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Abstract. We consider a mean-field optimal control problem for stochas-
tic differential equations with delay driven by fractional Brownian motion
with Hurst parameter greater than 1/2. Stochastic optimal control prob-
lems driven by fractional Brownian motion cannot be studied using classical
methods, because the fractional Brownian motion is neither a Markov pro-
cess nor a semi-martingale. However, using the fractional white noise cal-
culus combined with some special tools related to differentiation for func-
tions of measures, we establish necessary and sufficient stochastic maxi-
mum principles. To illustrate our study, we consider two applications: we
solve a problem of optimal consumption from a cash flow with delay and a
linear-quadratic (LQ) problem with delay.
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1. INTRODUCTION

The interest in stochastic delayed differential equations is constantly increasing.
They are frequently used to model the evolution of systems with past-dependence
nature. Such systems usually appear in biology, engineering and mathematical fi-
nance. There is a rich literature on stochastic optimal problems with delay. A lot of
authors studied both the case where the stochastic systems are driven by a classical
Brownian motion as well as where there are jumps: see, e.g., [9], [18], [17], [10].
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Stochastic control problems driven by fractional Brownian motion (fBm) were
also studied by many authors: see, e.g., [2], [4], [14], [19]. However, compared with
the papers on stochastic control problems driven by the classical Brownian motion,
little has been done because classical methods to solve control problems cannot be
used directly, since the fractional Brownian motion is not a semi-martingale or a
Markov process. Mean-field problems have also attracted wide attention recently,
due to their applications in physics, economics, finance and stochastic games.
Mean-field games were first studied by Lasry and Lions [15]. Buckdahn, Li and
Peng [5] studied special mean-field games and introduced the so-called mean-field
backward stochastic differential equations. Later, Carmona and Delarue [8] studied
a class of mean-field forward-backward stochastic differential equations and gave
many applications.

In this paper, all the previous fields are combined to study the optimal control
problem of mean-field delayed stochastic differential equations driven by fractional
Brownian motion. The dynamic of the controlled state process depends on the state,
the control, their laws but also on their values at previous time instants. The dy-
namics of this work are close to those in the paper of Wang, Chen and Huang [19].
In [19], the adjoint equation is an anticipated backward stochastic differential equa-
tion (ABSDE) driven by both a fBm and a standard Brownian motion, and the in-
tegral with respect to the fBm is defined in the Stratonovich sense. Our work is
also inspired by the recent paper of Buckdahn and Jing [4] where the system has
a past-dependence feature. In [4] the dynamic of the adjoint process is driven by a
standard Brownian motion; here the anticipated BSDE is driven by a fBM.

The approach used here is an extension of the work of Biagini, Hu, Øksendal
and Sulem [2], where the dynamic of the system is of delayed mean-field type.
In our paper, we establish necessary and sufficient maximum principles and we
illustrate our study by solving two optimal control problems: a mean-field optimal
consumption problem for cash flow with delay and a linear-quadratic (LQ) problem
with delay.

We now present the general problem we consider more specifically:

2. STATEMENT OF THE PROBLEM

Let BH be a fractional Brownian motion on (Ω,F ,F = (Ft)t0,P) a filtered
probability space. We consider the following mean-field controlled stochastic delay
equation:

dXt = b(t,Xt, Xt−δ,Mt,Mt−δ, ut)dt+ σ(t,Mt,Mt−δ)dB
H
t , t ∈ [0, T ],

Xt = x0(t), t ∈ [−δ, 0],

where Ms := PXs for s ∈ [0, T ] and T, δ > 0 are given constants. Here

b : Ω× [0, T ]× R× R× P2(R)× P2(R)× U → R,
σ : [0, T ]× P2(R)× P2(R)→ R
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are given functions such that, for all t ∈ [0, T ], b(·, t, x, x̄,m, m̄, u) is supposed
to be Ft-measurable for all x, x̄ ∈ R, u ∈ U , m, m̄ ∈ P2(R). The function σ
is assumed to be deterministic and such that its integral with respect to the fBm
is a Wiener type integral. P2(R) denotes the space of all probability measures m
on (R,B(R)) such that

∫
R |x|

2m(dx) < +∞. The function x0 is assumed to be
continuous and deterministic. The set U ⊂ R consists of all admissible control
values. Let F denote the filtration generated by the fBm BH and let Gt ⊆ Ft be
a subfiltration of F representing the information available to the controller who
takes the decision ut at time t. We also denote by AG a given family of admissible
control processes required to be U-valued and G-adapted. Throughout the paper,
we assume thatX exists and belongs toL2(Ω×[0, T ]). The performance functional
is assumed to have the form

J(u) = E
[
g(XT ,MT ) +

T∫
0

f(t,Xt, Xt−δ,Mt,Mt−δ, ut) dt
]
,

where

g : Ω× R× P2(R)→ R,
f : Ω× [0, T ]× R× R× P2(R)× P2(R)× U → R

are given functions such that for all t ∈ [0, T ], f(·, t, x, x̄,m, m̄, u) is assumed to
be Ft-measurable for all x, x̄ ∈ R, u ∈ U , m, m̄ ∈ P2(R). The function g(·, x,m)
is assumed to be FT -measurable for all x ∈ R and m ∈ P2(R). We also assume
the integrability condition

E
[
|g(XT ,MT )|+

T∫
0

|f(t,Xt, Xt−δ,Mt,Mt−δ, ut)| dt
]
< +∞.

The functions σ, b, f and g are assumed to be continuously differentiable with
respect to x, x̄, u with bounded derivatives and admit Fréchet bounded derivatives
with respect to m, m̄.

The problem we consider is the following:

PROBLEM. Find a control u∗ ∈ AG such that

(2.1) J(u∗) = sup
u∈AG

J(u).

Any control u∗ ∈ AG satisfying (2.1) is called an optimal control.

3. GENERALITIES

In this section we give some preliminaries concerning fractional Brownian motion
based on fractional white noise calculus and some generalities on differentiability
with respect to measures. For more details about fractional white noise theory, the
reader may consult the books [3], [12].
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3.1. Fractional Brownian motion. Let T > 0 be a finite time horizon and Ω
the space S ′([0, T ]) of tempered distributions on [0, T ], which is the dual of the
Schwartz space S([0, T ]) of rapidly decreasing smooth functions on [0, T ].

For 1/2 < H < 1, we put

ϕH(t, s) = H(2H − 1)|t− s|2H−2, s, t ∈ [0, T ].

If ω ∈ S ′([0, T ]) and f ∈ S([0, T ]) , we let 〈ω, f〉 = ω(f) denote the action of ω
on f ; it can be extended to f : [0, T ]→ R such that

‖f‖2H :=
T∫
0

T∫
0

f(s)f(t)ϕH(t, s) ds dt < +∞.

The space of all such functions f is denoted by L2
H([0, T ]). Since the map f 7→

e−‖f‖
2
H/2 with f ∈ S([0, T ]) is positive definite on S([0, T ]), by the Bochner–

Minlos theorem there exists a probability measure PH = P on the Borel subsets
B(Ω) such that

(3.1)
∫
Ω

ei〈ω,f〉 dP(ω) = e−‖f‖
2
H/2, ∀f ∈ S([0, T ]).

It follows from (3.1) that

(3.2) E[〈·, f〉] = 0 and E[〈·, f〉2] = ‖f‖2H

where E denotes the expectation under the probability measure P. Hence, if we
put BH

t := 〈ω, χ[0,t](·)〉, then using (3.2) we see that BH is a fractional Brownian
motion with Hurst parameterH , that is, a centred Gaussian process with covariance
function

E[BH
t B

H
s ] = 1

2(t2H + s2H − |t− s|2H), s, t ∈ [0, T ].

From now on, we endow Ω with the natural filtration F := {Ft}t∈[0,T ] generated
by BH .

LEMMA 3.1. If f, g ∈ L2
H([0, T ]), then the Wiener integrals

∫ T
0
f(s) dBH(s)

and
∫ T

0
g(s) dBH(s) are well defined as zero mean Gaussian random variables

with variances ‖f‖2H and ‖g‖2H respectively and

E
[T∫

0

f(s) dBH(s)
T∫
0

g(s) dBH(s)
]

=
T∫
0

T∫
0

f(s)g(t)ϕH(t, s) dt ds.

We denote by S̃ the set of all polynomial functions of
∫ T

0
ψj(t) dB

H(t), de-
noted by BH(ψj). For F ∈ S̃ having the form F = g(BH(ψ1), . . . , BH(ψn)),
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where g is a polynomial function of n variables, we define its Malliavin derivative
by DH

s F :=
∑n

i=1
∂g
∂xi

(BH(ψ1), . . . , BH(ψn))ψi(s), 0 ¬ s ¬ T . We also intro-

duce another derivative DHt F :=
∫ T

0
DH
r FϕH(r, t) dr. Let L1,2

H ([0, T ]) be the set
of processes G : [0, T ]× Ω→ R such that DHs G(s) exists for all s ∈ [0, T ] and

‖G‖2L1,2H
:= E

[T∫
0

T∫
0

G(s)G(t)ϕH(t, s) dt ds+
(T∫

0

DHs G(s) ds
)2]

< +∞.

The integral
∫ T

0
G(s) dBH(s) denotes the fractional Wick–Itô–Skorokhod (fWIS)

integral of the process G with respect to BH . We recall its construction:
if G belongs to the family S of step functions of the form G(t, ω) =∑N

i=1Gi(ω)χ[ti,ti+1[(t), where 0 ¬ t1 < · · · < tN+1 ¬ T , then the fWIS in-

tegral is defined naturally as
∫ T

0
G(t, ω) dBH(t) :=

∑N
i=1Gi(ω)♦ (BH(ti+1)−

BH(ti)), where ♦ denotes the Wick product (see [3] for its definition). For
G ∈ S ∩ L1,2

H ([0, T ]), we have the isometry

E
[(T∫

0

G(t) dBH(t)
)2]

= E
[T∫

0

T∫
0

G(s)G(t)ϕH(t, s) dt ds+
(T∫

0

DHs G(s) ds
)2]

.

Therefore, we can extend the integral
∫ T

0
G(t) dBH(t) to L1,2

H ([0, T ]). Note that if
G1, G2 ∈ L1,2

H ([0, T ]), by polarization we have

E
[T∫

0

G1(t) dBH(t)
T∫
0

G2(t) dBH(t)
]

= E
[T∫

0

G1(s)G2(t)ϕH(s, t) ds dt
]

+ E
[T∫

0

T∫
0

DHs G1(s)DHt G2(t) ds dt
]
.

This integral satisfies E[
∫ T

0
G(t) dBH(t)] = 0 for all G ∈ L1,2

H ([0, T ]).

PROPOSITION 3.1 (Integration by parts). LetX and Y be processes of the form

dX(t) = F1(t)dt+G1(t)dBH(t), X(0) = x ∈ R,
dY (t) = F2(t)dt+G2(t)dBH(t), Y (0) = y ∈ R,

where F1 : [0, T ] × Ω → R, F2 : [0, T ] × Ω → R, G1 : [0, T ] × Ω → R and
G2 : [0, T ]× Ω→ R are given processes such that G1, G2 ∈ L1,2

H ([0, T ]).

(1) Then, for T > 0,

E[X(T )Y (T )] = xy + E
[T∫

0

X(s) dY (s)
]

+ E
[T∫

0

Y (s) dX(s)]

+ E
[T∫

0

T∫
0

G1(t)G2(s)ϕH(t, s) ds dt
]

+ E
[T∫

0

T∫
0

DHt G1(t)DHs G2(s) ds dt
]

provided that the first two integrals exist.
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(2) In particular, if G1 or G2 is deterministic, then

E[X(T )Y (T )] = xy + E
[T∫

0

X(s) dY (s)
]

+ E
[T∫

0

Y (s) dX(s)
]

+ E
[T∫

0

T∫
0

G1(t)G2(s)ϕH(t, s) ds dt
]
.

3.2. Differentiability of functions of measures. Let P(R) be the space of all prob-
ability measures on (R,B(R)) and define

Pp(R) =
{
m ∈ P(R) :

∫
R
|x|pm(dx) < +∞

}
.

• Differentiability of functions of measures: The notion of differentiability for
functions of measures that we will use is the one introduced by Lions in his course
at Collège de France [16] and summarized by Cardaliaguet [6]; we also refer to
Carmona and Delarue [8]. This notion is based on lifting of functions P2(R) 3
m 7→ σ(m) to functions L2(Ω̃;R) 3 ξ̃ 7→ σ̃(ξ̃), over some probability space
(Ω̃, F̃ , P̃), by setting σ̃(ξ̃) := σ(P̃ξ̃).

DEFINITION 3.1. A function σ is said to be differentiable at m0 ∈ P2(R)
if there exists a random variable ξ̃0 ∈ L2(Ω̃, F̃ , P̃) over some probability space
(Ω̃, F̃ , P̃) with P̃ξ̃0 = m0 such that σ̃ : L2(Ω̃, F̃ , P̃)→ R is Fréchet differentiable
at ξ̃0.

We suppose for simplicity that σ̃ : L2(Ω̃, F̃ , P̃) → R is Fréchet differentiable.
We denote its Fréchet derivative at ξ̃0 by Dσ̃(ξ̃0). Recall that Dσ̃(ξ̃0) is a con-
tinuous linear mapping, i.e. Dσ̃(ξ̃0) ∈ L(L2(Ω̃, F̃ , P̃),R). With the identifica-
tion L(L2(Ω̃, F̃ , P̃),R) ≡ L2(Ω̃, F̃ , P̃) given by the Riesz representation theorem,
Dσ̃(ξ̃0) is viewed as an element of L2(Ω̃, F̃ , P̃), hence we can write

σ(m)− σ(m0) = σ̃(ξ̃)− σ̃(ξ̃0) = Ẽ[(Dσ̃)(ξ̃0).(ξ̃ − ξ̃0)] + o(Ẽ[‖ξ̃ − ξ̃0‖L2 ])

as Ẽ[‖ξ̃ − ξ̃0‖L2 ] → 0, where ξ̃ is a random variable with law m. Moreover, ac-
cording to Cardaliaguet [6], there exists a Borel function hm0 : R → R such
that Dσ̃(ξ̃0) = hm0(ξ̃0), P̃-a.s. We define the derivative of σ with respect to the
measure m at m0 by putting ∂mσ(m0)(x) := hm0(x). Notice that ∂mσ(m0)(x)
is defined m0(dx)-a.e. uniquely. Therefore, the previous differentiation formula is
invariant under modification of the space Ω̃ where the random variables ξ̃0 and ξ̃
are defined.

• Joint concavity: We will need the joint concavity of a function on the product
R×P2(R). A differentiable function b defined on R×P2(R) is concave if for every
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(x′,m′), (x,m) ∈ R× P2(R), we have

(3.3) b(x′,m′)−b(x,m)−∂xb(x,m)(x′−x)−Ẽ[∂mb(x,m)(X̃)(X̃ ′−X̃)] ¬ 0

whenever X̃, X̃ ′ ∈ L2(Ω̃, F̃ , P̃,R) with laws m and m′ respectively.

4. NECESSARY MAXIMUM PRINCIPLE

In this section, we will establish a maximum principle of necessary type. Let u∗

be a control in AG . We first compute the Gâteaux derivative of the performance
functional J at u∗ in all directions. In order to do so, we make the following as-
sumption, for any bounded control v, there exists η > 0 such that the control uθ

defined by uθ := u∗ + θv belongs to AG for any θ ∈ (−η, η). We denote by
Xθ := Xuθ , X∗ := Xu∗ the controlled state processes corresponding to uθ and
u∗ respectively.

For u∗ ∈ AG and the associated controlled state process X∗, let Yt :=
d
dθX

θ
t

∣∣
θ=0

. Hence Y satisfies the following SDDE:

(4.1)

dYt =
{
∂xb
∗(t)Yt + ∂x̄b

∗(t)Yt−δ + Ẽ[∂mb
∗(t)(X̃∗t )Ỹt]

+ Ẽ[∂m̄b
∗(t)(X̃∗t−δ)Ỹt−δ] + ∂ub

∗(t)v(t)
}
dt

+ {Ẽ[∂mσ
∗(t)(X̃∗t )Ỹt] + Ẽ[∂m̄σ

∗(t)(X̃∗t−δ)Ỹt−δ]} dBH
t

Yt = 0, t ∈ [−δ, 0],

where we use the following notations:

∂xb
∗(t) := ∂xb(t,X

∗
t , X

∗
t−δ,M

∗
t ,M

∗
t−δ, u

∗
t ),

∂mb
∗(t)(·) := ∂mb(t,X

∗
t , X

∗
t−δ,M

∗
t ,M

∗
t−δ, u

∗
t )(·),

∂mσ
∗(t)(·) := ∂mσ(t,M∗t ,M

∗
t−δ)(·);

moreover, (X̃, Ỹ , ũ) is an independent copy of (X,Y, u) defined on some proba-
bility space (Ω̃, F̃ , P̃) and Ẽ denotes the expectation on (Ω̃, F̃ , P̃).

REMARK 4.1. From the definition of the tilde random variables and since
σ is deterministic, we have Ẽ[∂mσ

∗(t)(X̃∗t )Ỹt] = E[∂mσ
∗(t)(X∗t )Yt]. Note that

in the previous notations, Ẽ[∂mb
∗(t)(X̃∗t )Ỹt] is a function of the random vector

(X∗t , X
∗
t−δ, u

∗
t ) as it stands for

Ẽ[∂mb(t, x, x̄,M
∗
t ,M

∗
t−δ, u)(X̃∗t )Ỹt]|x=X∗t , x̄=X∗t−δ, u=u∗t

.

We assume that the derivative process Y exists and belongs to L2(Ω × [0, T ])
and that ψ∗δ : t 7→ Ẽ[∂mσ

∗(t)(X̃∗(t))Ỹ (t)] + Ẽ[∂m̄σ
∗(t)(X̃∗(t − δ))Ỹ (t − δ)] is

in L2
H([0, T ]), the integral with respect to the fBm is therefore well defined in the



146 S. Douissi et al.

Wiener sense. We compute d
dθJ(uθ)

∣∣
θ=0

using the expression of the performance
functional to get

(4.2)
d

dθ
J(uθ)

∣∣∣∣
θ=0

= E
[
∂xg
∗(T )YT + Ẽ[∂mg

∗(T )(X̃∗T )ỸT ]
]
+E
[T∫

0

{∂xf∗(t)Yt+∂x̄f
∗(t)Yt−δ} dt

]
+E
[T∫

0

{
Ẽ[∂mf

∗(t)(X̃∗t )Ỹt]+ Ẽ[∂m̄f
∗(t)(X̃∗t−δ)Ỹt−δ]+∂uf

∗(t)vt
}
dt
]
,

where we have used the simplified notations

∂xg
∗(T ) := ∂xg(X∗T ,M

∗
T ),

∂mg
∗(T )(·) := ∂mg(X∗T ,M

∗
T )(·),

∂xf
∗(t) := ∂xf(t,X∗t , X

∗
t−δ,M

∗
t ,M

∗
t−δ, u

∗
t ),

∂mf
∗(t)(·) := ∂mf(t,X∗t , X

∗
t−δ,M

∗
t ,M

∗
t−δ, u

∗
t )(·),

∂mσ
∗(t)(·) := ∂mσ(t,M∗t ,M

∗
t−δ)(·).

In order to determine the adjoint backward equation associated to (u∗, X∗), we
suppose that it has the form

(4.3)

{
dp∗t = −E[α(t) | Ft]dt+ q∗t dB

H
t , t ∈ [0, T ],

p∗T = ∂xg
∗(T ) + Ẽ[∂mg̃

∗(T )(XT )]

where (p∗, q∗) is assumed to be in L1,2
H ([0, T ]) × L1,2

H ([0, T ]), the integral with
respect to the fBm is a fractional Wick–Itô–Skorokhod integral andα is a stochastic
process which we aim to determine.

Applying the integration by parts formula of Proposition 3.1 to p∗t and Yt, we
obtain

E[p∗TYT ] = E
[T∫

0

p∗t dYt

]
+ E

[T∫
0

Yt dp
∗
t

]
+ E

[T∫
0

T∫
0

q∗tψ
∗
δ (t)ϕH(s, t) ds dt

]
= E

[T∫
0

p∗t
{
∂xb
∗(t)Yt + ∂x̄b

∗(t)Yt−δ) + Ẽ[∂mb
∗(t)(X̃∗t )Ỹt]

+ Ẽ[∂m̄b
∗(t)(X̃∗t−δ)Ỹt−δ] + ∂ub

∗(t)vt
}
dt
]
− E

[T∫
0

Ytα(t) dt
]

+ E
[T∫

0

T∫
0

q∗sψ
∗
δ (t)ϕH(s, t) ds dt

]
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where we assume that Y (t)q∗(t) ∈ L1,2
H ([0, T ]) and ψ∗δ (t)p

∗(t) ∈ L1,2
H ([0, T ]).

By Fubini’s theorem and Remark 4.1, replacing ψ∗δ (t) by its value and applying a
change of variables using the fact that Y (t) = 0 for all t ∈ [−δ, 0], we get

(4.4) E[p∗TYT ]

= E
[T∫

0

Yt

{
p∗t∂xb

∗(t)+p∗t+δ∂x̄b
∗(t+δ)χ[0,T−δ](t)−α(t)+Ẽ[p̃∗t∂mb̃

∗(t)(X∗t )]

+Ẽ[p̃∗(t+δ)∂m̄b̃
∗(t+δ)(X∗t )]χ[0,T−δ](t)+

T∫
0

Ẽ[q̃∗(s)]
{
∂mσ

∗(t)(X∗t )ϕH(t, s)

+∂m̄σ
∗(t+δ)(X∗t )χ[0,T−δ](t)ϕH(t+δ, s)

}
ds
}
dt
]
+E
[T∫

0

p∗t∂ub
∗(t)vt dt

]
,

where (p̃∗, q̃∗) is an independent copy of (p∗, q∗) defined on some probability space
(Ω̃, F̃ , P̃). On the other hand, if we assume that u∗ is an optimal control then by
substituting (4.4) in (4.2) and using the terminal value of the BSDE, we get

E
[T∫

0

Yt

{
p∗t∂xb

∗(t) + p∗t+δ∂x̄b
∗(t+ δ)χ[0,T−δ](t) + Ẽ[p̃∗t∂mb̃

∗(t)(X∗t )]

+ Ẽ[p̃∗t+δ∂m̄b̃
∗(t+δ)(X∗t )]χ[0,T−δ](t)+

T∫
0

Ẽ[q̃∗(s)]
{
∂mσ

∗(t)(X∗t )ϕH(t, s)

+∂m̄σ
∗(t+δ)(X∗t )χ[0,T−δ](t)ϕH(t+δ, s)

}
ds−α(t)

+∂xf
∗(t)+∂x̄f

∗(t+δ)χ[0,T−δ](t)+ Ẽ[∂mf̃
∗(t)(X∗t )]

+ Ẽ[∂m̄f̃
∗(t+δ)(X∗t )]χ[0,T−δ](t)

}
dt
]

+E
[T∫

0

{p∗t∂ub∗(t)+∂uf
∗(t)}vt dt

]
¬ 0.

Letting the integrand which contains Yt be zero, we get

α(t) = p∗t∂xb
∗(t) + p∗t+δ∂x̄b

∗(t+ δ)χ[0,T−δ](t) + Ẽ[p̃∗t∂mb̃
∗(t)(X∗t )]

+ Ẽ[p̃∗t+δ∂m̄b̃
∗(t+δ)(X∗t )]χ[0,T−δ](t)+

T∫
0

Ẽ[q̃∗(s)]
{
∂mσ

∗(t)(X∗t )ϕH(t, s)

+∂m̄σ
∗(t+δ)(X∗t )χ[0,T−δ](t)ϕH(t+δ, s)

}
ds+∂xf

∗(t)

+∂x̄f
∗(t+δ)χ[0,T−δ](t)+ Ẽ[∂mf̃

∗(t)(X∗t )]+ Ẽ[∂m̄f̃
∗(t+δ)(X∗t )]χ[0,T−δ](t),

where, for simplicity of notation, we have set

∂xb̃
∗(t) := ∂xb(t, X̃

∗
t , X̃

∗
t−δ,M

∗
t ,M

∗
t−δ, ũ

∗
t ),

∂mb̃
∗(t)(·) := ∂mb(t, X̃

∗
t , X̃

∗
t−δ,M

∗
t ,M

∗
t−δ, ũ

∗
t )(·),

∂mf̃
∗(t)(·) := ∂mf(t, X̃∗t , X̃

∗
t−δ,M

∗
t ,M

∗
t−δ, ũ

∗
t )(·).
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We now define the Hamiltonian

H : Ω× [0, T ]× R× R× P2(R)× P2(R)× U × R×R → R

associated to our problem by

(4.5) H(t, x, x,m,m, u, p, q(·))

= f(t, x, x,m,m, u) + pb(t, x, x,m,m, u) + σ(t,m,m)
T∫
0

q(s)ϕH(s, t) ds,

whereR is the set of continuous functions from [0, T ] into R.
For u ∈ AF with the corresponding solution X = Xu, define, whenever solu-

tions exist, (p, q) := (pu, qu), by the adjoint equation, in terms of the Hamiltonian,
as follows:

(4.6)
dpt = −

{
∂xH(t) + E[∂x̄H(t+ δ)χ[0,T−δ](t) | Ft] + Ẽ[∂mH̃(t)(Xt)]

+ E
[
Ẽ[∂m̄H̃(t+ δ)(Xt)χ[0,T−δ](t)]

∣∣Ft]}dt+ qt dB
H
t , t ∈ [0, T ],

pT = ∂xg(T ) + Ẽ[∂mg̃(T )(XT )].

We assume that (p, q) is in L1,2
H ([0, T ])×L1,2

H ([0, T ]), and the integral with respect
to the fBm is understood in the fractional Wick–Itô–Skorokhod sense.

For simplicity of notation, we have put

∂xH(t) := ∂xH(t,Xt, Xt−δ,Mt,Mt−δ, u(t), pt, q(·)),
∂mH̃(t)(·) := ∂mH(t, X̃t, X̃t−δ,M(t),Mt−δ, ũt, p̃t, q̃(·))(·),

∂xg(T ) := ∂xg(XT ,MT ), ∂mg̃(T )(·) = ∂mg(X̃T ,MT )(·).

REMARK 4.2. By the definition of the Hamiltonian above, the time advanced
BSDE (4.6) has a first part which is linear and a second part which contains the laws
of the solution processes. This type of Backward Stochastic Differential Equations
has never been studied before. However, when there is no mean-field terms and no
advance in time, several resolutions were proposed: see for instance [2], [14] and
for a more general setting [13]. In the section devoted to applications, we suggest
some simplified mean-field dynamics where the resolution of the BSDE (4.6) is
possible through recursive procedures.

In the following theorem we establish a necessary condition of optimality.

THEOREM 4.1 (Necessary condition of optimality). Assume that u∗ ∈ AG with
the corresponding controlled process X∗. Suppose that there exist solutions p∗t , q

∗
t

of the adjoint equation (4.6) associated to the pair (u∗, X∗) and that the following
assumptions are satisfied:
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• Ytq
∗
t ∈ L

1,2
H ([0, T ]) and ψ∗δ (t)p

∗
t ∈ L

1,2
H ([0, T ]).

• For s0 ∈ [0, T ], and all bounded and Gs0-measurable random variables ξ, the
control process v defined by

(4.7) vt := ξχ[s0,T ](t), t ∈ [0, T ],

belongs to AG .

Then the following assertions are equivalent:

(1) For all bounded v ∈ AG, d
dθJ(u∗ + θv)

∣∣
θ=0

= 0.

(2) For all t ∈ [0, T ], E[∂uH
∗(t) | Gt] = 0 a.s.

Proof. Suppose that assertion (1) holds. Then we have

(4.8)
d

dθ
J(u∗ + θv)

∣∣∣∣
θ=0

= E[p∗TYT ] + E
[T∫

0

{
∂xf

∗(t)Yt + ∂x̄f
∗(t)Yt−δ

+ Ẽ[∂mf
∗(t)(X̃∗t )Ỹt] + Ẽ[∂m̄f

∗(t)(X̃∗t−δ)Ỹt−δ] + ∂uf
∗(t)vt

}
dt
]
.

Applying again the integration by parts formula of Proposition 3.1 to p∗t and Yt,
then using Fubini’s theorem, replacing ψ∗δ (t) by its value, and using a change of
variable and the fact that Yt = 0 for all t ∈ [−δ, 0], we get

(4.9) E[A1] = E
[T∫

0

p∗t dYt

]
+ E

[T∫
0

Yt dp
∗
t

]
+ E

[T∫
0

T∫
0

q∗(s)ψ∗δ (t)ϕH(t, s) ds dt
]

= E
[T∫

0

Yt

{
p∗t∂xb

∗(t) + p∗t+δ∂x̄b
∗(t+ δ)χ[0,T−δ](t)

+ Ẽ[p̃∗t∂mb̃
∗(t)(X∗t )] + Ẽ[p̃∗t+δ∂m̄b̃

∗(t+ δ)(X∗t )]χ[0,T−δ](t)

−
{
∂xH

∗(t) + E[∂x̄H
∗(t+ δ)χ[0,T−δ](t) | Ft] + Ẽ[∂mH̃

∗(t)(X∗t )]

+ E
[
Ẽ[∂m̄H̃

∗(t+ δ)(X∗t )χ[0,T−δ](t)] | Ft
]}

+
T∫
0

Ẽ[q̃∗(s)]
{
∂mσ

∗(t)(X∗t )ϕH(t, s)

+ ∂m̄σ
∗(t+ δ)(X∗t )χ[0,T−δ](t)ϕH(t+ δ, s)

}
ds
}
dt
]

+ E
[T∫

0

p∗t∂ub
∗(t)vt dt

]
,

where A1 := E[p∗(T )Y (T )]. Then by (4.8), (4.9) and applying the definition of
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the Hamiltonian, we get

(4.10) E
[T∫

0

∂uH
∗(t)v(t) dt

]
= 0.

If we apply (4.10) to v(t) = ξχ[s,T ](t), where ξ is bounded and Gs0-measurable,
s  s0, we obtain

E
[T∫
s

∂uH
∗(t)ξ dt

]
= 0.

Differentiating with respect to s, we obtain

E[∂uH
∗(s)ξ] = 0.

Since this holds for all s  s0 and all ξ, we consequently have

E[∂uH
∗(s0) | Gs0 ] = 0.

This shows that assertion (1) implies (2); and we can prove that (2) implies (1) by
reversing the argument above since every bounded v ∈ AG can be approximated
by linear combinations of controls of the form (4.7). �

5. SUFFICIENT MAXIMUM PRINCIPLE

In this section, we prove a sufficient stochastic maximum principle.

THEOREM 5.1 (Sufficient condition of optimality). Let u∗ ∈ AG with cor-
responding controlled state X∗. Suppose that there exist solutions p∗t , q

∗
t of the

associated adjoint equation (4.6). Assume the following:

(1) Xu
t q
∗
t ∈ L

1,2
H ([0, T ]), p∗tσ(t,Mt,Mt−δ) ∈ L1,2

H ([0, T ]) for all u ∈ AG .

(2) (Concavity) The functions

(x, x̄,m, m̄, u) 7→ H(t, x, x̄,m, m̄, u, p∗t , q
∗(·)), (x,m) 7→ g(x,m),

are concave for each t ∈ [0, T ] almost surely.

(3) (Maximum condition)

E[H(t,X∗t , X
∗
t−δ,M

∗
t ,M

∗
t−δ, u

∗
t , p
∗
t , q
∗(·)) | Gt]

= sup
u∈U

E[H(t,X∗t , X
∗
t−δ,M

∗
t ,M

∗
t−δ, u, p

∗
t , q
∗(·)) | Gt]

for all t ∈ [0, T ] almost surely.

Then (u∗, X∗) is an optimal couple for our problem.
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Proof. Let u ∈ AG be a generic admissible control, and X = Xu the cor-
responding controlled state process. By the definition of the performance func-
tional J given by (2), we have

(5.1) J(u)− J(u∗) = A2 +A3,

where

A2 := E
[T∫

0

{f(t)− f∗(t)} dt
]
, A3 := E[g(T )− g∗(T )].

Applying the definition of the Hamiltonian, we get

(5.2) A2 = E
[T∫

0

{
H(t)−H∗(t)− p∗t b′(t)−

T∫
0

q∗sσ
′(t)ϕH(s, t) ds

}
dt
]
,

where we use the following notations:

b(t) := b(t,Xt, Xt−δ,Mt,Mt−δ, ut),

b∗(t) := b(t,X∗t , X
∗
t−δ,M

∗
t ,M

∗
t−δ, u

∗
t ),

f(t) := f(t,Xt, Xt−δ,Mt,Mt−δ, ut),

f∗(t) := f(t,X∗t , X
∗
t−δ,M

∗
t ,M

∗
t−δ, u

∗
t ),

g(T ) := g(XT ,MT ), g∗(T ) := g(X∗T ,M
∗
T ),

σ(t) := σ(t,Mt,Mt−δ), σ∗(t) := σ(t,M∗t ,M
∗
t−δ),

H(t) := H(t,Xt, Xt−δ,Mt,Mt−δ, ut, p
∗
t , q
∗(·)),

H∗(t) := H(t,X∗t , X
∗
t−δ,M

∗
t ,M

∗
t−δ, u

∗
t , p
∗
t , q
∗(·)),

b′(t) := b(t)− b∗(t), σ′(t) := σ(t)− σ∗(t), X ′t := Xt −X∗t .
Now using the concavity of g and the terminal value of the BSDE (4.6) associated
to (u∗, X∗), by Fubini’s theorem we get

A3 ¬ E[∂xg
∗(T )X ′T ] + E

[
Ẽ[∂mg

∗(T )(X̃T )X̃ ′T ]
]

= E
[
(∂xg

∗(T ) + Ẽ[∂mg̃
∗(T )(XT )])X ′T

]
= E[p∗TX

′
T ].

Applying the integration by parts formula to p∗t and X ′t, we get

E[p∗TX
′
T ] = E

[T∫
0

p∗t dX
′
t

]
+ E

[T∫
0

X ′t dp
∗
t

]
+ E

[T∫
0

T∫
0

q∗sσ
′(t)ϕH(t, s) ds dt

]
= E

[T∫
0

p∗t b
′(t) dt

]
− E

[T∫
0

X ′t
{
∂xH

∗(t) + ∂x̄H
∗(t+ δ)χ[0,T−δ](t)

+ Ẽ[∂mH̃
∗(t)(X∗t )] + Ẽ[∂m̄H̃

∗(t+ δ)(X∗t )]χ[0,T−δ](t)
}
dt
]

+ E
[T∫

0

T∫
0

q∗sσ
′(t)ϕH(t, s) dt ds

]
.
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Note that by the change of variables r = t+ δ, we have

E
[T−δ∫

0

X ′t∂x̄H
∗(t+ δ) dt

]
= E

[T∫
δ

X ′r−δ∂x̄H
∗(r) dr

]
= E

[T∫
0

X ′r−δ∂x̄H
∗(r) dr

]
,

where we use E[
∫ δ

0
X ′r−δ∂x̄H

∗(r) dr] = E[
∫ 0

−δX
′(u)∂x̄H

∗(u+ δ) du] = 0 since
X ′u = 0 for all u ∈ [−δ, 0], because X∗t = Xt = x0(t) for all t ∈ [−δ, 0].
Similarly, using the previous argument and Fubini’s theorem we get

E
[T∫

0

X ′tẼ[∂m̄H̃
∗(t+δ)(X∗t )]χ[0,T−δ](t) dt

]
= E

[T∫
0

Ẽ[∂m̄H
∗(t)(X̃∗t−δ)X̃

′
t−δ] dt

]
.

Hence,

(5.3) E[p∗TX
′
T ]

= E
[T∫

0

p∗t b
′(t) dt

]
− E

[T∫
0

X ′t∂xH
∗(t) dt

]
− E

[T∫
0

∂x̄H
∗(t)X ′t−δ dt

]
− E

[T∫
0

Ẽ[∂mH
∗(t)(X̃∗t )X̃ ′t] dt

]
− E

[T∫
0

Ẽ[∂m̄H
∗(t)(X̃∗t−δ)X̃

′
t−δ] dt

]
+ E

[T∫
0

T∫
0

q∗sσ
′(t)ϕH(t, s) dt ds

]
.

By (5.1)–(5.3), we obtain

J(u)− J(u∗)

¬ E
[T∫

0

(H(t)−H∗(t)) dt
]
− E

[T∫
0

∂xH
∗(t)X ′t dt

]
− E

[T∫
0

∂x̄H
∗(t)X ′t−δ dt

]
− E

[T∫
0

Ẽ[∂mH
∗(t)(X̃∗t )X̃ ′t] dt

]
− E

[T∫
0

Ẽ[∂m̄H
∗(t)(X̃∗t−δ)X̃

′
t−δ] dt

]
¬ 0.

Due to the concavity assumption on H and because u∗ satisfies the maximum
condition, the first order derivative at u∗ vanishes. �

6. APPLICATIONS

The main applications of mean-field dynamics that appear in the literature rely
mainly on a dependence upon the probability measures through functions of scalar
moments of the measures. More precisely, we assume that
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b(t, x, x̄,m, m̄, u) = b̂(t, x, x̄, (ψ1,m), (ψ2, m̄), u),

σ(t,m, m̄) = σ̂(t, (φ1,m), (φ2, m̄)),

f(t, x, x̄,m, m̄, u) = f̂(t, x, x̄, (γ1,m), (γ2, m̄), u),

g(x,m) = ĝ(x, (γ3,m)),

for some scalar functions ψ1, ψ2, φ1, φ2, γ1, γ2, γ3 with at most quadratic growth
at∞. The functions b̂, f̂ are defined on [0, T ]×R×R×R×R×U , the function σ̂
is defined on [0, T ] × R × R and ĝ is defined on R × R. The notation (ψ,m)
denotes the integral of the function ψ with respect to the probability measure m.
The Hamiltonian that we defined in the previous section takes now the following
form:

H(t, x, x,m,m, u, p, q(·)) = f̂(t, x, x, (γ1,m), (γ2, m̄), u)

+ p b̂(t, x, x, (ψ1,m), (ψ2, m̄), u) + σ̂(t, (φ1,m), (φ2, m̄))
T∫
0

q(s)ϕH(s, t) ds.

According to the definition of differentiability with respect to measures recalled in
the preliminaries, the derivative of the Hamiltonian with respect to the measure m,
for instance, is computed as follows:

∂mH(t)(x′) = ∂x′ f̂(t, x, x̄, (γ1,m), (γ2, m̄), u)γ′1(x′)

+ p× ∂x′ b̂(t, x, x̄, (ψ1,m), (ψ2, m̄), u)ψ′1(x′)

+ ∂x′ σ̂(t, (φ1,m), (φ2, m̄))φ′1(x′)
T∫
0

q(s)ϕH(s, t) ds,

where ∂mH(t)(x′) = ∂mH(t, x, x,m,m, u, p, q(·))(x′). The terminal value of the
adjoint BSDE (4.6), which is pT = ∂xg(T ) + Ẽ[∂mg̃(T )(XT )], can be written in
terms of the derivatives of the function ĝ as follows:

pT = ∂xĝ(XT ,E[γ3(XT )]) + Ẽ[∂x′ ĝ(X̃T ,E[γ3(XT ))]γ′3(XT ),

where X̃T is an independent copy of XT . The following two applications illustrate
the previous results.

6.1. Optimal consumption from a cash flow with delay. We consider the problem
of optimal consumption with a cash flow X := Xρ whose dynamic is related to its
value at previous time instants, namely, we assume that X satisfies the following
SDE:

(6.1)

{
dXt = [E[Xt−δ]− ρ(t)]dt+ β(t)dBH

t , t ∈ [0, T ],

Xt = x0(t), t ∈ [−δ, 0].
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where ρ is the relative consumption rate (our control), x0 a bounded determinis-
tic function, δ a strictly positive constant and β a given deterministic function in
L2
H([0, T ]). The integral with respect to the fBm is therefore a Wiener type integral.

This model typically represents the evolution of the operating activities of an
organization when incomings and outgoings of cash occur with a delay.

The problem we consider is to find the consumption rate ρ∗ ∈ ĀF such that

J(ρ∗) = sup
ρ∈ĀF

J(ρ)

where

J(ρ) = E
[T∫

0

log(ρ(t)) dt+ ξ1E[XT ]2
]
,

over the set ĀF of admissible controls which are F-adapted processes with values
in R∗+, ξ1 > 0 is a given bounded FT -measurable random variable assumed to
be in L1,2

H ([0, T ]), and ξ1 represents a random effect influencing the terminal cost
functional. We also assume that X exists and belongs to L2(Ω× [0, T ]).

Note that the running cost functional we consider in this example is the func-
tion ρ(t) 7→ log(ρ(t)) which represents the utility function of the organization.
Moreover, in order to control the random fluctuations of the terminal value of the
cash flow Xρ

T , we chose to introduce the square of its mean in the terminal cost
functional. Therefore according to the notations used in the previous section, the
terminal cost functional is of mean-field type, more precisely it has the form

g(XT ,PXT ) = g(PXT ) = ξ1E[XT ]2 = ĝξ1((ID,PXT ))

where ĝξ1(x) = ξ1x
2, therefore ĝ′ξ1(x) = 2ξ1x a.s.

The Hamiltonian of this control problem is given by

H(t, x, m̄, ρ, p, q(·)) = log(ρ) + ((ID, m̄)− ρ)p+ β(t)
T∫
0

q(s)ϕH(s, t) ds,

where (p, q) is the solution of the associated adjoint BSDE

(6.2)

{
dpt = −Ẽ[p̃t+δχ[0,T−δ](t)]dt+ qtdB

H
t , t ∈ [0, T ],

pT = 2ξ1E[XT ].

Inspired by the resolution of the linear BSDE driven by a fractional Brownian
motion with Hurst parameter H > 1/2 in [2] and [13], we propose a resolution of
the anticipated BSDE (6.2) by solving a sequence of linear BSDEs following this
procedure:
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STEP 1. If t ∈ [T − δ, T ], the previous BSDE takes the form{
dpt = qtdB

H
t , t ∈ [T − δ, T ],

pT = 2ξ1E[XT ].

which has a unique solution according to the resolution in [13] and [2], given ex-
plicitly by

pt = 2E[XT ]Ê[ξ1 | Ft], qt = 2E[XT ]Ê[DH
t ξ1 | Ft], t ∈ [T − δ, T ].

Existence and uniqueness of q follow from [11, Theorem 12.1], and Ê is the quasi-
conditional expectation (see [3] for the definition).

STEP 2. If t ∈ [T −2δ, T − δ] and T −2δ > 0, using the fact that p̃ and p have
the same law, we obtain the BSDE{

dpt = −E[pt+δ]dt+ qtdB
H
t , t ∈ [T − 2δ, T − δ],

pT−δ known from Step 1.

As in Step 1, this BSDE has an explicit unique solution given by

pt = Ê
[
pT−δ +

T∫
t

θ(s) ds
∣∣∣Ft], qt = DH

t pt, t ∈ [T − 2δ, T − δ]

where θ(t) = E[pt+δ] and pt+δ is known by Step 1.

We continue like this by induction up to and including Step n, where n is such
that T − nδ ¬ 0 < T − (n − 1)δ and we solve the corresponding BSDE on the
time interval [0, T − (n− 1)δ].

Maximizing H with respect to ρ gives the following first order condition for an
optimal consumption rate ρ∗:

∂ρH
∗(t) =

1

ρ∗(t)
− p∗t = 0.

If

(6.3) p∗(t) > 0 for all t ∈ [0, T ],

we get

(6.4) ρ∗(t) =
1

p∗t
for all t ∈ [0, T ],

where p satisfies the previous anticipated BSDE.

THEOREM 6.1. Let (p, q) be the solution of the BSDE (6.2) and suppose that
(6.3) holds. Then any optimal consumption rate ρ∗ satisfies (6.4) and the corre-
sponding optimal cash flow X∗ is given by (6.1).
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6.2. Linear-quadratic problem with delay. We now consider a linear-quadratic
(LQ) model for a controlled process X = Xα given by the following delayed
stochastic differential equation:

(6.5)

{
dXt = [β1(t)Xt−δ + α(t)]dt+ β2(t)dBH

t , t ∈ [0, T ],

Xt = x0(t), t ∈ [−δ, 0],

where δ > 0 is a given constant, β1, x0 are given bounded deterministic functions,
and β2 is a given deterministic function in L2

H([0, T ]). The integral with respect
to the fBm is therefore a Wiener type integral and α ∈ AF is our control pro-
cess, where the set AF consists of the admissible controls assumed to be square
integrable F-adapted processes with real values.

We want to minimize the expected value of (XT − E[XT ])2 which is the
variance of XT with a minimal average use of energy, measured by the integral
E[
∫ T

0
α2
t dt], more precisely, the performance functional is of the following form:

(6.6) J(α) = −1

2

(
VAR(XT ) + E

[T∫
0

α2
t dt
])
.

Our goal is therefore to find a control process α∗ ∈ AF such that

(6.7) J(α∗) = sup
α∈AF

J(α).

Including the variance of the state process in the cost functional in order to keep
it small is a way to control its sensitivity to possible variations of random events.
The form of this cost functional is inspired by [20].

Note that the terminal cost functional of our problem has the form

g(XT ,PXT ) = ĝ(XT , (ID,PXT )) = −1
2(XT − E[XT ])2,

where ĝ(x, x′) = −1
2(x−x′)2, therefore ∂xĝ(x, x′) = −(x−x′) = −∂x′ ĝ(x, x′).

Therefore the terminal value of the solution of the adjoint BSDE is

pT = ∂xĝ(XT , (ID,PXT )) + Ẽ[∂x′ ĝ(X̃T , (ID,PXT ))]

= −(XT − E[XT ]) + Ẽ[X̃T − E[XT ]] = −(XT − E[XT ]),

where we use the fact that X̃ and X have the same distribution.
The Hamiltonian of our control problem takes the following form:

H(t, x, x̄, α, p, q(·)) = −1
2α

2 + (β1(t)x̄+ α)p+ β2(t)
T∫
0

qsϕH(s, t) ds,
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where (p, q) is the solution of the associated adjoint BSDE:{
dpt = −β1(t+ δ)E[pt+δχ[0,T−δ](t) | Ft]dt+ qtdB

H
t , t ∈ [0, T ],

pT = −(XT − E[XT ]).

This BSDE can be solved as in the previous example by solving a sequence of lin-
ear BSDEs. The resolution by steps gives an explicit unique solution; we omit the
details since they are similar to the first example. On the other hand, the function
α 7→ H(t,Xt, Xt−δ, αt, pt, q(·)) is maximal when

(6.8) αt = α∗t = p∗t ,

where p∗ satisfies

(6.9)

{
dp∗t = −β1(t+ δ)E[p∗t+δχ[0,T−δ](t) | Ft]dt+ q∗t dB

H(t), t ∈ [0, T ],

pT = −(X∗T − E[X∗T ]).

Thus, we have proved the following theorem.

THEOREM 6.2. The optimal control α∗ of the LQ problem (6.7) is given by
(6.8), where (X∗, p∗, q∗) solves the couple of systems (6.5) and (6.9) of forward-
backward stochastic differential equations.
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