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1. INTRODUCTION

For the most part, work on discrete approximations deals only with upper bounds.
However, lower bounds are also of interest as they often provide some insight as
to the correct order of the upper bounds. Unfortunately, lower bounds, especially
for dependent random variables, are scarce in the literature. This problem for the
case of Poisson approximation to Bernoulli summands is investigated in detail in
[2, Chapter 3]. However, the Poisson distribution has just one parameter which is
usually chosen to match the mean of the approximated distribution. Our aim in
this paper is to obtain lower bounds for two-parametric discrete approximations to
sums of weakly dependent discrete random variables. These results complement the
upper bounds derived in [5].

Let Z+ denote the set of nonnegative integers. A sequence {Xk}k­1 of random
variables is called m-dependent if, for 1 < s < t < ∞, t − s > m, the sigma-
algebras generated by X1, . . . , Xs and Xt, Xt+1, . . . are independent. We can
reduce each sum of m-dependent variables to a sum of 1-dependent ones, by
grouping consecutive m summands. Therefore, we consider hereafter, without loss
of generality, sums Sn = X1 + · · ·+Xn of non-identically-distributed 1-dependent
random variables concentrated on Z+. We denote the distribution function and
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the characteristic function of Sn by Fn(x) and F̂n(t), respectively. Similarly, for
a signed measure M concentrated on Z+, let M̂(t) =

∑∞
k=0 eitkM{k} denote its

Fourier–Stieltjes transform. The local, Kolmogorov and total variation norms are
defined as

‖M‖∞ = sup
k
|M{k}|, |M |K = sup

k
|M{[0, k]}|, ‖M‖ =

∞∑
k=0

|M{k}|,

respectively. Observe that lower bounds for |M |K are also lower bounds for ‖M‖,
since |M |K 6 ‖M‖.

Let Ia denote the distribution concentrated at a real a and set I = I0. Henceforth,
the products and powers of measures are understood in the convolution sense.
Further, for a measure M , we set M0 = I and exp{M} =

∑∞
k=0M

k/k!.
Next, we introduce the two-parametric approximations considered in this paper.

Let

Γ1n = ESn, Γ2n =
1

2
(VarSn − ESn).

We denote by Π + Π1 = exp{Γ1n(I1 − I)} + exp{Γ1n(I1 − I)}Γ2n(I1 − I)2)
the standard second order Poisson approximation. Its Fourier–Stieltjes transform is
Π̂(t) + Π̂1(t) = exp{Γ1nz(t)}(1 + Γ2nz

2(t)); here and henceforth, z(t) = eit− 1.
Let G = exp{Γ1n(I1 − I) + Γ2n(I1 − I)2} be the two-parametric compound
Poisson measure with Fourier–Stieltjes transform Ĝ(t) = exp{Γ1nz(t)+Γ2nz

2(t)}.
Approximations to G have been used in many papers: see, for example, [1], [8],
and the references therein. Note that when Γ2n < 0, the measure G becomes a
signed measure. If ESn < VarSn, it is natural to consider the approximation to
the negative binomial distribution, defined as

NB{j} =
Γ(r + j)

j!Γ(r)
qr(1− q)j , r(1− q)

q
= Γ1n, r

(
1− q
q

)2

= 2Γ2n,

where j ∈ Z+, r > 0, 0 < q < 1 and Γ(·) is the gamma function.
Note that

N̂B(t) =

(
q

1− (1− q)eit

)r
=

(
1− (1− q)z(t)

q

)−r
.

The negative binomial approximation has been successfully applied to a special case
of k-dependent indicators in [11]. If VarSn < ESn, we consider the approximation
to the binomial distribution defined by

(1.1)
Bi = ((1− p)I + pI1)n, N = bÑc, Ñ =

Γ2
1n

2|Γ2n|
, p̄ =

Γ1n

N
,

B̂i(t) = (1 + pz(t))N .
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Here, we use bÑc to denote the integer part of Ñ , that is, Ñ = bÑc+ ε for some
0 6 ε < 1. Note that the symbols q and p are unrelated and q + p 6= 1 in general.
The binomial approximation to dependent indicators has been discussed in [9].

We define the jth factorial moment of Xk by

νj(k) = EXk(Xk − 1) · · · (Xk − j + 1) (k = 1, . . . , n; j = 1, 2, . . . ).

For simplicity, we assume that Xk ≡ 0 and νj(k) = 0 if k 6 0 and
∑n

k = 0 if
k > n. Next, we introduce some technical notations which are used in the proofs.
Let {Yk}k­1 be a sequence of arbitrary real- or complex-valued random variables.
We assume that Ê(Y1) = EY1 and, for k > 2, define Ê(Y1, . . . , Yk) by

Ê(Y1, Y2, . . . , Yk) = EY1Y2 · · ·Yk −
k−1∑
j=1

Ê(Y1, . . . , Yj) EYj+1 · · ·Yk.

For k ­ 2, let

Ê+(X1) = EX1, Ê+(X1, X2) = EX1X2 + EX1 EX2,

Ê+(X1, . . . , Xk) = EX1 . . . Xk

+
k−1∑
j=1

Ê+(X1, . . . , Xj) EXj+1Xj+2 · · ·Xk,

Ê+
2 (Xk−1, Xk) = Ê+(Xk−1(Xk−1 − 1), Xk)

+ Ê+(Xk−1, Xk(Xk − 1)),

Ê+
2 (Xk−2, Xk−1, Xk) = Ê

+(
Xk−2(Xk−2 − 1), Xk−1, Xk

)
+ Ê

+(
Xk−2, Xk−1(Xk−1 − 1), Xk

)
,

Ê+
3 (Xk−1, Xk) = Ê

+(
Xk−1(Xk−1 − 1)(Xk−1 − 2), Xk

)
+ Ê

+(
Xk−1(Xk−1 − 1), Xk(Xk − 1)

)
+ Ê

+(
Xk−1, Xk(Xk − 1)(Xk − 2)

)
and

Γ3n =
1

6

n∑
k=1

(
ν3(k)− 3ν1(k)ν2(k) + 2ν3

1(k)
)

−
n∑
k=2

(ν1(k − 1) + ν1(k))Ê(Xk−1, Xk)

+
1

2

n∑
k=2

(
Ê(Xk−1(Xk−1 − 1), Xk) + Ê(Xk−1, Xk(Xk − 1))

)
+

n∑
k=3

Ê(Xk−2, Xk−1, Xk),
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R0 =
n∑
k=1

{ν2(k) + ν2
1(k) + EXk−1Xk},

R1 =
n∑
k=1

{
ν3

1(k) + ν1(k)ν2(k) + ν3(k)

+ [ν1(k − 2) + ν1(k − 1) + ν1(k)] EXk−1Xk

+ Ê+
2 (Xk−1, Xk) + Ê+(Xk−2, Xk−1, Xk)

}
,

R2 =
n∑
k=1

{
ν4

1(k) + ν2
2(k) + ν4(k)

+ [ν1(k − 1) + ν1(k)][ν3(k) + Ê+
2 (Xk−1, Xk)]

+ (EXk−1Xk)
2 +

3∑
l=0

ν1(k − l)Ê+(Xk−2, Xk−1, Xk)

+ Ê+
2 (Xk−2, Xk−1, Xk) + Ê+

3 (Xk−1, Xk)

+ Ê+(Xk−3, Xk−2, Xk−2, Xk)
}
.

It is shown in [5] that

(1.2)
Γ1n =

n∑
k=1

ν1(k),

Γ2n =
1

2

n∑
k=1

(ν2(k)− ν2
1(k)) +

n∑
k=2

Ê(Xk−1, Xk).

As our method of proof does not yield small constants, we focus on the order of the
accuracy of approximation. The symbol C denotes generic (but different) positive
absolute constants. Sometimes, we supply C with indices, to avoid ambiguity. Let θ
denote a real or complex number satisfying |θ| 6 1.

2. THE MAIN RESULTS

In this paper, we use the assumptions from [5]:

ν1(k) 6 1/100, ν2(k) 6 ν1(k), ν4(k) <∞ (k = 1, . . . , n),(2.1)
n∑
k=1

ν2(k) 6
Γ1n

20
,

n∑
k=2

|Cov(Xk−1, Xk)| 6
Γ1n

20
.(2.2)

Though we assume small means and even smaller second factorial moments, they
nevertheless include the case where all moments are of the constant order.

Our primary goal is to obtain estimates with the so-called ‘magic factor’, which
corresponds to the case Γ1n > 1 (see [2, Introduction]).
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THEOREM 2.1. Suppose that Γ1n > 1 and conditions (2.1) and (2.2) hold.
Then, for each n > 1 and any α > 1,

|Fn −Π−Π1|K >
C1Γ2

2n

α4Γ2
1n

− R1

α3Γ1n

√
Γ1n

,(2.3)

|Fn −G|K >
C2

α3

(
|Γ3n|

Γ1n

√
Γ1n
− R2

1

αΓ3
1n

− R2

αΓ2
1n

)
.(2.4)

Also, when Γ2n > 0,

(2.5) |Fn−NB|K >
C3

α3

{
1

Γ1n

√
Γ1n

∣∣∣∣Γ3n−
4Γ2

2n

3Γ1n

∣∣∣∣− R2
1

αΓ3
1n

− R2

αΓ2
1n

− Γ3
2n

αΓ4
1n

}
,

and when Γ2n < 0,

(2.6)

|Fn−Bi|K >
C4

α3

{
1

Γ1n

√
Γ1n

∣∣∣∣Γ3n−
Np3

3

∣∣∣∣− R2
1

αΓ3
1n

− R2

αΓ2
1n

− |Γ2n|3

αΓ4
1n

}
−C5Γ2

2nε

α2Γ3
1n

.

Observe that all the estimates contain the quantity α which can be chosen
arbitrarily. If all remainder terms are of the same magnitude, then we can get rid of
the negative terms by taking α sufficiently large. Note also that the assumptions of
Theorem 2.1 do not ensure nontriviality of estimates: in some cases, the right-hand
side estimates may be negative.

If all variables are bounded by some positive constant, some estimates can be
simplified.

COROLLARY 2.1. Suppose that Γ1n > 1, Xk 6 C0 for 1 ¬ k ¬ n, and
conditions (2.1) and (2.2) are satisfied. Then, for each n > 1 and any α > 1,

|Fn −G|K >
C6

α3Γ1n

√
Γ1n

(
|Γ3n| −

R1

α

)
.

If in addition Γ2n > 0, then

|Fn −NB|K >
C7

α3Γ1n

√
Γ1n

(∣∣∣∣Γ3n −
4Γ2

2n

3Γ1n

∣∣∣∣− R1

α
√

Γ1n
− Γ3

2n

αΓ
5/2
1n

)
.

The corollary immediately follows from the fact that for Xi bounded, we have
R2 6 CR1 and R1 6 CΓ1n. As shown in [5], under the assumptions of Corollary
2.1, we have

(2.7) ‖Fn−Π−Π1‖ 6 C(R1 +R2
0Γ
−1/2
1n )Γ

−3/2
1n , ‖Fn−G‖ 6 CR1Γ

−3/2
1n .

If Γ2n > 0 or Γ2n < 0 then, respectively,

‖Fn −NB‖ 6 C(R1 + Γ2
2nΓ−1

1n )Γ
−3/2
1n ,(2.8)
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‖Fn − Bi‖ 6 C(R1 + Γ2
2nΓ−1

1n )Γ
−3/2
1n .(2.9)

In general, comparison of (2.7)–(2.9) to Corollary 2.1 is somewhat complicated. On
the other hand, if we do not deal with triangular arrays, that is, if noXi depends on n,
then Γin = Ri = O(n), and therefore the upper and lower bounds for the G,NB
and Bi approximations are of the same order Cn−1/2. As can be expected, in this
case, the second order Poisson approximation is bounded from below by a factor
some C. In the next section, we demonstrate that lower bounds can be of the correct
order even if X1, X2, . . . form a triangular array.

For the local metric, all the estimates are smaller by a factor
√

Γ1n, as seen in
the next result.

THEOREM 2.2. Suppose that Γ1n > 1 and conditions (2.1) and (2.2) are satis-
fied. Then, for each n > 1 and any α > 1,

‖Fn −Π−Π1‖∞ >
C8Γ2

2n

α4Γ2
1n

√
Γ1n
− R1

α3Γ2
1n

,(2.10)

‖Fn −G‖∞ >
C9

α3

(
|Γ3n|
Γ2

1n

− R2
1

αΓ3
1n

√
Γ1n
− R2

αΓ2
1n

√
Γ1n

)
.(2.11)

In addition, when Γ2n > 0,

(2.12)

‖Fn−NB‖∞ >
C10

α3

{
1

Γ2
1n

∣∣∣∣Γ3n−
4Γ2

2n

3Γ1n

∣∣∣∣− R2
1

αΓ3
1n

√
Γ1n
− R2

αΓ2
1n

√
Γ1n
− Γ3

2n

αΓ
9/2
1n

}
,

and when Γ2n < 0,

‖Fn − Bi‖∞ >
C11

α3

{
1

Γ2
1n

∣∣∣∣Γ3n −
Np3

3

∣∣∣∣− R2
1

αΓ3
1n

√
Γ1n

(2.13)

− R2

αΓ2
1n

√
Γ1n
− |Γ2n|3

αΓ4
1n

√
Γ1n

}
− C12Γ2

2nε

α2Γ3
1n

√
Γ1n

.

It should be noted that our method of proof can also be applied to prove estimates
without the ‘magic factor’, that is, for small Γ1. As an illustration we formulate one
result for Π + Π1 and G.

THEOREM 2.3. Suppose that Γ1n < 1 and conditions (2.1) and (2.2) hold.
Then, for each n > 1 and any α > 1,

|Fn −Π−Π1|K >
C13

α3

(
|Γ3n| −

R2
1 +R2 + Γ2

2n

α

)
,

|Fn −G|K >
C14

α3

(
|Γ3n| −

R2
1 +R2

α

)
.

The same accuracy is achieved for the local norm.
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3. SOME APPLICATIONS

In this section, we discuss some applications of the results stated in the previous
section.

3.1. Approximations to the Poisson-binomial distribution. The Poisson-binomial
distribution, which has been comprehensively investigated in numerous papers,
provides a good possibility for checking the accuracy of our estimates. We consider
Theorems 2.1 and 2.3 only. Let Wn = ξ1 + · · ·+ ξn, where the ξi are independent
Bernoulli variables with P (ξi = 1) = 1 − P (ξi = 0) = pi 6 0.01. Further, let
λ := Γ1n =

∑n
i=1 pi and λj :=

∑n
i=1 p

j
i . If λ > 1, then R1 6 Cλ3, R2 6 λ4,

Γ2n = −λ2/2 and Γ3n = λ3/3. From Hölder’s inequality it follows that λ2 6 λλ3.
If λ > 1, then by choosing a sufficiently large absolute constant α, we obtain

|L(Wn)−G|K >
C15λ3

λ
√
λ
.

This estimate is of the correct order and was already obtained in [7]. The lower
bound in (2.3) for the second order Poisson approximation compares well with the
upper bound estimate in the following way (see [5]):

C16λ
2
2

λ2
− C17λ3

λ
√
λ

6 ‖L(Wn)−Π−Π1‖ 6
C18λ

2
2

λ2
+
C19λ3

λ
√
λ
.

If pi = p, then the upper and lower bounds are of the same order Cp2. Since
Γ2n < 0, we next obtain a lower bound for the binomial approximation, which has
not been investigated in the literature. By definition,

p =
λ2

λ
+ θ

λ2

Nλ
, Np3 =

λ2
2

λ
+ Cθ

λ2
2

Nλ
,

1

N
6

C√
λ
.

Putting all the estimates in (2.6) and choosing α sufficiently large, we obtain

(3.1) |L(Wn)− Bi|K >
C20√
λ

(
λ3

λ
− λ2

2

λ2
− C21λ3

λ
√
λ

)
,

where Bi is defined in (1.1).
The upper bound in total variation is of the order

‖L(Wn)− Bi‖ 6 C22√
λ

(
λ3

λ
− λ2

2

λ2
+
C23λ

2
2

λ2
√
λ

)
+ exp{−C24λ}

(see [4] for more precise estimates). If all the pi are different and uniformly bounded
away from zero, we get

C25√
n

6 |L(Wn)− Bi|K 6 ‖L(W )− Bi‖ 6 C26√
n
.

On the other hand, if pi = p, then L(Wn) = Bi and one can expect the lower bound
to be zero, which is not the case in (3.1), as it becomes negative.
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3.2. Approximations to (k1, k2)-events. Let ηi be independent Bernoulli Be(p)
(0 < p < 1) variables and let Yj = (1−ηj−m+1) · · · (1−ηj−k2)ηj−k2+1 · · · ηj−1ηj ,
j = m,m+ 1, . . . , n, k1 + k2 = m. Then N(n; k1, k2) = Ym + Ym+1 + · · ·+ Yn
denotes the number of (k1, k2)-events in n Bernoulli trials. We denote the dis-
tribution of N(n; k1, k2) by H. Let a(p) = (1 − p)k1pk2 . It is well known that
N(n; k1, k2) has limiting Poisson distribution if na(p)→ λ̃ (see [6] or [10]). Note
also thatN(n; k1, k2) is the sum ofm(>2)-dependent random variables Y1, Y2, . . . .
However, as already mentioned in the introduction, we can switch to 1-dependent
random variables by grouping consecutive summands:

N(n; k1, k2) = (Ym + Ym+1 + · · ·+ Y2m−1)

+ (Y2m + Y2m+1 + · · ·+ Y3m−1) + · · ·

=
K+1∑
j=1

Xj ,

where

K =

⌊
n−m+ 1

m

⌋
=

⌊
n+ 1

m

⌋
− 1.

Further, we assume that k1 > 0, k2 > 0, m 6 n/2, ma(p) 6 0.01 and
(n−m+ 1)a(p) > 1. Then, as shown in [5], all the Xj are 1-dependent Bernoulli
variables and

Γ1n= (n−m+ 1)a(p), Γ2n = −a
2(p)

2
[(n−m+ 1)(2m− 1)−m(m− 1)],

Γ3n =
a3(p)

6
[(n−m+ 1)(3m− 1)(3m− 2)− 4m(2m− 1)(m− 1)],

R1 6 C(n−m+ 1)m2a3(p), R2 6 C(n−m+ 1)m3a4(p),

Γ3n =
Np3

3
+
a3(m)

6
(n−m+ 1)m(m− 1) + θCm3a3(m).

Using the theorems of the previous section, we obtain

|H−G|K >
C27m

2a3/2(p)√
n−m+ 1

, ‖H−G‖∞ >
C28m

2a(p)

n−m+ 1
,

|H− Bi|K >
C29m

2a3/2(p)√
n−m+ 1

(
1− C30√

(n−m+ 1)a(p)

)
,

‖H− Bi‖∞ >
C31m

2a(p)

n−m+ 1

(
1− C32√

(n−m+ 1)a(p)

)
.

These estimates match the following upper bounds for the total variation:

‖H−G‖ 6 C33m
2a3/2(p)√

n−m+ 1
, ‖H−G‖∞ 6

C34m
2a(p)

n−m+ 1
,
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‖H− Bi‖ 6 C35m
2a3/2(p)√

n−m+ 1
, ‖H− Bi‖∞ 6

C36m
2a(p)

n−m+ 1

(see Theorem 4.3 and [5, remark at the end of Section 3].

4. AUXILIARY RESULTS

We now present some useful auxiliary results. Let

V1(t) =
N

3
p3z3(t), V2(t) =

5

12
Np4|z(t)|4 +

50

51

Γ3
2nε|z(t)|2

Γ2
1n

,

M̂1(t) =
4

3

Γ2
2nz

3(t)

Γ1n
, M̂2(t) =

20

7

Γ3
2n|z(t)|4

Γ2
1n

.

LEMMA 4.1. If conditions (2.1) and (2.2) are satisfied, then

|Γ2n| 6 0.08Γ1n, Np3 6 C
Γ2

2n

Γ1n
, p 6

50|Γ2n|
21Γ1n

<
1

5
,(4.1)

|F̂n(t)− Ĝ(t)| 6 CR1|z(t)|3,(4.2)

|F̂n(t)− Ĝ(t)(1 + Γ3nz
3(t))| 6 C(R2

1|z(t)|6 +R2|z(t)|4),(4.3)

|Ĝ(t)| 6 |Π(t)| exp{|Γ2n| |z(t)|2/2} 6 exp{−0.42Γ1n|z(t)|2},(4.4)

B̂i(t) = Ĝ(t) exp{V̂1(t) + θV̂2(t)},(4.5)

|Ĝ(t)| exp{|V̂1(t)|+ V̂2(t)} 6 1,(4.6)

N̂B(t) = exp{Γ1nz(t) + 3θΓ1n|z(t)|2/28},(4.7)

N̂B(t) = Ĝ(t)(1 + M̂1(t)) + Cθ(M̂2(t) + |M̂1(t)|2).(4.8)

Proof. The estimates of Lemma 4.1 are proved in [5] or easily follow from the
estimates obtained there. Indeed, the estimates (4.1) are proved in [5, Lemma 6.10],
(4.3) is given in [5, proof of Theorem 3.2] and (4.2) is proved similarly. For the proof
of (4.4), check that |Π̂(t)| = exp{−2Γ1n sin2(t/2)} = exp{−0.5Γ1n|z(t)|2} and
apply (4.1). Estimates (4.5) and (4.7) are given in [5, Lemmas 6.9 and 6.10]. For
(4.6), apply (4.4), (4.1) and the trivial inequality |z(t)| 6 2. To prove (4.8), note
that |Ĝ(t)| exp{|M̂1(t)|+ M̂2(t)} 6 1 and N̂B(t) = Ĝ(t) exp{M̂1(t) + θM̂2(t)}.
Then

N̂B(t) = Ĝ(t)eM̂1(t)+θM̂2(t) = Ĝ(t)eM̂1(t)
(
1 + θM̂2(t)eM̂2(t)

)
= Ĝ(t)eM̂1(t) + θM̂2(t)|Ĝ(t)|e|M̂1(t)|eM̂2(t)

= Ĝ(t)
(
1 + M̂1(t) + 0.5θ|M̂1|2e|M̂1(t)|)+ θM̂2(t)

= Ĝ(t)(1 + M̂1(t)) + 0.5θ|M̂1(t)|2|Ĝ(t)|e|M̂1(t)| + θM̂2(t)

= Ĝ(t)(1 + M̂1(t)) + θ(M̂2(t) + |M̂1(t)|2). �
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The following lemma is the main tool for our proofs.

LEMMA 4.2. Let M be concentrated on Z, u ∈ R and v > 1. Then

|M |K > C37

∣∣∣∣ ∞∫
−∞

e−t
2/2M̂

(
t

v

)
e−itu dt

∣∣∣∣,(4.9)

‖M‖∞ >
C38

v

∣∣∣∣ ∞∫
−∞

e−t
2/2M̂

(
t

v

)
e−itu dt

∣∣∣∣.(4.10)

The estimates in (4.9) and (4.10) remain valid if e−t
2/2 is replaced by te−t

2/2.

A proof of the above lemma can be found in [3, Lemmas 10.3 and 10.4].

5. PROOFS

Proof of Theorems 2.1 and 2.2. We will often use the trivial estimate |z(t)|6 |t|
and the inequality |ea − 1| 6 |a| for a complex number a with nonpositive real part
(see [3, (1.34)]). Then applying Lemma 4.1, we have

|Π̂(t)[exp{Γ2nz
2(t)} − 1− Γ2nz

2(t)− (Γ2nz
2(t))2/2]|

6

∣∣∣∣Π̂(t)
Γ3

2nz
6(t)

2

1∫
0

(1− τ)2 exp{τΓ2nz
2(t)} dτ

∣∣∣∣ 6 |Γ2n|3|z(t)|6

2
,

e−itΓ1n [F̂n(t)− Π̂(t)− Π̂1(t)] = e−itΓ1n

{
[F̂n(t)− Ĝ(t)]

+ Π̂(t)[exp{Γ2nz
2(t)} − 1− Γ2nz

2(t)− (Γ2nz
2(t))2/2]

+ Π̂(t)
Γ2

2n

2
[z4(t)− (it)4]

}
+

Γ2
2n(it)4

2
[e−itΓ1nΠ̂(t)− 1] +

Γ2
2n(it)4

2

=
Γ2

2n(it)4

2
+ θC

{
R1|z(t)|3 + |Γ2n|3|z(t)|6 + Γ2

2n|t|5 + Γ2
2n|t|6Γ1n

}
.

Apply Lemma 4.2 with u = Γ1n and v = b
√

Γ1n, where b > 1 is a constant,
and (4.1), to get

|Fn −Π−Π1|K > C39
Γ2

2n

b4Γ2
1n

− C40

(
R1

b3Γ
3/2
1n

+
|Γ2n|3

b6Γ3
1n

+
Γ2

2n

b5Γ
5/2
1n

+
Γ2

2n

b6Γ2
1n

)
> C41

Γ2
2n

b4Γ2
1n

− C40R1

b3Γ
3/2
1n

,

for sufficiently large b. Note that we can assume b3 > C40 > 1. The proof of (2.3)
is completed by choosing α3 = b3/C40. For the local estimate in (2.10), one has to
use the second inequality in Lemma 4.2. The lower bounds for G are proved in a
similar way. Using Lemma 4.1, we get



Lower bounds for discrete approximations 33

(5.1) e−Γ1nitΓ3nĜ(t)z3(t)

= Γ3n(it)3 + Γ3n(z3(t)− (it)3) + Γ3nz
3(t)(e−Γ1nitĜ(t)− 1)

= Γ3n(it)3 + θC|Γ3n| |t|3(|t|+ Γ1nt
2),

(5.2) e−itΓ1n(F̂n(t)− Ĝ(t))

= e−Γ1nit(Γ3nĜ(t)z3(t) + F̂n(t)− Ĝ(t)(1 + Γ3nz
3(t)))

= e−Γ1nitΓ3nĜ(t)z3(t) + θC(R2
1|z(t)|6 +R2|z(t)|4).

Next we apply Lemma 4.2 with u = Γ1n, v = b
√

Γ1n t exp{−t2/2} and b > 1
to obtain

|Fn −G|K >
C42|Γ3n|
b3Γ

3/2
1n

− C43|Γ3n|
b4Γ

3/2
1n

− C44|Γ3n|
b5Γ

3/2
1n

− C45R
2
1

b6Γ3
1n

− C46R2

b4Γ2
1n

>
C47

b3

(
|Γ3n|
Γ

3/2
1n

(
1− C48

b
− C49

b2

)
− C50

b

(
R2

1

Γ3
1n

+
R2

Γ2
1n

))
>
C51

b3

(
|Γ3n|
Γ

3/2
1n

− C52

b

(
R2

1

Γ3
1n

+
R2

Γ2
1n

))
,

when b is sufficiently large. We can always assume that C59/b 6 1. If we choose
α = b/C52, the proof of (2.4) follows. The local estimate in (2.11) follows from
Lemma 4.2 immediately.

For the proofs of (2.5) and (2.12), let M̂3(t) = Γ3nz
3(t)− M̂1(t). Note that

|1 + Γ3nz
3(t)− (1 + M̂1(t))(1 + M̂3(t))| 6 CΓ2

2n

Γ1n

∣∣∣∣Γ3n −
4Γ2

2n

3Γ1n

∣∣∣∣|z(t)|6,
e−Γ1nitN̂B(t)z3(t) = (it)3 + (z3(t)− (it)3) + (e−Γ1nitN̂B(t)− 1)z3(t)

= (it)3 + θC|t|3(|t|+ Γ1nt
2).

Also, it follows from Lemma 4.1 that

F̂n(t)− N̂B(t) = N̂B(t)M3(t) + [F̂n(t)− Ĝ(t)(1 + Γ3nz
3(t))]

+ [Ĝ(t)(1 + Γ3nz
3(t))− Ĝ(t)(1 + M̂1(t))(1 + M̂3(t))]

+ (1 + M̂3(t))[Ĝ(t)(1 + M̂1(t))− N̂B(t)]

= N̂B(t)M̂3(t) + θC

{
R2

1|z(t)|6 +R2|z(t)|4

+
Γ2

2n

Γ1n

∣∣∣∣Γ3n −
4Γ2

2n

3Γ1n

∣∣∣∣|z(t)|6
+

(
1 +

∣∣∣∣Γ3n −
4Γ2

2n

3Γ1n

∣∣∣∣|z(t)|3)Γ3
2n

Γ2
1n

|z(t)|4(1 + Γ2n|z(t)|2)

}
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= N̂B(t)M̂3(t) + θC

{
R2

1|z(t)|6 +R2|z(t)|4 +
Γ3

2n|z(t)|4

Γ2
1n

(1 + Γ2n|z|2)

+

∣∣∣∣Γ3n −
4Γ2

2n

3Γ1n

∣∣∣∣Γ2
2n

Γ1n
|z(t)|6

(
|z(t)|(1 + Γ2n|z(t)|2)

Γ1n
+ 1

)}
= N̂B(t)z3(t)

(
Γ3n −

4Γ2
2n

3Γ1n

)
+ θC

{
R2

1|z(t)|6 +R2|z(t)|4

+
Γ3

2n|z(t)|4

Γ2
1n

(1 + Γ2n|z|2) +

∣∣∣∣Γ3n −
4Γ2

2n

3Γ1n

∣∣∣∣Γ2
2n

Γ1n
|z(t)|6

}
.

The proofs of (2.5) and (2.12) are completed by an application of Lemma 4.2 with
u = Γ1n, v = b

√
Γ1n t exp{−t2/2} and for sufficiently large constant b.

The proofs of (2.6) and (2.13) are similar to that for the negative binomial
approximation. It suffices to replace M̂1(t), M̂2(t), M̂3(t) by V̂1(t), V̂2(t) and
V̂3(t) = Γ3nz

3(t)− V̂1(t), respectively, and note that

Ĝ(t)(1 + V̂1(t))− B̂i(t) = Ĝ(t)(1 + V̂1(t)− exp{V̂1(t)})
+ Ĝ(t) exp{V̂1(t)}(1− exp{V̂2(t)})

= θC(|V̂1(t)|2 + V̂2(t))

= θC

(
Γ4

2n|z(t)|6

Γ2
1n

+
|Γ2n|3|z(t)|4

Γ2
1n

+
Γ2

2nε|z(t)|2

Γ2
1n

)
,

V̂3(t)B̂i(t)e−iΓ1nt =

(
Γ3n −

Np3

3

)
(it)3

+ θC

∣∣∣∣Γ3n −
Np3

3

∣∣∣∣|t|3(|t|+ Γ1nt
2). �

Proof of Theorem 2.3. Using (5.1) and (5.2), we obtain

e−itΓ1n(F̂n(t)− Π̂(t)− Π̂1(t))

= e−itΓ1n(F̂n(t)− Ĝ(t)) + e−itΓ1n(Ĝ(t)− Π̂(t)− Π̂1(t))

= Γ3n(it)3 + θC[|Γ3n|Γ1n|t|5 + |Γ3n|t4 +R2
1t

6 +R2t
4]

+ θC|Π̂(t)(exp{Γ2nz
2(t)} − 1− Γ2nz

2(t))|.

From Lemma 4.1, it follows that∣∣Π̂(t)
(
exp{Γ2nz

2(t)} − 1− Γ2nz
2(t)
)∣∣

6
∣∣∣Π̂(t)Γ2

2nz
4(t)

1∫
0

(1− τ) exp{|Γ2nz
2(t)|/2} dτ

∣∣∣ 6 CΓ2
2nt

4.

It remains to apply Lemma 4.2 with u = Γ1n, v = b and choose b sufficiently large.
The proof of Theorem 2.3 is almost the same as that of (2.4), the main difference
being in taking v = b in Lemma 4.2. The details are omitted. �
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