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Abstract. We consider Markov chains arising from random iteration of
functions Sθ : X → X, θ ∈ Θ, where X is a Polish space and Θ is an
arbitrary set of indices. At x ∈ X, θ is sampled from a distribution ϑx
on Θ, and the ϑx are different for different x. Exponential convergence to
a unique invariant measure is proved. This result is applied to the case of
random affine transformations on Rd, giving the existence of exponentially
attractive perpetuities with place dependent probabilities.

2020 Mathematics Subject Classification: Primary 60J05; Secondary
37A25.

Key words and phrases: random iteration of functions, exponential con-
vergence, invariant measure, perpetuities.

1. INTRODUCTION

We consider the Markov chain of the form X0 = x0, X1 = Sθ0(x0), X2 =
Sθ1 ◦ Sθ0(x0) and inductively

(1.1) Xn+1 = Sθn(Xn),

where Sθ0 , Sθ1 , . . . , Sθn are randomly chosen from a family {Sθ : θ ∈ Θ} of func-
tions that map a separable metric space X into itself. If the chain starts at x ∈ X
then θ ∈ Θ is sampled from a distribution ϑx on Θ, where the ϑx are different for
different x. The chain (Xn)n∈N0 is defined in a rigorous way in Section 3. We are
interested in the rate of convergence to a stationary distribution µ∗ on X , i.e.

(1.2) P{Xn ∈ A} → µ∗(A) as n→∞.

If the above convergence is exponential then (Xn)n∈N0 is called exponentially
ergodic. In the case of constant probabilities, i.e. ϑx = ϑy for x, y ∈ X , the
basic tool when studying asymptotics of (1.1) is backward iterations Zn+1 =
Sθ0 ◦ Sθ1 ◦ · · · ◦ Sθn(x0). Since Xn and Zn are identically distributed and, un-
der suitable conditions, Zn converges almost surely at exponential rate to some

c© Probability and Mathematical Statistics, 2020



120 R. Kapica and M. Ślęczka

random element Z, one obtains exponential ergodicity of (Xn)n∈N0 (see [6]). For
place dependent ϑx we need a different approach because the distributions of Xn

and Zn are not equal.
The simplest case when Θ = {1, . . . , n} is treated in [2] and [31], where the

existence of a unique attractive invariant measure is established. A similar result
holds true when Θ = [0, T ] and ϑx are absolutely continuous (see [15]). Recently
it was shown that the rate of convergence in the case of Θ = {1, . . . , n} is expo-
nential (see [28]).

In this paper we treat the general case of place dependent ϑx for arbitrary Θ and
prove the existence of a unique exponentially attractive invariant measure for (1.1).
Our approach is based on the coupling method which can be briefly described as
follows. For arbitrary starting points x0, x̄0 ∈ X we consider chains (Xn)n∈N0 ,
(X̄n)n∈N0 withX0 = x0, X̄0 = x̄0 and try to build correlations between (Xn)n∈N0

and (X̄n)n∈N0 in order to make their trajectories as close as possible. This can be
done since the transition probability function Bx,y(A) = P{(Xn+1, X̄n+1) ∈ A |
(Xn, X̄n) = (x, y)} of the coupled chain (Xn, X̄n)n∈N0 taking values in X2 can
be decomposed (see [11]) in the following way:

Bx,y = Qx,y + Rx,y,

where the subprobability measures Qx,y are contractive, i.e. for some constant
α ∈ (0, 1)

∫
X2 d(u, v)Qx,y(du, dv) ¬ αd(x, y).

Since the transition probabilities for (1.1) can be mutually singular even for
very close points, one cannot expect that the chains (Xn)n∈N0 and (X̄n)n∈N0

couple in finite time (i.e. Xn = X̄n for some n ∈ N0) as in classical coupling
constructions ([21]) leading to convergence in the total variation norm. On the
contrary, they only couple at infinity (i.e. d(Xn, X̄n) → 0 as n → ∞) so this
method is sometimes called asymptotic coupling ([13]) and gives convergence in
the weak topology.

There are two reasons which make random iterations with place dependent
probabilities in some sense the critical case. First, when passing from constant to
place dependent probabilities one loses the backward iterations argument, which
combined with mutual singularity of transition probabilities makes establishing
exponential ergodicity a difficult task. Secondly, such iterations are a simplest ex-
ample of systems where exponential ergodicity must be understood in the sense of
convergence in the weak topology. Another example is much more sophisticated:
stochastic partial differential equations (SPDEs). In both cases the main difficulty
is the same: mutual singularity of transition probabilities. The emerging theory of
weak exponential ergodicity brings many results which can be found in the vast
SPDE literature (see [19], [20], [12], [34]), some of them ([13]) indicating analo-
gies to the existing theory of strong ergodicity summarized in [23]. However, to
our best knowledge, none of these results applies in our case.

One of the most important consequences of exponential ergodicity (understood
here in the sense of the weak topology) is that it implies the Law of Large Num-
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bers and the Central Limit Theorem. Shirikyan [27] showed that if the process is
exponentially ergodic in a norm equivalent to the Fortet–Mourier norm then the
strong version of LLN holds. Since the convergence we obtain in this paper is in
the Fortet–Mourier norm, Shirikyan’s result can be applied in our case. Establish-
ing the CLT is a much more delicate problem. As proved by Komorowski and
Walczuk [18], exponential ergodicity implies the CLT, but they use the stronger
Wasserstein norm. Recent results [14], [16] establish the CLT and exponential er-
godicity simultaneously, using methods similar to ours. It is thus reasonable to ex-
pect that a general theorem in the spirit of Komorowski and Walczuk and involving
the Fortet–Mourier norm can be formulated.

The paper is organized as follows. In Section 2 we formulate and prove a the-
orem which yields exponential convergence to an invariant measure for a class of
Markov chains. This theorem is applied in Section 3 to chains generated by random
iteration of functions. In Section 4 we discuss a special class of such functions, ran-
dom affine transformations on Rd, thus generalizing the notion of perpetuity to the
place dependent case.

2. AN EXPONENTIAL CONVERGENCE RESULT

2.1. Notation and basic definitions. Let (X, d) be a Polish space, i.e. a complete
and separable metric space, and denote by BX the σ-algebra of Borel subsets ofX .
We denote by Bb(X) the space of bounded Borel-measurable functions equipped
with the supremum norm, and Cb(X) stands for the subspace of bounded continu-
ous functions. LetMfin(X) andM1(X) be the sets of Borel measures on X such
that µ(X) < ∞ for µ ∈ Mfin(X) and µ(X) = 1 for µ ∈ M1(X). The elements
µ ∈ M1(X) are called probability measures, and the elements µ ∈ Mfin(X) for
which µ(X) ¬ 1 are called subprobability measures. We denote by suppµ the
support of the measure µ. We also define

ML(X) =
{
µ ∈M1(X) :

∫
X

L(x)µ(dx) <∞
}

where L : X → [0,∞) is an arbitrary Borel measurable function, and

M1
1(X) =

{
µ ∈M1(X) :

∫
X

d(x̄, x)µ(dx) <∞
}
,

where x̄ ∈ X is fixed. By the triangle inequality the definition ofM1
1(X) is inde-

pendent of the choice of x̄.
The spaceM1(X) is equipped with the Fortet–Mourier metric:

‖µ1 − µ2‖FM = sup
{∣∣∣∫

X

f(x)(µ1 − µ2)(dx)
∣∣∣ : f ∈ F

}
,
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where F = {f ∈ Cb(X) : |f(x)− f(y)| ¬ 1 and |f(x)| ¬ 1 for x, y ∈ X}. The
spaceM1

1(X) is equipped with the Wasserstein metric:

‖µ1 − µ2‖W = sup
{∣∣∣∫

X

f(x)(µ1 − µ2)(dx)
∣∣∣ : f ∈ W

}
,

where W = {f ∈ Cb(X) : |f(x) − f(y)| ¬ 1 for x, y ∈ X}. Let ‖ · ‖ denote
the total variation norm. If a measure µ is nonnegative then ‖µ‖ is simply the total
mass of µ. In Section 4 we will use Euclidean norm | · | in Rd and the operator
norm ‖ · ‖op given by ‖m‖op = sup{|mx| : x ∈ Rd, |x| = 1}.

Let P : Bb(X)→ Bb(X) be a Markov operator, i.e. a linear operator satisfying
P1X = 1X and Pf  0 if f  0. Denote by P ∗ the dual operator, i.e. the operator
P ∗ :Mfin(X)→Mfin(X) defined as follows:

P ∗µ(A) :=
∫
X

P1A(x)µ(dx) for A ∈ BX .

We say that a measure µ∗ ∈ M1(X) is invariant for P if
∫
X
Pf(x)µ∗(dx) =∫

X
f(x)µ∗(dx) for every f ∈ Bb(X), or equivalently P ∗µ∗ = µ∗. We denote by

{Px : x ∈ X} a transition probability function for P , i.e. a family of measures
Px ∈ M1(X) for x ∈ X such that the map x 7→ Px(A) is measurable for
every A ∈ BX and Pf(x) =

∫
X
f(y)Px(dy) for x ∈ X and f ∈ Bb(X), or

equivalently P ∗µ(A) =
∫
X
Px(A)µ(dx) for A ∈ BX and µ ∈Mfin(X).

2.2. Formulation of the theorem

DEFINITION 2.1. A coupling for {Px : x ∈ X} is a family {Bx,y : x, y ∈ X}
of probability measures on X × X such that for every B ∈ BX2 the map X2 3
(x, y) 7→ Bx,y(B) is measurable and

Bx,y(A×X) = Px(A), Bx,y(X ×A) = Py(A)

for all x, y ∈ X and A ∈ BX .

In the following we assume (see [11]) that there exists a family {Qx,y :
x, y ∈ X} of subprobability measures on X2 such that the map (x, y) 7→ Qx,y(B)
is measurable for all B ∈ BX2 and Qx,y(A ×X) ¬ Px(A) and Qx,y(X × A) ¬
Py(A) for all x, y ∈ X and A ∈ BX .

The measures {Qx,y : x, y ∈ X} allow us to construct a coupling for {Px : x ∈
X}. Define on X2 a family {Rx,y : x, y ∈ X} of measures which on rectangles
A×B are given by

Rx,y(A×B) =
1

1−Qx,y(X2)
(Px(A)−Qx,y(A×X))(Py(B)−Qx,y(X×B))



Random iteration with place dependent probabilities 123

if Qx,y(X
2) < 1 and Rx,y(A × B) = 0 otherwise. A simple computation shows

that the family {Bx,y : x, y ∈ X} of measures on X2 defined by

(2.1) Bx,y = Qx,y + Rx,y for x, y ∈ X

is a coupling for {Px : x ∈ X}.
Now we list our assumptions on the Markov operator P and the transition sub-

probabilities {Qx,y : x, y ∈ X}.

A0. P is a Feller operator, i.e. P (Cb(X)) ⊂ Cb(X).
A1. There exists a Lyapunov function for P , i.e. a continuous function L : X →

[0,∞) such that L is bounded on bounded sets, limx→∞ L(x) = +∞ ( for
bounded X this condition is omitted) and for some λ ∈ (0, 1) and c > 0

PL(x) ¬ λL(x) + c for x ∈ X.

A2. There exist F ⊂ X2 and α ∈ (0, 1) such that suppQx,y ⊂ F and

(2.2)
∫
X2

d(u, v)Qx,y(du, dv) ¬ αd(x, y) for (x, y) ∈ F.

A3. There exist δ, l > 0 and ν ∈ (0, 1] such that

(2.3)
1− ‖Qx,y‖ ¬ ld(x, y)ν and

Qx,y({(u, v) ∈ X2 : d(u, v) < αd(x, y)})  δ

for (x, y) ∈ F .
A4. There exist β ∈ (0, 1) and C̃, R > 0 such that for

κ((xn, yn)n∈N0) = inf{n ∈ N0 : (xn, yn) ∈ F and L(xn) + L(yn) < R},

where (xn, yn)n∈N0 is a sequence of elements of X ×X , we have

Ex,yβ−κ ¬ C̃ whenever L(x) + L(y) <
4c

1− λ
,

where Ex,y denotes the expectation with respect to the chain starting from
(x, y) and with transition function {Bx,y : x, y ∈ X}.

Before proceeding to the formulation of the theorem we briefly comment on
the above conditions. Assumption A0 is standard. Existence of a Lyapunov func-
tion in A1 allows one to reduce the dynamics to some bounded region of X . As-
sumption A2 is the well known contraction on average condition, written in the
language of coupling. The measures Qx,y are thus the contractive part of coupled
transition probabilities Bx,y with Rx,y being the uncontrollable part. Some such
condition seems to be necessary for exponential ergodicity (see [25]). The first part
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of A3 means that the total mass of the contractive part Qx,y is close to 1 for x close
to y. Some higher order regularity is necessary here to ensure the uniqueness of the
invariant measure (see [30]). The second part of A3 guarantees that some part of
the contractive-on-average measure Qx,y is contractive in the strict sense. Condi-
tion A4 means that the dynamics quickly enters the domain F of contractivity. In
this paper we discuss Markov chains generated by random iteration of functions for
which always F = X2 and L(x) = d(x, x̄) with some fixed x̄ ∈ X , so A4 is triv-
ially fulfilled when R = 4c

1−λ . There are, however, examples of random dynamical
systems for which F is a proper subset of X2. Indeed, in contractive Markov sys-
tems introduced by I. Werner [33] we haveX =

∑n
i=1Xi but F =

∑n
i=1Xi×Xi.

They are studied in [29].
Now we formulate the main result of this section. Its proof is given in Sec-

tion 2.4.

THEOREM 2.1. Assume A0–A4. Then the operator P has a unique invariant
measure µ∗ ∈ML(X), which is attractive, i.e.

lim
n→∞

∫
X

Pnf(x)µ(dx) =
∫
X

f(x)µ(dx) for f ∈ Cb(X), µ ∈M1(X).

Moreover, there exist q ∈ (0, 1) and C > 0 such that

(2.4) ‖P ∗nµ− µ∗‖FM ¬ qnC
(

1 +
∫
X

L(x)µ(dx)
)

for µ ∈ML(X) and n ∈ N.

REMARK. In [13, Theorem 4.8], sufficient conditions are given for the exis-
tence of a unique exponentially attractive invariant measure for a continuous-time
Markov semigroup {P (t)}t0, which do not refer to coupling. One of the assump-
tions is that there exists a distance-like (i.e. symmetric, lower semicontinuous and
vanishing only on the diagonal) function d : X ×X → [0, 1] which is contractive
for some P (t∗), i.e. there exists α < 1 such that for all x, y ∈ X with d(x, y) < 1
we have d(P(x, ·),P(y, ·)) ¬ αd(x, y), where P(·, ·) : X×BX → [0, 1] is a tran-
sition kernel for P (t∗). This assumption is stronger than A2, since the measures
Rx,y in (2.1) need not be contractive (i.e. need not satisfy

∫
X2 d(u, v)Rx,y(du, dv)

¬ αd(u, v)) for any distance-like function d.

2.3. Measures on the pathspace. For fixed (x0, y0) ∈ X2 the next step of a chain
with transition probability function Bx,y = Qx,y + Rx,y can be drawn accord-
ing to Qx0,y0 or according to Rx0,y0 . To distinguish these two cases we intro-
duce (see [11]) the augmented space X̂ = X2 × {0, 1} and the transition func-
tion {B̂x,y,θ : (x, y, θ) ∈ X̂} on X̂ given by B̂x,y,θ = Q̂x,y,θ + R̂x,y,θ, where
Q̂x,y,θ = Qx,y × δ1 and R̂x,y,θ = Rx,y × δ0. The parameter θ ∈ {0, 1} is re-
sponsible for choosing Qx,y or Rx,y. If a Markov chain with transition function
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{B̂x,y,θ : (x, y, θ) ∈ X̂} stays in the set X2 × {1} at time n it means that the last
step was drawn according to Qu,v for some (u, v) ∈ X2.

For every x ∈ X finite-dimensional distributions P0,...,n
x ∈ M1(Xn+1) are

defined by

P0,...,n
x (B) =

∫
X

δx(dx0)
∫
X

Px1(dx2) . . .
∫
X

Pxn−1(dxn)1B(x0, . . . , xn)

for n ∈ N0 and B ∈ BXn+1 , where δx is the Dirac measure at x. By the Kol-
mogorov extension theorem we obtain a measure P∞x on the pathspace X∞. Simi-
larly we define measures B∞x,y, B̂∞x,y,θ on (X×X)∞ and X̂∞. These measures have
the following interpretation. Consider the Markov chain (Xn, Yn)n∈N0 on X ×X ,
starting from (x0, y0), with transition function {Bx,y : x, y ∈ X}, obtained by
the canonical Kolmogorov construction, i.e. Ω = (X ×X)∞ is the sample space
equipped with the probability measure P = B∞x0,y0 , Xn(ω) = xn, Yn(ω) = yn,
where ω = (xk, yk)k∈N0 ∈ Ω and n ∈ N0. Then (Xn)n∈N0 , (Yn)n∈N0 are Markov
chains in X , starting from x0 and y0, with transition function {Px : x ∈ X}, and
P∞x , P∞y are their measures on the pathspace X∞.

In this paper we often consider marginals of measures on the pathspace. If µ is
a measure on a measurable space X and f : X → Y is a measurable map, then
f#µ is the measure on Y defined by f#µ(A) = µ(f−1(A)). So, if we denote by
pr the projection map from a product space to its component, then pr#µ is simply
the marginal of µ on that component.

In the following we consider Markov chains on X̂ with transition function
{B̂x,y,θ : x, y ∈ X, θ ∈ {0, 1}}. We adopt the convention that θ0 = 1, so the
chain always starts from X2 × {1}, and define B̂∞x,y := B̂∞x,y,1.

For b ∈ Mfin(X2) we write B̂∞b (B) =
∫
X
B̂∞x,y(B) b(dx, dy) for B ∈ B

X̂∞ ,
Qb(A) =

∫
X2 Qx,y(A) b(dx, dy) for A ∈ BX2 and Qn

x,y(A) = QQn−1
x,y

(A) for
A ∈ BX2 . When studying the asymptotics of a chain (Xn)n∈N0 with transition
function {Px : x ∈ X} it is particularly interesting whether a coupled chain
(Xn, Yn)n∈N0 is moving only according to the contractive part Qx,y of the tran-
sition function Bx,y. For every subprobability measure b ∈ Mfin(X2) we define
finite-dimensional subprobability distributions Q0,...,n

b ∈Mfin((X ×X)n+1) by

Q0,...,n
b (B) =

∫
X2

b(dx0, dy0)
∫
X2

Qx0,y0(dx1, dy1) . . .

. . .
∫
X2

Qxn−1,yn−1(dxn, dyn)1B((x0, y0), . . . , (xn, yn)),

where B ∈ B(X×X)n+1 and n ∈ N0. For n  1 define ιn : (X ×X)n → X̂n by

ιn((x1, y1), . . . , (xn, yn)) = ((x1, y1, 1), . . . , (xn, yn, 1))



126 R. Kapica and M. Ślęczka

and Q̂0,...,n
b = ι#nQ

0,...,n
b . Since Q0,...,n

b ((X×X)n+1) > Q0,...,n+1
b ((X×X)n+2),

the family {Q̂0,...,n
b : n ∈ N0} is not consistent and we cannot use the Kol-

mogorov extension theorem to obtain a measure on the whole pathspace X̂∞.
However, defining for every b ∈ Mfin(X2) a measure Q∞b ∈ Mfin(X̂∞) by
Q∞b (B) = B̂∞b (B ∩ (X2 × {1})∞) for B ∈ B

X̂∞ , one can easily check that for
every cylindrical set B = A× X̂∞ with A ∈ B

X̂n+1 , we have

(2.5) Q∞b (B) = lim
n→∞

Q̂0,...,n
b (A).

2.4. Proof of Theorem 2.1. Before proceeding to the proof of Theorem 2.1 we
formulate two lemmas. The first one is partially inspired by the reasoning found
in [26].

LEMMA 2.1. Let Y be a metric space and let (Y y
n )n∈N0 be a family of Markov

chains indexed by the starting point y ∈ Y , with common transition function {πy :
y ∈ Y }. Let V : Y → [0,∞) be a Lyapunov function for {πy : y ∈ Y }. Assume
that for some bounded and measurable A ⊂ Y there exist λ ∈ (0, 1) and Cρ > 0
such that for

ρ((yn)n∈N0) = inf{n  1 : yn ∈ A}
we have

Eyλ−ρ ¬ Cρ(V (y0) + 1) for y ∈ Y,
where Ey is the expectation with respect to the measure Py on Y∞ induced by
(Y y
n )n∈N0 . Moreover, assume that for some measurable B ⊂ Y and

ε((yn)n∈N0) = inf{n  1 : yn /∈ B}

there exist constants p, β ∈ (0, 1) and Cε > 0 such that

Py({(yn)n∈N0 : ∀n1 yn ∈ B}) > p and Ey1{ε<∞}β−ε ¬ Cε
for every y ∈ A. Then there exist γ ∈ (0, 1) and C > 0 such that for

τ((yn)n∈N0) = inf{n  1 : ∀kn yk ∈ B}

we have
Eyγ−τ ¬ C(V (y) + 1) for y ∈ Y.

Proof. Define κ = ε+ ρ ◦ Tε, where Tn((yk)k∈N0) = (yk+n)k∈N0 . Fix y ∈ Y ,
α ∈ (0, 1) and r > 1 such that (λα)−1/(r−1) < β−1. The strong Markov property
and the Hölder inequality for every y ∈ Y give

Ey1{ε<∞}λ−
κ
r ¬ [Ey(1{ε<∞}(λα)−

ε
r )

r
r−1 ]

r−1
r [Ey(1{ε<∞}αελ−ρ◦Tε)]

1
r

¬ (Ey1{ε<∞}β−ε)
r−1
r [Ey(1{ε<∞}αεEy(λ−ρ◦Tε | Fε))]

1
r

= (Ey1{ε<∞}β−ε)
r−1
r [Ey(1{ε<∞}αεEY yε (λ−ρ))]

1
r

¬ (Ey1{ε<∞}β−ε)
r−1
r [Ey(1{ε<∞}αεCρ(V (Y y

ε ) + 1))]
1
r ,
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where Fε is the σ-algebra generated by ε. Since supy∈A V (y) <∞ and V satisfies

Ey(1{ε<∞}αεV (Y y
ε )) ¬ C1(V (y) + 1) for y ∈ Y,

for some C1 > 0, taking c = λ1/r we obtain Ey1{ε<∞}c−κ ¬ C2 whenever
y ∈ A, for some constant C2 > 0. Define ε0 = 0, κ0 = ρ and

εn = κn−1 + ε ◦ Tκn−1 ,

κn = κn−1 + κ ◦ Tκn−1 for n  1.

Observe that Y y
κn ∈ A, Y y

εn /∈ B, εn ¬ κn ¬ εn+1 and κn ↗∞. We have

Ey1{κn+1<∞}c
−κn+1 = Ey[1{κn<∞}c

−κnEy((1{κ<∞}c−κ) ◦ Tκn | Fκn)]

= Ey[1{κn<∞}c
−κnEY yκn (1{κ<∞}c

−κ)]

¬ C2Ey1{κn<∞}c
−κn

and thus
Ey1{κn<∞}c

−κn ¬ Cn2Cρ(V (y) + 1) for y ∈ Y.
Define E = Y∞ \ (Y ×B∞) and Bn = {εn <∞}. Observe that Bn+1 = T−1

κn E
and Bn ∈ Fεn ⊂ Fκn . For y ∈ Y we have

Py(Bn+1) = Py(Bn ∩Bn+1) = Ey(1BnEy(1E ◦ Tκn | Fκn))

=
∫
Bn

Pxκn (E)Py(dx) ¬ (1− p)Py(Bn),

where x = (x0, x1, . . . ) ∈ Y∞. It follows that

Py(Bn) ¬ (1− p)n for y ∈ Y, n  1.

Define τ̂((yn)n∈N0) = inf{n  1 : yn ∈ A, ∀k>n yk ∈ B}, D0 = {τ̂ = κ0}
and Dn = {κn−1 < τ̂ ¬ κn < ∞}, for n  1. Since Bn = {τ̂ > κn−1},
we have Dn ⊂ Bn for n  0 and Py(τ̂ = ∞) = limn→∞ Py(τ̂ > κn−1) =
limn→∞ Py(Bn) ¬ limn→∞ (1 − p)n = 0 for y ∈ Y . Finally, by the Hölder
inequality, for s > 1 and y ∈ Y we obtain

Eyλ−τ̂/s ¬
∞∑
n=0

Ey(1{κn<∞}λ
−κn/s1Dn)

¬
∞∑
n=0

[Ey1{κn<∞}λ
−κn ]1/sPy(Dn)1−1/s

¬
∞∑
n=0

[Cn2Cρ(V (y) + 1)]1/s(1− p)n(1−1/s)

¬ C1/s
ρ (1 + V (y))

∞∑
n=0

[(
C2

1− p

)1/s

(1− p)
]n
.

Choosing sufficiently large s and setting γ = λ1/s we have Eyγ−τ̂ ¬ C(1+V (y))
for y ∈ Y . Since τ < τ̂ , the proof is complete. �
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LEMMA 2.2. Let (Y y
n )n∈N0 with y ∈ Y be a family of Markov chains on a

metric space Y. Suppose that V : Y → [0,∞) is a Lyapunov function for their
transition function {πy : y ∈ Y }, i.e. there exist a ∈ (0, 1) and b > 0 such that∫

Y

V (x)πy(dx) ¬ aV (y) + b for y ∈ Y.

Then there exist λ ∈ (0, 1) and C̃ > 0 such that for

ρ((yk)k∈N0) = inf

{
k  1 : V (yk) <

2b

1− a

}
we have

Eyλ−ρ ¬ C̃(V (y0) + 1) for y ∈ Y.
Proof. Suppose that the chains (Y y

n )n∈N0 for y ∈ Y are defined on a com-
mon probability space (Ω,F ,P). Fix α ∈

(
1+a

2 , 1
)

and set V0 = b
α−a . Define

ρ̃((yk)k∈N0) = inf{k  1 : V (yk) ¬ V0}. Fix y ∈ Y . Let Fn ⊂ F , n ∈ N0, be
the filtration induced by (Y y

n )n∈N0 . Define

An = {ω ∈ Ω : V (Y y
i (ω)) > V0 for i = 0, 1, . . . , n}, n ∈ N0.

Observe that An+1 ⊂ An and An ∈ Fn. By the definition of V0 we have
1AnE(V (Y y

n+1) | Fn) ¬ 1An(aV (Y y
n ) + b) < α1AnV (Y y

n ) P-a.e. in Ω. This gives∫
An

V (Y y
n ) dP ¬

∫
An−1

V (Y y
n ) dP =

∫
An−1

E(V (Y y
n ) | Fn−1) dP

¬
∫

An−1

(aV (Y y
n−1) + b) dP ¬ α

∫
An−1

V (Y y
n−1) dP.

By the Chebyshev inequality,

P(V (Y y
0 ) > V0, . . . , V (Y y

n ) > V0) =
∫

An−1

P(V (Y y
n ) > V0 | Fn−1) dP

¬ V −1
0

∫
An−1

E(V (Y y
n ) | Fn−1) dP ¬ αn−1V −1

0 (aV (y) + b),

thus for some C > 0 we have

Py(ρ̃ > n) ¬ αnC(V (y) + 1), n ∈ N0.

Fix γ ∈ (0, 1) and observe that for λ = αγ we have

Eyλ−ρ̃ ¬ 2 +
∞∑
n=1

Py(λ−ρ̃ > n) = 2 +
∞∑
n=1

Py(ρ̃ > logα(n−1/γ))

¬ 2 +
∞∑
n=1

Py(ρ̃ > blogα(n−1/γ)c) ¬ 2 +
C(V (y) + 1)

α

∞∑
n=1

n−1/γ

= C̃(V (y) + 1)

for some C̃. Since ρ ¬ ρ̃, the proof is finished. �
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Proof of Theorem 2.1. For every r > 0 define Dr = {(x, y) ∈ X2 :
d(x, y) < r}.

STEP I. To simplify calculations define a new metric d̄(x, y) = d(x, y)ν and
observe that for D̄r = {(x, y) ∈ X2 : d̄(x, y) < r} we have DR = D̄R̄ with
R̄ = Rν . By the Jensen inequality, (2.2) takes the form

(2.6)
∫
X2

d̄(u, v)Qx,y(du, dv) ¬ ᾱd̄(x, y) for (x, y) ∈ F,

with ᾱ = αν . Assumption A3 implies that

(2.7) 1− ‖Qx,y‖ ¬ ld̄(x, y) and Qx,y(Dᾱd̄(x,y))  δ

for (x, y) ∈ F .

STEP II. Observe that if b ∈Mfin(X2) satisfies supp b ⊂ F then (2.7) implies

‖Qb‖  ‖b‖ − l
∫
X2

d̄(u, v) b(du, dv).

Since supp b ⊂ F , we have suppQ0,...,n
b ⊂ Fn+1. Iterating the above inequal-

ity and using (2.6) we obtain ‖Q0,...,n
b ‖  ‖b‖ − l

1−ᾱ
∫
X2 d̄(u, v) b(du, dv). If

supp b ⊂
{

(u, v) ∈ X2 : d̄(u, v) < 1−ᾱ
2l

}
∩ F then from (2.5) it follows that

(2.8) ‖Q∞b ‖  1
2‖b‖.

Set R0 = sup{d̄(x, y) : L(x) + L(y) < R} < ∞ and n0 = min
{
n ∈ N0 :

ᾱnR0 <
1−ᾱ
2l

}
. Now (2.7) implies that for (x, y) ∈ F such that L(x) +L(y) < R

we have

Qn0
x,y

({
(u, v) ∈ X2 : d̄(u, v) <

1− ᾱ
2l

}
∩ F

)
> δn0

and finally (2.8) gives

(2.9) ‖Q∞x,y‖  1
2δ
n0 .

STEP III. Define ρ̃((xn, yn)n∈N0) = inf
{
n  1 : L(xn) + L(yn) < 4c

1−λ
}

.
Since L(x)+L(y) is a Lyapunov function for a Markov chain inX2 with transition
probabilities {Bx,y : x, y ∈ X}, Lemma 2.2 shows that there exist constants
λ0 ∈ (0, 1) and C0 such that

(2.10) Ex,y λ−ρ̃0 ¬ C0(L(x) + L(y) + 1) for (x, y) ∈ X2.

Define A = {(x, y, θ) ∈ X̂ : (x, y) ∈ F and L(x) + L(y) < R} and

ρ((xn, yn, θn)n∈N0) = inf{n ∈ N0 : (xn, yn, θn) ∈ A}.
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Slightly abusing notation, we identify κ : (X × X)∞ → N0 ∪ {∞}, defined
in A4, with its extension to X̂∞: κ((xn, yn, θn)n∈N0) = κ((xn, yn)n∈N0). Since
ρ ¬ ρ̃+ κ ◦ Tρ̃, where Tρ̃((xn, yn, θn)n∈N0) = (xn+ρ̃, yn+ρ̃, θn+ρ̃)n∈N0 , an argu-
ment similar to that in the proof of Lemma 2.1 shows that there exists λ ∈ (0, 1)
such that

Ex,y,θ λ−ρ ¬ C̃C0(L(x) + L(y) + 1) for x, y ∈ X, θ ∈ {0, 1}.

Define B = {(x, y, θ) ∈ X̂ : θ = 1} and

ε((xn, yn, θn)n∈N0) = inf{n  1 : (xn, yn, θn) 6∈ B}.

From Step II we obtain Px,y,θ(B)  1
2δ
n0 for (x, y, θ) ∈ A. From (2.6) and (2.7)

it follows that

B̂x,y,θ(ε = n) =
∫̂
Xn

R̂zn−1(X̂) Q̂0,...,n−1
x,y,θ (dz0, . . . , dzn−1)

= ‖Qn−1
δ(x,y)
‖ − ‖Q̂Qn−1

δ(x,y)

‖ ¬ l
∫
X2

d̄(u, v)Qn−1
δ(x,y)

(du, dv)

¬ lᾱn−1d̄(x, y) < ᾱn−1lR0

whenever (x, y, θ) ∈ A. Finally, Lemma 2.1 guarantees the existence of constants
γ ∈ (0, 1) and C1 > 0 such that for

τ((xn, yn, θn)n∈N0) = inf{n  1 : ∀kn (xk, yk, θk) ∈ B}

we have

Ex,y,θ γ−τ ¬ C1(L(x) + L(y) + 1) for x, y ∈ X, θ ∈ {0, 1}.

STEP IV. Define Gn/2 = {t ∈ (X2 × {0, 1})∞ : τ(t) ¬ n/2} and Hn/2 =

{t ∈ (X2 × {0, 1})∞ : τ(t) > n/2}. For every n ∈ N we have

B̂∞x,y,θ = B̂∞x,y,θ|Gn/2 + B̂∞x,y,θ|Hn/2 for x, y ∈ X, θ ∈ {0, 1}.

Fix θ = 1 and (x, y) ∈ X2. From the fact that ‖ · ‖FM ¬ ‖ · ‖W it follows that

‖P ∗nδx − P ∗nδy‖FM = ‖Pn
x −Pn

y‖FM

= sup
f∈F

∣∣∣ ∫
X2

(f(z1)− f(z2)) (pr#
n B
∞
x,y)(dz1, dz2)

∣∣∣
= sup

f∈F

∣∣∣ ∫
X2

(f(z1)− f(z2)) (pr#
X2pr

#
n B̂
∞
x,y,θ)(dz1, dz2)

∣∣∣
¬ sup

f∈W

∣∣∣ ∫
X2

(f(z1)− f(z2)) (pr#
X2pr

#
n (B̂∞x,y,θ|Gn/2))(dz1, dz2)

∣∣∣+ 2B̂∞x,y,θ(Hn/2).
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From A2 we obtain

sup
W

∣∣∣ ∫
X2

(f(z1)− f(z2)) (pr#
X2pr

#
n (B̂∞x,y,θ|Gn/2))(dz1, dz2)

∣∣∣
¬
∫
X2

d(z1, z2) (pr#
X2pr

#
n (B̂∞x,y,θ|Gn/2))(dz1, dz2)

¬ αn/2
∫
X2

d(z1, z2) (pr#
X2pr

#
n/2(B̂∞x,y,θ|Gn/2))(dz1, dz2) ¬ αn/2R.

Now Step III and the Chebyshev inequality imply that

B̂∞x,y,θ(Hn/2) ¬ γn/2C1(L(x) + L(y) + 1) for n ∈ N.

Taking C2 = 2C1 +R and q = max{γn/2, αn/2} we obtain

‖P ∗nδx − P ∗nδy‖FM ¬ γnC1(L(x) + L(y) + 1) for x, y ∈ X, n ∈ N,

and so

(2.11) ‖P ∗nµ− P ∗nν‖FM ¬ γnC1

(∫
X

L(x)µ(dx) +
∫
X

L(y) ν(dy) + 1
)

for µ, ν ∈ML
1 (X) and n ∈ N.

STEP V. Observe that Step IV and A1 give

‖P ∗nδx − P ∗(n+k)δx‖FM ¬
∫
X

‖P ∗nδx − P ∗nδy‖FM P ∗kδx(dy)

¬ qnC2

∫
X

(L(x) + L(y))P ∗kδx(dy) ¬ qnC3(1 + L(x)),

so (P ∗nδx)n∈N is a Cauchy sequence for every x ∈ X . SinceM1(X) equipped
with the norm ‖·‖FM is complete (see [8]), assumption A0 implies the existence of
an invariant measure µ∗. Assumption A1 gives µ∗ ∈ML(X). Applying inequality
(2.11) we obtain (2.4). The observation that ML(X) is dense in M1(X) in the
total variation norm finishes the proof. �

REMARK. In Steps IV and V of the above proof we follow M. Hairer [11].

3. RANDOM ITERATION OF FUNCTIONS

Let (X, d) be a Polish space and (Θ,Ξ) a measurable space with a family ϑx ∈
M1(Θ) of distributions on Θ indexed by x ∈ X . The space Θ serves as a set of
indices for a family {Sθ : θ ∈ Θ} of continuous functions from X into X . We
assume that (θ, x) 7→ Sθ(x) is product measurable.
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In this section we study a stochastically perturbed dynamical system (Xn)n∈N0 .
Its intuitive description is the following: if X0 starts at x0, then by choosing θ0 at
random from ϑx0 we define X1 = Sθ0(x0). Having X1 we select θ1 according
to ϑX1 and put X2 = Sθ1(X1), and so on. More precisely, the process (Xn)n∈N0

can be written as
Xn+1 = SYn(Xn), n = 0, 1, . . . ,

where (Yn)n∈N0 is a sequence of random elements defined on a probability space
(Ω,Σ, prob) with values in Θ such that

(3.1) prob(Yn ∈ B |Xn = x) = ϑx(B) for x ∈ X, B ∈ Ξ, n = 0, 1, . . . ,

and X0 : Ω → X is a given random variable. Denoting by µn the probability law
of Xn, we will give a recurrence relation between µn+1 and µn. To this end fix
f ∈ Bb(X) and note that Ef(Xn+1) =

∫
X
f dµn+1. By (3.1) we have∫

A

ϑx(B)µn(dx) = prob({Yn ∈ B} ∩ {Xn ∈ A}) for B ∈ Ξ, A ∈ BX ,

hence

Ef(Xn+1) =
∫
Ω

f(SYn(ω)(Xn(ω)) prob(dω) =
∫
X

∫
Θ

f(Sθ(x))ϑx(dθ)µn(dx).

Putting f = 1A, A ∈ BX , we obtain µn+1(A) = P ∗µn(A), where

P ∗µ(A) =
∫
X

∫
Θ

1A(Sθ(x))ϑx(dθ)µ(dx) for µ ∈Mfin(X), A ∈ BX .

In other words this formula defines the transition operator for µn. The operator P ∗

is the adjoint of the Markov operator P : Bb(X)→ Bb(X) of the form

(3.2) Pf(x) =
∫
Θ

f(Sθ(x))ϑx(dθ).

We take this formula as the precise formal definition of the process under study.
We will show that the operator (3.2) has a unique invariant measure provided the
following conditions hold:

B1. There exists α ∈ (0, 1) such that∫
Θ

d(Sθ(x), Sθ(y))ϑx(dθ) ¬ αd(x, y) for x, y ∈ X.

B2. There exists x̄ ∈ X such that

c := sup
x∈X

∫
Θ

d(Sθ(x̄), x̄)ϑx(dθ) <∞.
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B3. The map x 7→ ϑx, x ∈ X , is Hölder continuous in the total variation norm,
i.e. there exist l > 0 and ν ∈ (0, 1] such that

‖ϑx − ϑy‖ ¬ ld(x, y)ν for x, y ∈ X.

B4. There exists δ > 0 such that

ϑx ∧ ϑy({θ ∈ Θ : d(Sθ(x), Sθ(y)) ¬ αd(x, y)}) > δ for x, y ∈ X,

where ∧ denotes the greatest lower bound in the lattice of finite measures.

REMARK. In the simplest case Θ = {1, . . . , n} the above conditions are stan-
dard and nearly optimal (see [28] for a discussion).

PROPOSITION 3.1. Assume B1–B4. Then the operator (3.2) has a unique in-
variant measure µ∗ ∈ M1

1(X), which is attractive in M1(X). Moreover there
exist q ∈ (0, 1) and C > 0 such that

‖P ∗nµ− µ∗‖FM ¬ qnC
(

1 +
∫
X

d(x̄, x)µ(dx)
)

for µ ∈M1
1(X) and n ∈ N.

Proof. Define the operator Q on Bb(X2) by

Q(f)(x, y) =
∫
Θ

f(Sθ(x), Sθ(y))ϑx ∧ ϑy(dθ).

Since
‖ϑx′ ∧ ϑy′ − ϑx ∧ ϑy‖ ¬ 2(‖ϑx′ − ϑx‖+ ‖ϑy′ − ϑy‖)

it follows that

|Q(f)(x′, y′)−Q(f)(x, y)| ¬
∫
Θ

|f(Sθ(x
′), Sθ(y

′))| ‖ϑx′ ∧ ϑy′ − ϑx ∧ ϑy‖(dθ)

+
∫
Θ

|f(Sθ(x
′), Sθ(y

′))− f(Sθ(x), Sθ(y))|ϑx ∧ ϑy(dθ)

¬ 2l sup
z∈X2

|f(z)| (d(x, x′)ν + d(y, y′)ν)

+
∫
Θ

|f(Sθ(x
′), Sθ(y

′))− f(Sθ(x), Sθ(y))|ϑx ∧ ϑy(dθ),

for f ∈ Bb(X
2) and x, y ∈ X . Consequently, Q(Cb(X

2)) ⊂ Cb(X
2), by

Lebesgue’s dominated convergence theorem. Put

F =
{
f ∈ Bb(X2) : sup

z∈X2

|f(z)| ¬M, Q(f) ∈ Bb(X2)
}
,
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where M > 0 is fixed, and observe that the family F contains all continuous
functions bounded by M and the limit of any convergent sequence of functions
in the class, i.e. F consists, by definition, of all Baire functions bounded by M .
Since the class of Baire functions is identical with the class of Borel functions (see
[22, Theorem 4.5.2]) it follows that Q(Bb(X

2)) ⊂ Bb(X
2). In particular, for the

family {Qx,y : x, y ∈ X} of (subprobability) measures given by

Qx,y(C) =
∫
Θ

1C(Sθ(x), Sθ(y))ϑx ∧ ϑy(dθ),

the maps (x, y) 7→ Qx,y(C) are measurable for every C ∈ BX2 .
Arguing similarly we show that (3.2) is a well defined Feller operator. It has

Lyapunov function L(x) = d(x, x̄), since
∫

Θ
d(Sθ(x), x̄)ϑx(dθ) ¬ αd(x, x̄) + c.

Now, observe that

‖Qx,y‖ = ϑx ∧ ϑy(Θ) = inf
A∈Ξ
{ϑx(A) + ϑy(Θ \A)}

= 1− sup
A∈Ξ
{ϑy(A)− ϑx(A)} = 1− ‖ϑx − ϑy‖  1− ld(x, y)ν

for x, y ∈ X . Moreover,∫
X2

d(u, v)Qx,y(du, dv) =
∫
Θ

d(Sθ(x), Sθ(y))ϑx ∧ ϑy(dθ) ¬ αd(x, y),

and Qx,y(Dαd(x,y)) = ϑx ∧ ϑy({θ ∈ Θ : d(Sθ(x), Sθ(y)) ¬ αd(x, y)}) > δ for
x, y ∈ X . In consequence, A0–A3 are fulfilled. The use of Theorem 2.1 (see also
comments in Subsection 2.2 concerning assumption A4) ends the proof. �

4. PERPETUITIES WITH PLACE DEPENDENT PROBABILITIES

Let X = Rd and G = Rd×d ×Rd, and consider the function Sθ : X → X defined
by Sθ(x) = M(θ)x + Q(θ), where (M,Q) is a random variable on (Θ,Ξ) with
values in G. Then (3.2) may be written as

(4.1) Pf(x) =
∫
G

f(mx+ q) dϑx ◦ (M,Q)−1(m, q).

This operator is connected with the random difference equation of the form

(4.2) Φn = MnΦn−1 +Qn, n = 1, 2, . . . ,

where (Mn, Qn)n∈N is a sequence of independent random variables distributed
as (M,Q). Namely, the process (Φn)n∈N0 is a homogeneous Markov chain with
transition kernel P given by

(4.3) Pf(x) =
∫
G

f(mx+ q) dµ(m, q),

where µ stands for the distribution of (M,Q). Equation (4.2) arises in various ar-
eas including economics, physics, nuclear technology, biology and sociology (see
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e.g. [32]). It is closely related to a sequence (Ψn)n∈N of backward iterations, given
by
∑n

k=1M1 . . .Mk−1Qk, n ∈ N (see e.g. [9]). Under conditions ensuring the
almost sure convergence of the sequence (Ψn)n∈N the limiting random variable

(4.4)
∞∑
n=1

M1 . . .Mn−1Qn

is often called a perpetuity. It turns out that the probability law of (4.4) is a unique
invariant measure for (4.3). The name perpetuity comes from perpetual payment
streams and recently gained some popularity in the literature on stochastic re-
currence equations (see [7]). In the insurance context a perpetuity represents the
present value of a permanent commitment to make a payment at regular inter-
vals, say annually, into the future forever. The Qn represent annual payments,
and the Mn cumulative discount factors. Many interesting examples of perpetu-
ities can be found in [1]. Due to the significant papers [17], [10], [32] and [9]
we have a complete (in dimension one) characterization of convergence of per-
petuities. The rate of that convergence has recently been extensively studied by
many authors (see for instance [3]–[5], [24]). The main result of this section con-
cerns the rate of convergence of the process (Xn)n∈N0 associated with the operator
P : Bb(Rd)→ Bb(Rd) given by

(4.5) Pf(x) =
∫
G

f(mx+ q) dµx(m, q),

where {µx : x ∈ Rd} is a family of Borel probability measures onG. In contrast to
(Φn)n∈N0 , the process (Xn)n∈N0 moves by choosing θ at random from a measure
depending on x. Taking into consideration the concept of perpetuity we may say
that (Xn)n∈N0 forms a perpetuity with place dependent probabilities.

COROLLARY 4.1. Assume that {µx : x ∈ Rd} is a family of Borel probability
measures on G such that

(4.6) α := sup
x∈Rd

∫
G

‖m‖op dµx(m, q) < 1, c := sup
x∈Rd

∫
G

|q| dµx(m, q) <∞.

Assume moreover that the map x 7→ µx, x ∈ X , is Hölder continuous in the total
variation norm and there exists δ > 0 such that

µx ∧ µy({(m, q) ∈ G : ‖m‖op ¬ α}) > δ for x, y ∈ Rd.

Then the operator (4.5) has a unique invariant measure µ∗ ∈ M1
1(Rd), which is

attractive inM1(Rd). Moreover there exist q ∈ (0, 1) and C > 0 such that

‖P ∗nµ− µ∗‖FM ¬ qnC
(

1 +
∫
Rd
|x|µ(dx)

)
for µ ∈M1

1(Rd) and n ∈ N.

The proof of the corollary is a straightforward application of Proposition 3.1.
We leave the details to the reader.
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We finish the paper by giving an example illustrating Corollary 4.1.

EXAMPLE. Let ν0, ν1 be distributions on R2. Assume that p, q : R → [0, 1]
are Lipschitz functions (with Lipschitz constant L) summing to 1, and p(x) = 1
for x ¬ 0, while p(x) = 0 for x  1. Define µx by µx = p(x)ν0 + q(x)ν1, x ∈ R.
Then:

• ‖µx − µy‖ ¬ 2L|x− y| for x, y ∈ R.
• If

∫
R2 |m| dνi(m, q) < 1 and

∫
R2 |q| dνi(m, q) < ∞ for i = 0, 1, then (4.6)

holds.
• For all A ∈ BR2 and x, y ∈ R we have

µx ∧ µy(A)  ν0 ∧ ν1(A) = (ν0 − λ+)(A) = (ν1 − λ−)(A)

 max{ν0(A), ν1(A)} − ‖ν0 − ν1‖(A),

where (λ+, λ−) is the Jordan decomposition of ν1 − ν0.
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