of [11, Chapter II, Section 3] (see also [7, Section 3]), but this
creates additional technical difficulties and thus we decided to omit this extension
here, aiming at a clear and straightforward presentation.

Under the assumption (3.1), the coefficients of (1.1) automatically satisfy the
local boundedness condition (1.8) required in Lemma 1.1 (recall that b is assumed
to be continuous and thus it is locally bounded anyway). It also means that from
Lemma 1.1 we obtain coefficients σR and gR that satisfy a separate global Lip-
schitz condition, i.e., (1.10) without the term involving bR. Hence we can prove
Theorem 1.4 under the additional assumption that there exists S > 0 such that for
all x, y ∈ Rd we have

(3.2) ‖σ(x)− σ(y)‖2HS +
∫
U

|g(x, u)− g(y, u)|2 ν(du) ¬ S|x− y|2.

However, (3.1) is not needed for the proof of Theorem 2.1, where we also use
Lemma 1.1, but we do not need to obtain truncated coefficients σR and gR satis-
fying a separate global Lipschitz condition, and the local boundedness assumption
is guaranteed by the separate linear growth condition (2.4) and the continuity of b.
Thus the reasoning presented below gives a complete proof of the exact statement
of our Theorem 2.1.

Proof of Lemma 1.1. For a related reasoning, see [7, proof of Lemma 4] or [18,
Lemma 172]. Note that the method of truncating the coefficients of (1.1) which
was used in [1, proof of Proposition 2.7] and which works in the case of Lipschitz
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coefficients, does not work for a one-sided Lipschitz drift and thus we need a dif-
ferent approach. For any R > 0, we can consider a smooth, non-negative function
ηR ∈ C∞c (Rd) such that

ηR(x) =

{
1 if |x| ¬ R,
0 if |x| > R+ 1,

and ηR(x) ¬ 1 for all x ∈ Rd. Then we can define

(3.3) bR(x) := ηR(x)b(x), σR(x) := ηR(x)σ(x), gR(x, u) := ηR(x)g(x, u)

for all u ∈ U . Then the condition (1.9) is obviously satisfied, and (1.11) imme-
diately follows from (1.8). Therefore it remains to show that the functions bR, σR
and gR satisfy the global one-sided Lipschitz condition (1.10). We have

(3.4)
〈bR(x)− bR(y), x− y〉+ ‖σR(x)− σR(y)‖2HS +

∫
U

|gR(x, u)− gR(y, u)|2 ν(du)

= 〈ηR(x)b(x)− ηR(y)b(y), x− y〉+ ‖ηR(x)σ(x)− ηR(y)σ(y)‖2HS

+
∫
U

|ηR(x)g(x, u)− ηR(y)g(y, u)|2 ν(du)

¬ ηR(x)〈b(x)− b(y), x− y〉+ 〈(ηR(x)− ηR(y))b(y), x− y〉
+ |ηR(x)|2‖σ(x)− σ(y)‖2HS + ‖(ηR(x)− ηR(y))σ(y)‖2HS

+
∫
U

|ηR(x)|2|g(x, u)−g(y, u)|2 ν(du) +
∫
U

|ηR(x)−ηR(y)|2|g(y, u)|2 ν(du).

Now assume that ηR(y)  ηR(x) > 0 (the case when ηR(x) = 0 is simpler and
the case ηR(y) ¬ ηR(x) can be handled by interchanging x and y). This implies
that |x|, |y| ¬ R + 1 and thus we can use the local one-sided Lipschitz condition
(1.2) with R+ 1 to get

〈b(x)− b(y), x− y〉+ ‖σ(x)− σ(y)‖2HS +
∫
U

|g(x, u)− g(y, u)|2 ν(du)

¬ CR+1|x− y|2

with some constant CR+1. Combining this with the fact that ηR ¬ 1 (and thus
η2R ¬ ηR) allows us to bound the sum of the first, third and fifth terms on the right
hand side of (3.4) by CR+1|x− y|2. Observe now that ηR is Lipschitz (say with a
constant CLip(ηR)) and thus ηR(x)− ηR(y) ¬ CLip(ηR)|x− y|. Since |y| ¬ R+ 1,
we can use the local boundedness condition (1.8) with some constant MR+1. We
first bound |b(y)| by the square root of the left hand side of (1.8) in order to get

〈(ηR(x)− ηR(y))b(y), x− y〉 ¬
√
MR+1CLip(ηR)|x− y|2.
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Then we use (1.8) once again in order to bound the sum of the fourth and sixth
terms on the right hand side of (3.4) by MR+1C

2
Lip(ηR)|x− y|

2. Combining these,
we bound the right hand side of (3.4) by

CR+1|x− y|2 +
√
MR+1CLip(ηR)|x− y|2 +MR+1C

2
Lip(ηR)|x− y|

2.

Therefore the global one-sided Lipschitz condition for bR, σR and gR is satisfied
with the constant C(R) := CR+1 +

√
MR+1CLip(ηR) + MR+1C

2
Lip(ηR), which

finishes the proof. �

LEMMA 3.1. Assume that the coefficients of the equation (1.1) with an initial
condition x ∈ Rd satisfy the global one-sided linear growth condition (1.3) and
that σ and g additionally satisfy the separate linear growth condition (2.4). Then
there exist constants C̃, K̃ > 0 such that

E sup
s¬t
|Xs|2 ¬ K̃e2C̃t(1 + |x|2),

where (Xt)t0 = (Xt(x))t0 is a solution to (1.1) with initial value x ∈ Rd.

Proof. By the Itô formula, we have

|Xt|2 = |x|2 + 2
t∫
0

〈Xs, b(Xs)〉 ds+ 2
t∫
0

〈Xs, σ(Xs) dWs〉

+
t∫
0

‖σ(Xs)‖2HS ds+ 2
t∫
0

∫
U

〈Xs, g(Xs−, u)〉 Ñ(ds, du)

+
t∫
0

∫
U

|g(Xs−, u)|2N(ds, du).

(3.5)

Now define Mt :=
∫ t
0
〈Xs, σ(Xs) dWs〉 +

∫ t
0

∫
U
〈Xs, g(Xs−, u)〉 Ñ(ds, du),

which is a local martingale. By the Burkholder–Davis–Gundy inequality, there ex-
ists a constant C1 > 0 such that

E sup
s¬t
|Ms| ¬ C1E

[ t∫
0

|σ∗(Xs)Xs|2 ds+
t∫
0

∫
U

|〈Xs, g(Xs−, u)〉|2N(ds, du)
]1/2

¬ C1E
[(

sup
s¬t
|Xs|2

)( t∫
0

‖σ∗(Xs)‖2 ds+
t∫
0

∫
U

|g(Xs−, u)|2N(ds, du)
)]1/2

¬ C1

(
E sup
s¬t
|Xs|2

)1/2(
E
[ t∫
0

‖σ∗(Xs)‖2 ds+
t∫
0

∫
U

|g(Xs−, u)|2N(ds, du)
])1/2

¬ C1

2
aE sup

s¬t
|Xs|2 +

C1

2a
E
[ t∫
0

‖σ∗(Xs)‖2 ds+
t∫
0

∫
U

|g(Xs−, u)|2N(ds, du)
]

¬ C1

2
aE sup

s¬t
|Xs|2 +

C1

2a
LE

t∫
0

(|Xs|2 + 1) ds.
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Here ‖ · ‖ denotes the operator norm and σ∗ is the transpose of σ. In the third step
we used the Hölder inequality in the form EA1/2B1/2 ¬ (EA)1/2(EB)1/2, in the
fourth step we used (AB)1/2 ¬ 1

2aA + 1
2aB for any a > 0, which can be chosen

later, and in the fifth step we used the separate global linear growth condition (2.4)
for σ and g along with the fact that ‖ · ‖ ¬ ‖ · ‖HS.

Now we can use (3.5) to get

(3.6) E sup
s¬t
|Xs|2 ¬ |x|2 + 2E sup

s¬t
|Ms|+ 2E sup

s¬t

s∫
0

〈Xr, b(Xr)〉 dr

+ E sup
s¬t

[ s∫
0

‖σ(Xr)‖2HS dr+
s∫
0

∫
U

|g(Xr−, u)|2N(dr, du)
]
.

Observe that obviously

(3.7) 〈Xr, b(Xr)〉 ¬ 〈Xr, b(Xr)〉+ ‖σ(Xr)‖2HS +
∫
U

|g(Xr−, u)|2 ν(du)

and thus from the global one-sided linear growth condition (1.3) we get

E sup
s¬t

s∫
0

〈Xr, b(Xr)〉 dr ¬ CE sup
s¬t

s∫
0

(|Xr|2 + 1) dr ¬ CE
t∫
0

(|Xr|2 + 1) dr.

On the other hand, using the separate linear growth condition (2.4) we get

E sup
s¬t

[ s∫
0

‖σ(Xr)‖2HS dr +
s∫
0

∫
U

|g(Xr−, u)|2N(dr, du)
]

= E
[ t∫
0

‖σ(Xr)‖2HS dr +
t∫
0

∫
U

|g(Xr−, u)|2N(dr, du)
]

= E
[ t∫
0

‖σ(Xr)‖2HS dr +
t∫
0

∫
U

|g(Xr−, u)|2 ν(du) dr
]

¬ LE
t∫
0

(|Xr|2 + 1) dr.

Combining all the above estimates, we deduce from (3.6) that

E sup
s¬t
|Xs|2 ¬ |x|2 + C1aE sup

s¬t
|Xs|2 +

(
C1

a
L+ 2C + L

)
E

t∫
0

(|Xr|2 + 1) dr.

Now, choosing a = 1/(2C1) we obtain

E sup
s¬t
|Xs|2 ¬ 2|x|2 + 2(2C2

1L+ 2C + L)E
t∫
0

sup
w¬r

(|Xw|2 + 1) dr.
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Hence, using the Gronwall inequality for E sups¬t |Xs|2 + 1 we get

E sup
s¬t
|Xs|2 + 1 ¬ 2(|x|2 + 1) exp(2(2C2

1L+ 2C + L)t),

which finishes the proof. �

Proof of Theorem 1.4. Let j ∈ C∞c (Rd) have support contained in B(0, 1) and∫
Rd j(z) dz = 1. Then, for any k  1, define

bk(x) :=
∫
Rd

b

(
x− z

k

)
j(z) dz.

Now we can consider the sequence of equations

(3.8) dXk
t = bk(Xk

t )dt+ σ(Xk
t ) dWt +

∫
U

g(Xk
t−, u) Ñ(dt, du).

Note that we have only replaced the drift coefficient b with bk, while σ and g
remain unchanged. This is because we have decided to prove Theorem 1.1 with
the additional assumption of separate local Lipschitz condition (3.1) for σ and
g. Thanks to this, we can work under the additional assumption that σ and g are
globally Lipschitz, i.e., they satisfy (3.2) (see the discussion at the beginning of this
section). Now observe that the function bk defined above is also globally Lipschitz.
Indeed, for any x, y ∈ Rd we have

|bk(x)− bk(y)| =
∣∣∣∣∫
Rd

b

(
x− z

k

)
j(z) dz −

∫
Rd

b

(
y − z

k

)
j(z) dz

∣∣∣∣
=
∣∣∣kd ∫

B(x,1/k)

b(w)j(k(x− w)) dw − kd
∫

B(y,1/k)

b(w)j(k(y − w)) dw
∣∣∣

¬ kd
∫

B(x,1/k)∪B(y,1/k)

|b(w)| |j(k(x− w))− j(k(y − w))| dw

¬ 2Cdk
√
M |x− y| sup

w∈Rd

|∇j(w)|,

where in the second step we use our assumption about the support of j and in the
last step we use the fact that b is bounded by

√
M (cf. (1.13)) and j is Lipschitz with

the Lipschitz constant given by the supremum of the norm of its gradient. More-
over, note that in the last step we bounded the volume of B(x, 1/k) ∪ B(y, 1/k)
by 2Cd/k

d for any x, y ∈ Rd, where Cd = πd/2/Γ(d/2 + 1). Having proved that
bk is globally Lipschitz, we can use Theorem 1.2 to ensure existence of a unique
strong solution (Xk

t )t0 to (3.8).
We will prove now that the sequence {(Xk

t )t0}∞k=1 of solutions has a limit
(in the sense of almost sure convergence, uniform on bounded time intervals) and
that this limit is in fact a solution to (1.1). To this end, we will make use of the
calculations from the proof of Lemma 3.1.



A note on existence of solutions and invariant measures for jump SDEs 49

Observe that for any k, l  1, if we use the Itô formula to calculate |Xk
t −X l

t |2,
we will obtain exactly the formula (3.5) with Xt replaced by Xk

t −X l
t and b(Xs)

replaced by bk(Xk
s )− bl(X l

s). Furthermore, we can make the term |x|2 vanish (we
can assume that all the solutions (Xk

t )t0 have the same initial condition). Now
we can proceed exactly as in the proof of Lemma 3.1, this time using the separate
global Lipschitz condition (3.2) for σ and g where we used the separate linear
growth condition (2.4) before, in order to get

E sup
s¬t
|Xk

s −X l
s|2 ¬ C1aE sup

s¬t
|Xk

s −X l
s|2

+

(
C1

a
S + S

)
E

t∫
0

|Xk
r −X l

r|2 dr

+ 2E sup
s¬t

s∫
0

〈Xk
r −X l

r, b
k(Xk

r )− bl(X l
r)〉 dr.

(3.9)

Thus the only term with which we have to deal in a different way compared to the
proof of Lemma 3.1 is the last one. We have

E sup
s¬t

s∫
0

〈Xk
r −X l

r, b
k(Xk

r )− bl(X l
r)〉 dr

= E sup
s¬t

s∫
0

〈
Xk
r −X l

r,
∫
Rd

b

(
Xk
r −

z

k

)
j(z) dz −

∫
Rd

b

(
X l
r −

z

l

)
j(z) dz

〉
dr

= E sup
s¬t

s∫
0

{∫
Rd

〈(
Xk
r −

z

k

)
−
(
X l
r −

z

l

)
, b

(
Xk
r −

z

k

)
− b
(
X l
r −

z

l

)〉
j(z) dz

+
∫
Rd

〈
z

k
− z

l
, b

(
Xk
r −

z

k

)
− b
(
X l
r −

z

l

)〉
j(z) dz

}
dr

=: E sup
s¬t

s∫
0

(I1r + I2r ) dr.

Now observe that since b is bounded by
√
M (see (1.13)), we have

I2r ¬ 2
√
M
∫
Rd

∣∣∣∣zk − z

l

∣∣∣∣j(z) dz = 2
√
M

∣∣∣∣1k − 1

l

∣∣∣∣ ∫
Rd

|z|j(z) dz.

We denote C1(j) :=
∫
Rd |z|j(z) dz. As for I1r , we can use the one-sided Lipschitz

condition (1.12) for b similarly to the use of the one-sided linear growth in (3.7) to
get

I1r ¬ K
∫
Rd

∣∣∣∣(Xk
r −

z

k

)
−
(
X l
r −

z

l

)∣∣∣∣2j(z) dz
= K

∫
Rd

∣∣∣∣(Xk
r −X l

r)−
(

1

k
− 1

l

)
z

∣∣∣∣2j(z) dz
¬ 2K

∫
Rd

|Xk
r −X l

r|2j(z) dz + 2K
∫
Rd

∣∣∣∣1k − 1

l

∣∣∣∣2|z|2j(z) dz.



50 M. B. Majka

Recall that
∫
Rd j(z) dz = 1 and denote C2(j) :=

∫
Rd |z|2j(z) dz. Combining the

above estimates, we have

E sup
s¬t

s∫
0

(I1r + I2r ) dr ¬ 2KE
t∫
0

|Xk
r −X l

r|2 dr + 2tKC2(j)

∣∣∣∣1k − 1

l

∣∣∣∣2
+ 2t
√
M

∣∣∣∣1k − 1

l

∣∣∣∣C1(j)

¬ 2KE
t∫
0

sup
w¬r
|Xk

w −X l
w|2 dr + Ĉt

∣∣∣∣1k − 1

l

∣∣∣∣,
where the last inequality holds with a constant Ĉ := 2KC2(j) + 2

√
M C1(j) for

k and l large enough that
∣∣ 1
k −

1
l

∣∣ < 1. Now we come back to (3.9) and, taking
a = 1/(2C1), similarly to the proof of Lemma 3.1 we get

E sup
s¬t
|Xk

s −X l
s|2 ¬ 2(2C2

1S + S)E
t∫
0

sup
w¬r
|Xk

w −X l
w|2 dr

+ 8KE
t∫
0

sup
w¬r
|Xk

w −X l
w|2 dr + 4Ĉt

∣∣∣∣1k − 1

l

∣∣∣∣.
The Gronwall inequality implies

E sup
s¬t
|Xk

s −X l
s|2 ¬ 4Ĉt

∣∣∣∣1k − 1

l

∣∣∣∣ exp{(4C2
1S + 2S + 8K)t}.

From this we can infer that there exists a process (Xt)t0 such that

(3.10) E sup
s¬t
|Xs −Xk

s |2 → 0 as k →∞.

It remains to show that (Xt)t0 is indeed a solution to (1.1). Observe that, by
choosing a subsequence, we have Xk

t → Xt almost surely as k → ∞, and thus,
since b is assumed to be continuous, we get

b

(
Xk
t −

z

k

)
→ b(Xt) almost surely as k →∞.

But b is bounded by
√
M and

t∫
0

∫
Rd

b

(
Xk
s −

z

k

)
j(z) dz ds ¬

√
M

t∫
0

∫
Rd

j(z) dz ds <∞.

Therefore
t∫
0

∫
Rd

b

(
Xk
s −

z

k

)
j(z) dz ds→

t∫
0

∫
Rd

b(Xs)j(z) dz ds =
t∫
0

b(Xs) ds

as k →∞ a.s. Moreover, using the Itô isometry and (3.10), we can easily prove that∫ t
0
σ(Xk

s ) dWs →
∫ t
0
σ(Xs) dWs almost surely (by choosing a subsequence) and

similarly
∫ t
0

∫
U
g(Xk

s−, u) Ñ(ds, du) →
∫ t
0

∫
U
g(Xs−, u) Ñ(ds, du) as k → ∞,

which finishes the proof. �
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Proof of Lemma 2.2. First observe that under our assumptions, we can use
Lemma 3.1 to get E sups¬t |Xs|2 ¬ K1(1 + |x|2)eK2t for any t > 0 and some
constants K1,K2 > 0, where (Xt)t0 = (Xt(x))t0 is a solution to (1.1) with
initial condition x ∈ Rd. Hence, by the Chebyshev inequality, for any t > 0 and
any ε > 0 we can find R > 0 large enough so that for any x ∈ Rd with |x| ¬ R
we have

(3.11) P
(

sup
s¬t
|Xs(x)|  R

)
¬ ε/2.

Now without loss of generality assume that t ¬ 1 and fix ε,R > 0 as above.
We can consider a solution (XR

t )t0 to (1.1) with the coefficients replaced by the
truncated coefficients bR, σR and gR obtained from Lemma 1.1 (note that the local
boundedness assumption (1.8) in Lemma 1.1 is satisfied due to the continuity of
b and the separate linear growth condition (2.4) for σ and g, cf. the discussion
at the beginning of this section). Then bR, σR and gR satisfy the global one-sided
Lipschitz condition (1.10) with some constantC(R) > 0. This in particular implies
that the solution to the equation

(3.12) dXR
t = bR(XR

t )dt+ σR(XR
t ) dWt +

∫
U

gR(XR
t−, u) Ñ(dt, du)

is unique (Theorem 1.4). Hence, taking into account the fact that the coefficients
bR, σR and gR agree on the ball of radius R with their non-truncated counterparts
(cf. (3.3)), we see that Xs = XR

s for s ¬ τR with τR defined by

(3.13) τR := inf{t > 0 : |XR
t |  R}.

Thus for any x, y ∈ Rd with |x|, |y| ¬ R and for any δ > 0 we have

P(|X1(x)−X1(y)| > δ)

= P
(
|X1(x)−X1(y)| > δ, sup

t¬1
(|Xt(x)| ∨ |Xt(y)|) > R

)
+ P

(
|X1(x)−X1(y)| > δ, sup

t¬1
(|Xt(x)| ∨ |Xt(y)|) ¬ R

)
,

(3.14) P
(
|X1(x)−X1(y)| > δ, sup

t¬1
(|Xt(x)| ∨ |Xt(y)|) ¬ R

)
= P

(
|XR

1 (x)−XR
1 (y)| > δ, sup

t¬1
(|Xt(x)| ∨ |Xt(y)|) ¬ R

)
and

P
(
|X1(x)−X1(y)| > δ, sup

t¬1
(|Xt(x)| ∨ |Xt(y)|) > R

)
¬ P

(
sup
t¬1

(|Xt(x)| ∨ |Xt(y)|) > R
)
¬ ε



52 M. B. Majka

due to (3.11). Note that in order to get (3.14) we use the fact that if the process
(Xt(x))0¬t¬1 stays in the ball of radius R for all t ∈ [0, 1], then (XR

t (x))0¬t¬1
and (Xt(x))0¬t¬1 are solutions to the same SDE (3.12), for which the solution is
unique, as we explained above. Hence we obtain

P(|X1(x)−X1(y)| > δ) ¬ ε+ P(|XR
1 (x)−XR

1 (y)| > δ)

¬ ε+
1

δ2
E|XR

1 (x)−XR
1 (y)|2,

where the second step is just the Chebyshev inequality. Now from the Itô formula
used similarly to (3.5) (cf. also the proof of Theorem 1.4, although here we need
a different local martingale than in the case where we estimate a supremum) we
get

|XR
1 (x)−XR

1 (y)|2 = |x− y|2

+ 2
1∫
0

〈XR
s (x)−XR

s (y), bR(XR
s (x))− bR(XR

s (y))〉 ds

+ 2
1∫
0

〈
XR
s (x)−XR

s (y),
(
σR(XR

s (x))− σR(XR
s (y))

)
dWs

〉
+

1∫
0

‖σR(XR
s (x))− σR(XR

s (y))‖2HS ds

+ 2
1∫
0

∫
U

{〈XR
s (x)−XR

s (y), gR(XR
s−(x), u)− gR(XR

s−(y), u)〉

+ |gR(XR
s−(x), u)− gR(XR

s−(y), u)|2} Ñ(ds, du)

+
1∫
0

∫
U

|gR(XR
s−(x), u)− gR(XR

s−(y), u)|2 ν(du) ds

¬ 2C(R)
1∫
0

|XR
s (x)−XR

s (y)|2 ds+Mt,

where we have used the condition (1.10) for bR, σR and gR. Moreover,

Mt := 2
1∫
0

∫
U

{〈XR
s (x)−XR

s (y), gR(XR
s−(x), u)− gR(XR

s−(y), u)〉

+ |gR(XR
s−(x), u)− gR(XR

s−(y), u)|2} Ñ(ds, du)

+ 2
1∫
0

〈
XR
s (x)−XR

s (y), (σR(XR
s (x))− σR(XR

s (y))) dWs

〉
is a local martingale. Thus by a localization argument and the Gronwall inequality
we get

(3.15) E|XR
1 (x)−XR

1 (y)|2 ¬ A|x− y|2eBt
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for some constants A,B > 0, and thus

(3.16) P(|X1(x)−X1(y)| > δ) ¬ ε+
A

δ2
|x− y|2eBt.

Once we have (3.16), we proceed exactly as in [1, proof of Proposition 4.3].
Namely, we can show that for any sequence xn → x in Rd we have X1(xn) →
X1(x) in probability. From this we infer that for any f ∈ Cb(Rd) we have
p1f(xn) → p1f(x), from which we get the Feller property of (pt)t0. The de-
tails of this last step can be found [1, p. 321]. �

Proof of Theorem 2.1. Note that (2.3) obviously implies (1.3) and hence un-
der the assumptions of Theorem 2.1, the assumptions of Lemma 2.2 are satisfied.
Thus the semigroup (pt)t0 associated with the solution (Xt)t0 of (1.1) is Feller.
Hence, if we can show (2.2), then we can just use the Krylov–Bogolyubov method
presented at the beginning of Section 2 and conclude the proof.

In order to prove (2.2), we apply the Itô formula to |Xt(x)|2 as in (3.5) and then
proceed as in the proof of Lemma 2.2 above, where we apply the Itô formula to
obtain (3.15). However, unlike in (3.15), here we need to obtain the term eBt with
a negative constantB in order to guarantee (2.1), the boundedness in probability at
infinity. Thus we need to use the differential version of the Gronwall inequality and
not the integral one (cf. [17, Remark 2.3]). This is however not a problem, since by
using (2.3) and choosing a local martingale accordingly, we can obtain

E|Xt(x)|2 ¬ E|Xs(x)|2 −K
t∫
s

(
E|Xr(x)|2 − M

K

)
dr

for any 0 ¬ s ¬ t. Thus by the differential version of the Gronwall inequality we
have E|Xt(x)|2 −M/K ¬ |x|2e−Kt, which gives (2.2) and finishes the proof. �

Proof of Theorem 1.1. Under our assumptions we can prove that the coeffi-
cients of (1.1) are locally bounded in the sense of (1.8) (cf. the discussion at the
beginning of Section 3). Then combining Lemma 1.1 and Theorem 1.4, we see
that for every R  1 there exists a unique strong solution (XR

t )t0 to (1.1) with
the coefficients replaced by bR, σR and gR from Lemma 1.1. If we consider a se-
quence {(Xn

t )t0}n∈N of such solutions and define stopping times {τn}n∈N as in
(3.13), then we can show that for n ¬ m we have τn ¬ τm, and consequently
τ := limn→∞ τn and

Xt := lim
n→∞

Xn
t almost surely on [0, τ ]

are well defined. We just need to show that (Xt)t0 is indeed a solution of (1.1).
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By the construction of the coefficients in Lemma 1.1 we see that

Xt∧τn = Xn
t∧τn = X0 +

t∧τn∫
0

b(Xs) ds+
t∧τn∫
0

σ(Xs) dWs

+
t∧τn∫
0

∫
U

g(Xs−, u) Ñ(ds, du).

Therefore it remains to show that τ = ∞ a.s., which can be done exactly as in [1,
Theorem 3.1]. Namely, using the global one-sided linear growth condition (1.3)
we can show that E|Xt∧τn |2 ¬ (E|X0|2 + Kt)eKt for some constant K > 0 and
then, after proving n2P(τn < t) ¬ E|Xt∧τn |2, we see that τn →∞ in probability,
and thus, for a subsequence, almost surely. �
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