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1. INTRODUCTION

The theory of stochastic processes on irregular sets, such as fractals, has been
rapidly developing since the 1980’s. The first to be constructed was the Brownian
motion on the Sierpiński gasket [5], on the Sierpiński carpet [2], on more general
nested fractals [36], [33], [17], on post-critically finite sets [33], and also in more
general contexts [43]. In fractal cases, these processes fall within the framework
of diffusions on d-sets consistent with the geometric structure of the state space,
and typically are unique up to a linear time-change [39], [4]. For a general account
of such processes we refer to [1]. In all these cases, the constructed process is a
strong Markov process on the underlying metric space (F, ρ, µ) with continuous
trajectories, which gives rise to a heat kernel on F with two-sided sub-Gaussian
estimates:

C1t
−d/dw exp

{
−C2(ρ(x, y)t−1/dw)

dw
dw−1

}
¬ g(t, x, y) ¬ C3t

−d/dw exp
{
−C4(ρ(x, y)t−1/dw)

dw
dw−1

}
,

where dw is the so called walk dimension of F, and C1, . . . , C4 > 0 are certain
constants.
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The generator of this process is called the Laplacian on F, although it does
not have a straightforward differential meaning, even for fractal subsets of the Eu-
clidean space—e.g. for the Laplacian on the Sierpiński gasket, no function in its
domain has aC1 extension to any open neighbourhood of the gasket (see [5, Corol-
lary 9.3]).

Diffusion processes on irregular sets became popular in connection with the
theory of disordered media, especially processes that evolve at percolation clus-
ters at criticality, which are expected to exhibit multi-level self-similarity. For
a fair account of the physics literature on the subject we refer to [21], and for
mathematical aspects to [1]. In this vein, also discontinuous processes with val-
ues in a general metric measure space (required to have some regularity proper-
ties) have been considered. So far, the best analysed are the α-stable processes on
d-sets (not necessarily embedded in the Euclidean space) defined independently
in [11] and [14]. The generator of the α-stable process corresponds to the oper-
ator −(−∆)α, α ∈ (0, 2), on Rd, i.e. the ultra-relativistic Hamiltonian. From
the mathematical point of view, a natural step forward is to consider relativistic
Hamiltonians −(−c∆ + m1/α)α + m, m > 0, which are important approxima-
tions of ultra-relativistic quantum mechanics. In particular, when α = 1/2, the
Hamiltonian

√
−~c2∆ +m2c4 (called the Klein–Gordon square root operator or

the quasi-relativistic Hamiltonian) is often used to describe the motion of a free
quasi-relativistic particle. Here m is the mass of the particle, c is the speed of
light, and ~ is the reduced Planck constant. Since the term mc2 represents the rest
mass, the related operator−L :=

√
−~c2∆ +m2c4−mc2 is also called the kinetic

energy operator. This theory has been strongly influenced by Lieb and Seiringer’s
investigations on the stability of (relativistic) matter [35].

In this paper, we propose to define a relativistic α-stable process on a given
measure metric space (F, ρ, µ) via Bochner subordination of the Brownian mo-
tion on F. This classical procedure, developed by Bochner [8], [9], gives a tool for
constructing new semigroups (operators, processes) from a given one. For a more
recent account on subordination, we refer to [6], [7], [40]. See also Section 2.2
below for a more detailed description. A particular feature of Bochner subordina-
tion is that it preserves functional inequalities, e.g. Nash and Poincaré inequalities
(see [41]), which can be further related to properties of the semigroup such as
on-diagonal estimates of the kernel (see e.g. [12]).

Bochner subordination was used in the pioneering paper [16] to define traces of
processes subordinate (via stable subordinators) to general diffusions in a domain
Ω ⊂ Rn to its irregular boundary ∂Ω = Γ. This boundary is required to be a
d-set with n − 1 ¬ d < n. The authors proved that the subordinate process on
the domain Ω yields a Dirichlet form on its boundary Γ, which is a generalization
of similar results from [26], which were proved for a diffusion and a domain with
smooth boundary.

In the present paper, the situation is somewhat different. We do not require the
set to be embedded in the Euclidean space, and even for those that are, we consider
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an intrinsic metric on the set, which may be incomparable with the Euclidean one.
We start with the Brownian motion on the already irregular space (an abstract one,
not necessarily the boundary of a domain in Rn), and as a result we obtain a process
on the same irregular space. Stable subordinators were introduced in this context
in [11], and now we work with closely related, but more complicated, relativistic
subordinators.

Simultaneously, in parallel to the stochastic considerations coming mostly from
mathematical physics, there has been a vivid interest in the theory of function
spaces on irregular sets. Initially, this theory was developed for sets embedded
in Rn, including fractals (see [29], [45], [44] and the literature therein). In par-
ticular, Besov spaces were introduced and analysed in this generality. They were
naturally linked to diffusions on fractals: the domain of the Dirichlet form of the
Brownian motion turned out to be a Besov space (see [27] for the Sierpiński gas-
ket, and [37] for d-sets). In this direction, function spaces on fractals and more
general measure metric spaces were systematically analyzed (see e.g. [24], [25],
[34], [19]). We also point out two papers concerned with trace theorems: [28] on
the Sierpiński gasket and [23] on general fractals.

Properties of subordinate α-stable processes on d-sets, including transition den-
sity estimates, were analysed in [11], [42] by Bogdan, Stós and Sztonyk. Follow-
ing that path, in this paper we give an elementary proof of two-sided estimates for
the transition density of a relativistic α-stable process on a d-set (Theorems 3.1
and 3.2), and then we identify the Dirichlet form of the process (Proposition 3.1).
To get our estimates, we just use subordination and some known properties of α-
stable subordinators.

More precisely, denoting by p(·, ·, ·) the transition density of a subordinate rel-
ativistic α-stable process on a d-set (F, ρ, µ), we prove that

(1) for t ­ 1 and x, y ∈ F,

p(t, x, y) � C∗t−d/dw exp
{
−C∗min

(
ρ(x, y), (ρ(x, y)t−1/dw)

dw
dw−1

)}
,

(2) for t ∈ (0, 1) and x, y ∈ F with ρ(x, y) ­ 1,

p(t, x, y) � C∗t exp {−C∗ρ(x, y)} ,

(3) for t ∈ (0, 1) and x, y ∈ F with ρ(x, y) < 1,

p(t, x, y) � C∗min
(
tρ(x, y)−d−αdw , t−d/(αdw)

)
,

where C∗ denotes a constant that can be different in the upper and lower bounds.
These estimates are consistent with those for relativistic stable processes in Rd
from [14] (see (1.1) below), with parameters adjusted to the present setting. We
also mention that in the case of the Euclidean space Rd, it is possible (see [30]) to
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obtain bounds with the same upper and lower exponent in the regime (2) above (a
polynomial correction is needed outside the exponent in that case).

When the ‘jumping intensity’ J of the process can be prescribed a priori, the
process can be described starting from its Dirichlet form. This approach was pur-
sued by Chen and Kumagai [14] to prove estimates forα-stable processes on d-sets,
and then for more general processes in [15]. In particular, as an application of their
method, the authors consider a relativistic process in Rd (not on general d-sets) and
for t > 1 they obtain the estimate

(1.1) p(t, x, y) � C∗t−d/2 exp{−C∗min(|x− y|, |x− y|2/t)}.

(For small t’s, their estimate is similar to that for α-stable processes.)
In the general situation, it was not clear what kernel J should correspond to a

metric-space counterpart of a relativistic process on Rd. The approach of this paper
permits us to identify the kernel (or at least to give an upper and a lower bound)
on general d-sets. The bounds on the jumping kernel are derived directly from the
estimates on the transition density.

The paper is organized as follows. In Section 2 we provide some definitions
and notations regarding fractional diffusions, subordination and Dirichlet forms.
Section 3 contains the proof of the main theorems, on estimates of the transition
density. We finish this section by determining the domain of the Dirichlet form of
the process and proving estimates on the kernel of this form.

2. PRELIMINARIES

Notation. Throughout the paper, upper- and lowercase numbered constants, Ai,
Ki, Ci, ci, denote constants whose values, once fixed, will not change. The con-
stants that are not numbered, i.e. c, C, c′, C ′, . . . , can change their value inside the
proofs. For two functions defined on a common domain, f � g means that there is
an absolute constant C > 0 such that 1

C f(·) ¬ g(·) ¬ Cf(·).

2.1. Fractional diffusion, d-set and d-measure. In this section we introduce some
definitions and notation taken from [1], [29], as well as some formulas used later.

Let (F, ρ, µ) be a locally compact, separable metric space and let µ be a Borel
measure on F .

DEFINITION 2.1. Suppose d > 0. A positive Borel measure µ on F is called a
d-measure if there exist constants c1.1, c1.2 > 0 such that

c1.1r
d ¬ µ(B(x, r)) ¬ c1.2rd ∀x ∈ F, r ∈ (0, diamF ),

where B(x, r) = {y ∈ F : ρ(x, y) < r} is the open ball in F in the metric ρ.

DEFINITION 2.2. A closed set F is called a d-set if there exists a d-measure on
(F, ρ) with support F .
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All d-measures on a fixed set F are equivalent. The Hausdorff dimension of
any d-set is equal to d. For more information on d-sets and d-measures we refer
to [29].

From now on we assume that F is a given d-set equipped with a d-measure µ.
We introduce the following definition of fractional diffusion, adapted from [1]:

DEFINITION 2.3. Let (Zt,Px)x∈F, t­0 be a Markov process on F . We call it a
fractional diffusion if:

1. Z is a Feller diffusion with state space F ,

2. Z has a symmetric continuous transition density g(·, ·, ·) with respect to the
d-measure µ such that

(2.1) C1t
−d/dw exp

{
−C2(ρ(x, y)t−1/dw)

dw
dw−1

}
¬ g(t, x, y) ¬ C3t

−d/dw exp
{
−C4(ρ(x, y)t−1/dw)

dw
dw−1

}
for all t ∈ (0, (diamF )dw) and x, y ∈ F, with constants C1, . . . , C4 > 0 and
dw > 1.

The constant dw is called the walk dimension on F and depends only on the ge-
ometry of F (see [37]), i.e. for a given d-set F all fractional diffusions on F have
the same parameter dw (the proof in [37] was given only for subsets of Rn, but
it works for general metric spaces, see [20]). In particular, for F = Rn, we have
dw = 2, and if F is the Sierpiński gasket then dw = log 5

log 2 .

2.2. Subordination. Let (Tt)t­0 be a strongly continuous semigroup on Lp(F, µ)
with generator (A,D(A)), and let S = (St,P)t­0 be a subordinator, i.e. an in-
creasing Lévy process on [0,∞) such that S0 = 0 (see [7]). Denote by ηt(ds) the
distribution of St; then the Laplace transform of ηt can be written in the form

(2.2)
∞∫
0

e−λs ηt(ds) = e−tφ(λ), λ > 0.

The measures ηt, t ­ 0, form a convolution semigroup on [0,∞).
The function φ : (0,∞) → R is called the Laplace exponent of S and can be

expressed as (Lévy–Khinchin formula):

(2.3) φ(λ) = aλ+
∞∫
0

(1− e−λx) ν(dx)

where a ∈ R is the drift coefficient of S, and ν is the Lévy measure of S; it is a
nonnegative, σ-finite, Borel measure on (0,∞) which satisfies the condition

(2.4)
∞∫
0

(1 ∧ x) ν(dx) <∞.
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We define a new semigroup

T φt u :=
∞∫
0

Tsu ηt(ds),

which is again a strongly continuous semigroup on Lp(F, µ). The integral is under-
stood in the sense of Bochner and is well-defined under the present assumptions.
This is the semigroup subordinate to (Tt), sometimes denoted (T φt ),with generator
(Aφ,D(Aφ)).

In particular, when p = 2 and Tt is the semigroup of a Markov process Z on F
with transition densities g(t, x, y), t > 0, x, y ∈ F , then T φt is also a semigroup of
a Markov process X , called the process subordinate to Z via the subordinator S,
whose transition probabilities are given by

p(t, x,A) =
∞∫
0

∫
A

g(u, x, y)µ(dy) ηt(du).

Formally, we have Xt = ZSt .
Two classes of subordinators will be important for our purposes.

2.2.1. α-stable (jump) subordinators. Let α ∈ (0, 1). We call a subordinator S
α-stable if its Laplace exponent φ is

(2.5) φ(λ) = λα, λ > 0.

Integration by parts gives

λα =
α

Γ(1− α)

∞∫
0

(1− e−λx)x−1−α dx,

which means that the Lévy measure of S is ν(dx) = (α/Γ(1 − α))x−1−αdx,
and the restriction α ∈ (0, 1) follows naturally from the condition (2.4). In this
case, for any t > 0 the measure ηt is absolutely continuous with respect to the
Lebesgue measure. We will use the same letter for this measure and for its density,
ηt(ds) = ηt(s)ds. We collect the properties of ηt in a lemma.

LEMMA 2.1. Let ηt be the density of an α-stable subordinator, α ∈ (0, 1).
Then the following hold true.

(i) The scaling property: for any t, s > 0,

(2.6) ηt(s) = t−1/αη1(t
−1/αs).

There exist constants A1, A2, a0, a1, a2 > 0, either absolute or depending only
on α, such that:

(ii) Asymptotic behaviour at 0+ (see [22, proof of Lemma 1]): the limit below
exists:

(2.7) lim
s→0+

η1(s)s
a1ea2s

− α
1−α

= A1.
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(iii) Asymptotic behaviour at∞ (see [10, p. 97]):

(2.8) lim
s→∞

η1(s)s
1+α = A2.

(iv) A global estimate (see [11, formula (14)]):

(2.9) ηt(s) ¬ a0ts−1−αe−ts
−α
, s, t > 0.

2.2.2. Relativistic α-stable subordinators. Let α ∈ (0, 1) and m > 0. A subordina-
tor S is called relativistic α-stable with mass m if its Laplace exponent is

(2.10) φ(λ) = (λ+m1/α)α −m, λ > 0.

Again, integration by parts gives

(λ+m1/α)α −m =
α

Γ(1− α)

∞∫
0

(1− e−λx)e−m
1/αxx−1−α dx,

so that in this case the Lévy measure is

ν(dx) = (α/Γ(1− α))e−m
1/αxx−1−αdx.

Denoting by ηt,m(·) the density of the relativistic α-stable subordinator, we have
(see [38, p. 3])

(2.11) ηt,m(s) := e−m
1/αs+mtηt(s), m > 0, s, t > 0.

Indeed, from (2.5) we verify that the Laplace transform of ηt,m equals that given
by (2.10):

∞∫
0

e−λsηt,m(s) ds = emt
∞∫
0

e−(λ+m
1/α)sηt(s) ds = e−t[(λ+m

1/α)α−m].

For more examples of subordinators and their properties we refer to [7], [6], [40].

2.3. Stable and relativistic α-stable processes. Assume that (Zt,Px)x∈F, t­0 is a
fractional diffusion on (F, ρ, µ) and let S be a subordinator independent of Z. We
define a new process X = (Xt)t­0 as

Xt := ZSt , t ­ 0.

The processX is called the subordinate Brownian motion on F (via the subordina-
tor S). It is a Markov process with càdlàg paths whose transition density function
can be represented as

p(t, x, y) =
∞∫
0

g(s, x, y) ηt(ds).

If S = (St,P)t­0 is an α-stable subordinator, α ∈ (0, 1), then Xt := ZSt is called
an α-stable process on F. Likewise, if S = (St,P)t­0 is a relativistic α-stable
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subordinator, then Xt := ZSt is a relativistic α-stable process on F. From (2.11)
we see that in this case the transition density is given by

(2.12) p(t, x, y) = emt
∞∫
0

g(s, x, y)e−m
1/αsηt(s) ds

where ηt(·) is the density of the pure α-stable subordinator. This formula will be
the starting point for our investigations.

2.4. Dirichlet forms. We finish the introductory part by sketching some definitions
regarding Dirichlet forms, taken from [12]. For more details we refer to [18].

Let p(t, x, y) be the transition density of a symmetric Markov process (Xt) on
(F, ρ, µ). For f ∈ L2(F, µ) we define

Et(f, f) =
1

2t

∫
F

∫
F

(f(x)− f(y))2p(t, x, y)µ(dx)µ(dy).

By spectral theory, for any f ∈ L2(F, µ) the function t 7→ Et(f, f) is decreasing
for t > 0, and we set

E(f, f) = lim
t→0+

Et(f, f), D(E) = {f ∈ L2(F, µ) : E(f, f) <∞}.

Then (E ,D(E)) is called the Dirichlet form of the process (Xt). As an example,
for a symmetric α-stable process on F, α ∈ (0, 1), we have (see [42])

D(Estab) = Lip (αdw/2, 2, 2, F )

=

{
f ∈ L2(F, µ) :

∫
F

∫
F

(f(x)− f(y))2

ρ(x, y)d+αdw
µ(dx)µ(dy) <∞

}
,

and

Estab(f, f) �
∫
F

∫
F

(f(x)− f(y))2

ρ(x, y)d+αdw
µ(dx)µ(dy).

3. AN ESTIMATE OF THE TRANSITION DENSITY FUNCTION FOR A RELATIVISTIC
α-STABLE PROCESS

The transition density estimates we are going to obtain are split in two parts;
t ­ 1 and t < 1. We address these two regimes separately. We start with t ­ 1.

THEOREM 3.1. Let Xt be a relativistic α-stable process on F, with density
function p(·, ·, ·) given by (2.12). Let t ­ 1. Then there exist constants Ki =
Ki(α) > 0, i = 1, . . . , 4, such that for x, y ∈ F ,

(3.1) K1t
−d/dw exp

{
−K2 min

(
ρ(x, y), (ρ(x, y)t−1/dw)

dw
dw−1

)}
¬ p(t, x, y)

¬ K3t
−d/dw exp

{
−K4 min

(
ρ(x, y), (ρ(x, y)t−1/dw)

dw
dw−1

)}
.
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Proof. I. The lower bound. First we show that there exist K1(α), K2(α) > 0
such that for any x, y ∈ F ,

(3.2) p(t, x, y) ­ K1t
−d/dw exp

{
−K2 min

(
ρ(x, y), (ρ(x, y)t−1/dw)

dw
dw−1

)}
.

From the expression defining p(·, ·, ·),

p(t, x, y) = emt
∞∫
0

g(s, x, y)e−m
1/αsηt(s) ds,

using subgaussian estimates on g, (2.1), and scaling of ηt, (2.6), we get

p(t, x, y) ­ C1e
mt
∞∫
0

s−d/dwe−C2s
−1

dw−1 ρ(x,y)
dw
dw−1

e−m
1/αst−1/αη1(t

−1/αs) ds.

The substitution s = t1/αu gives

(3.3) p(t, x, y)

­ C1e
mt
∞∫
0

(t1/αu)−d/dwe−C2(t1/αu)
−1

dw−1 ρ(x,y)
dw
dw−1

e−m
1/αt1/αuη1(u) du.

Now, from (2.7) it follows that there exist δ(α) > 0 and c1 > 0 such that for all
s ¬ δ(α),

(3.4) η1(s) ­ c1s−a1e−a2s
−α/(1−α)

.

For further use, observe also that from (2.8) it follows that there exist u0(α) > 0
and c2 > 0 such that for all s ­ u0(α),

(3.5) η1(s) ­ c2s−1−α.

CASE 1. Assume ρ(x, y) ­ t, so that

min
(
ρ(x, y), (ρ(x, y)t−1/dw)

dw
dw−1

)
= ρ(x, y).

Denote At(x, y) := t−1/αρ(x, y).
• If At(x, y) ¬ δ(α) then we restrict the integration in (3.3) to the interval

(At(x, y)/2, At(x, y)) to get

p(t, x, y)

­ C1e
mt

At(x,y)∫
At(x,y)/2

(t1/αu)−d/dwe−C2(t1/αu)
−1

dw−1 ρ(x,y)
dw
dw−1−m1/αt1/αuη1(u) du

­ cemtρ(x, y)−d/dwe−c
′ρ(x,y)

At(x,y)∫
At(x,y)/2

η1(u) du,
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as the functions f1(s) = s−d/dw and f2(s) = exp{−m1/αt1/αs} are decreasing
and f3(s) = exp{−C2s

−1/(dw−1)ρ(x, y)dw/(dw−1)}, s ∈ (0,∞), is increasing.
Using (3.4) and rearranging we get

p(t, x, y)

­ cemtρ(x, y)−d/dwe−c
′ρ(x,y)(t−1/αρ(x, y))−a1+1e−2

α
α−1 a2t

1
1−α ρ(x,y)

− α
1−α

with some c, c′ > 0. Note that for ρ(x, y) ­ t we have

e−a2t
1

1−α ρ(x,y)
− α

1−α ­ e−a2ρ(x,y)
1

1−α ρ(x,y)
− α

1−α
= e−a2ρ(x,y),

so that

p(t, x, y) ­ ct−d/dw(td/dw+a1/α−1/αemt)(ρ(x, y)−d/dw−a1+1e−c3ρ(x,y)).

It is clear that there exist constants c4, c5 > 0 independent of x, y, t (recall that
ρ(x, y) ­ t ­ 1) such that td/dw+a1(α)/α−1/αemt ­ c4 and

ρ(x, y)−d/dw−a1(α)+1e−c3ρ(x,y) ­ c5e−2c3ρ(x,y).

This is because for p ∈ R and µ ∈ R+ we have

(3.6) inf
ξ­1

ξpeµξ = c(p, µ) > 0.

This proves that

(3.7) p(t, x, y) ­ ct−d/dwe−c
′′ρ(x,y) for ρ(x, y) ­ t ­ 1.

• If, on the other hand, At(x, y) > δ(α), then also Bt(x, y) := u0(α)
δ(α) At(x, y)

> u0(α). Now the integration in (3.3) will be restricted to the interval
(Bt(x, y), 2Bt(x, y)). This gives, as before,

p(t, x, y)

­ C1e
mt

2Bt(x,y)∫
Bt(x,y)

(t1/αu)−d/dwe−C2(t1/αu)
−1

dw−1 ρ(x,y)
dw
dw−1−m1/αt1/αuη1(u) du

­ cemtρ(x, y)−d/dwe−c
′ρ(x,y)

2Bt(x,y)∫
Bt(x,y)

η1(u) du,

and now from (3.5) it follows that

p(t, x, y) ­ cemtρ(x, y)−d/dwe−c
′ρ(x,y)(t−1/αρ(x, y))−α

= ct−d/dw(td/dw+1emt)(ρ(x, y)−d/dw−αe−c
′ρ(x,y)),
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which gives, in view of (3.6),

(3.8) p(t, x, y) ­ ct−d/dwe−c
′′ρ(x,y),

as needed.

CASE 2. Assume now that ρ(x, y) < t, i.e.

min
(
ρ(x, y), (ρ(x, y)t−1/dw)

dw
dw−1

)
= (ρ(x, y)t−1/dw)

dw
dw−1 .

To obtain the bound (3.2) it is sufficient to show that there exist constants L1 =
L1(α,m) > 0, L2 = L2(α,m) > 0, L1 < L2 such that

(3.9)
L2t∫
L1t

e−m
1/αsηt(s) ds ­ ce−mt for some c > 0.

Indeed, in that case

p(t, x, y) ­ C1e
mt

L2t∫
L1t

s−d/dwe−C2s
−1

dw−1 ρ(x,y)
dw
dw−1

e−m
1/αsηt(s) ds

­ cemtt−d/dwe−c
′t
−1

dw−1 ρ(x,y)
dw
dw−1

L2t∫
L1t

e−m
1/αsηt(s) ds

­ ct−d/dwe−c
′′t
−1

dw−1 ρ(x,y)
dw
dw−1

.

Now we are going to show how to find L1 and L2. To this end, we will repeat-
edly use (2.5). For any 0 < L1 < L2 <∞ we have

(3.10) e−mt =
∞∫
0

e−m
1/αsηt(s) ds

=
L1t∫
0

e−m
1/αsηt(s) ds+

L2t∫
L1t

e−m
1/αsηt(s) ds+

∞∫
L2t

e−m
1/αsηt(s) ds.

Note that
L1t∫
0

e−m
1/αsηt(s) ds =

L1t∫
0

ese−(m
1/α+1)sηt(s) ds ¬ eL1te−t(m

1/α+1)α ;

let δ0(α) > 0 be defined by (m1/α + 1)α = m+ δ0(α). Choose

L1 := 1
2δ0(α).

Consequently,

(3.11)
L1t∫
0

e−m
1/αsηt(s) ds ¬ e−t(m+ 1

2
δ0(α)).
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Also, note that for any L2 > L1,

(3.12)
∞∫
L2t

e−m
1/αsηt(s) ds ¬ e−m

1/αL2t
∞∫
L2t

ηt(s) ds ¬ e−m
1/αL2t.

Inserting (3.11) and (3.12) into (3.10) we get

L2t∫
L1t

e−m
1/αsηt(s) ds ­ e−mt − e−t(m+ 1

2
δ0(α)) − e−m

1/αL2t

= e−mt(1− e−
1
2
δ0(α)t − e(m−m

1/αL2)t).

For any L2 > m1−1/α, we find that the function t 7→ 1−e−
1
2
δ0(α)t−e(m−m

1/αL2)t

is increasing for t ­ 1, thus

L2t∫
L1t

e−m
1/αsηt(s) ds ­ e−mt(1− e−

1
2
δ0(α) − em−m

1/αL2),

and in order to get (3.9), it is sufficient to find L2 > max(L1,m
1−1/α) for which

1− e−
1
2
δ0(α) − em−m

1/αL2 > 0.

This is equivalent to L2 > (m− ln(1− e−
1
2
δ0(α)))m−1/α, so finally we take

L2 := max

(
L1,m

1−1/α,
m− ln(1− e−δ0(α)/2)

m1/α

)
+ 1.

II. The upper bound. We now prove that there exist constants K3 = K3(α),
K4 = K4(α) > 0 such that for any x, y ∈ F and t ­ 1,

(3.13) p(t, x, y) ¬ K3t
−d/dwe−K4 min(ρ(x,y),(ρ(x,y)t−1/dw )

dw
dw−1 ).

Clearly, using (2.1) we can write

(3.14) p(t, x, y) ¬ emt
∞∫
0

C3s
−d/dwe−C4s

−1
dw−1 ρ(x,y)

dw
dw−1

e−m
1/αsηt(s) ds.

Case ρ(x, y) ­ t. Denote the integrand in (3.14) by h(s), and consider the
function

f(s) = s−d/dwe−C4s
−1

dw−1 ρ(x,y)
dw
dw−1

, s ∈ (0,∞),

so that h(s) = C3f(s)e−m
1/αsηt(s). We have

lim
s→0+

f(s) = lim
s→∞

f(s) = 0.
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By computing the derivative we check that f(·) is increasing on (0, c6ρ(x, y)dw)
and decreasing on (c6ρ(x, y)dw ,∞), for some c6 > 0. We now set

c7 = max(2c6,m
1−1/α + 1).

We split the integral in (3.14) as follows:

p(t, x, y) ¬ emt
(c6ρ(x,y)∫

0

h(s) ds+
c7ρ(x,y)∫
c6ρ(x,y)

h(s) ds+
∞∫

c7ρ(x,y)

h(s) ds
)

Observing the monotonicity of the functions

s 7→ f(s), s 7→ s−d/dw , s 7→ e−C4s
−1

dw−1 ρ(x,y)
dw
dw−1

,

recalling (2.2), and using ρ(x, y) ­ t, we get

c6ρ(x,y)∫
0

h(s) ds ¬ cρ(x, y)−d/dwe−c
′ρ(x,y)

c6ρ(x,y)∫
0

e−m
1/αsηt(s) ds

¬ ct−d/dwe−mte−c
′ρ(x,y);

c7ρ(x,y)∫
c6ρ(x,y)

h(s) ds ¬ cρ(x, y)−d/dwe−c
′ρ(x,y)

c7ρ(x,y)∫
c6ρ(x,y)

e−m
1/αsηt(s) ds

¬ ct−d/dwe−mte−c
′ρ(x,y).

We estimate the remaining integral as follows, recalling that
∫∞
0
ηt(s) ds = 1:

∞∫
c7ρ(x,y)

C3s
−d/dwe−C4s

−1
dw−1 ρ(x,y)

dw
dw−1

e−m
1/αsηt(s) ds

¬ cρ(x, y)−d/dw
∞∫

c7ρ(x,y)

e−m
1/αsηt(s) ds

¬ ct−d/dwe−m
1/α(m1−1/α+1)ρ(x,y)

∞∫
c7ρ(x,y)

ηt(s) ds

¬ ct−d/dwe−mρ(x,y)e−m
1/αρ(x,y) ¬ ct−d/dwe−mte−m

1/αρ(x,y),

which means that for ρ(x, y) ­ t, estimate (3.13) holds.

CASE ρ(x, y) < t. To begin, we define some constants:

k1 = (2m)−1/α, k2 = min
(
1
2k3, k1

)
,

k3 = 1
2 · α ·m

1−1/α, k4 = 2 max(k3,m
1−1/α).
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Then k2 ¬ k1 and k2 ¬ k3t ¬ k4t. With h(s) as defined before,

(3.15) p(t, x, y) ¬ emt
(k1∫

0

h(s) ds+
k3t∫
k2

h(s) ds+
k4t∫
k3t

h(s) ds+
∞∫
k4t

h(s) ds
)
.

Note, once ρ(x, y) < t, then also k4t
−1

dw−1 ρ(x, y)
dw
dw−1 ¬ k4t. Since the function

t 7→ e−C4t
−1

dw−1 ρ(x,y)
dw
dw−1 is nondecreasing, we can estimate the last integral in

(3.15) as follows:

∞∫
k4t

C3s
−d/dwe−C4s

−1
dw−1 ρ(x,y)

dw
dw−1

e−m
1/αsηt(s) ds

¬ ct−d/dw
∞∫
k4t

e−
1
2
m1/αsηt(s) ds

¬ ct−d/dwe−mte−c
′m1/αt

−1
dw−1 ρ(x,y)

dw
dw−1

∞∫
k4t

ηt(s) ds

¬ ce−mtt−d/dwe−c
′m1/αt

−1
dw−1 ρ(x,y)

dw
dw−1

.

For the previous integral we have

k4t∫
k3t

C3s
−d/dwe−C4s

−1
dw−1 ρ(x,y)

dw
dw−1

e−m
1/αsηt(s) ds

¬ ct−d/dwe−c
′t
−1

dw−1 ρ(x,y)
dw
dw−1

k4t∫
k3t

e−m
1/αsηt(s) ds

¬ ct−d/dwe−c
′t
−1

dw−1 ρ(x,y)
dw
dw−1

e−mt.

For the integral over [0, k1), using (2.9) we get

k1∫
0

h(s) ds

¬ ce−C4(k1t)
−1

dw−1 ρ(x,y)
dw
dw−1

k1∫
0

s−d/dwe−m
1/αsts−1−αe−

1
2
ts−αe−

1
2
ts−α ds.

The function s 7→ e−
1
2
ts−α is increasing, so that (recall the definition of k1)

k1∫
0

h(s) ds

¬ ce−mtt−d/dwe−c
′t
−1

dw−1 ρ(x,y)
dw
dw−1

k1∫
0

s−d/dw−1−α · 1 · td/dw+1e−
1
2
ts−α ds.
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For the function gs(t) = td/dw+1e−
1
2
ts−α , t ­ 1, we have

gs(1) = e−
1
2
s−α , lim

t→∞
gs(t) = 0,

and also g′s(t) = 0 ⇔ t = c8s
α, c8 > 0. So, if c8sα < 1 then supt­1 gs(t) =

gs(1) = e−
1
2
s−α , while if c8sα ­ 1 then supt­1 gs(t) = gs(c8s

α) = c9s
αd/dw+α.

Consequently, for any t ­ 1,

k1∫
0

s−d/dw−1−αtd/dw+1e−
1
2
ts−α ds ¬

min(c
−1/α
8 ,k1)∫
0

s−d/dw−1−αe−
1
2
s−α ds

+
k1∫

min(c
−1/α
8 ,k1)

c9s
−(d/dw)(1−α)−1 ds

=: M <∞.

We have obtained
k1∫
0

h(s) ds ¬ ce−mtt−d/dwe−c
′t
−1

dw−1 ρ(x,y)
dw
dw−1

.

Finally, we are going to estimate
∫ k3t
k2

h(s) ds. This estimate requires a finer
analysis. Firstly, we point out that

lim
ε→0+

2ε

(1 + 3ε)1/α − 1
=

2

3
α >

1

2
α = m1/α−1k3,

so there exists ε0(α) > 0 such that

(3.16)
2ε0(α)

(1 + 3ε0(α))1/α − 1
­ m1/α−1k3.

We continue as follows:

emt
k3t∫
k2

h(s) ds ¬ ct−d/dwe−c
′t
−1

dw−1 ρ(x,y)
dw
dw−1

k3t∫
k2

td/dwemte−m
1/αsηt(s) ds.

To prove (3.13) it is enough to show that

I0 :=
k3t∫
k2

td/dwemte−m
1/αsηt(s) ds ¬ K

for some constant K > 0 independent of t ­ 1. First, find K0 > 0 such that for
any t ­ 1,

td/dwemt ¬ K0e
(1+ε0(α))mt,

with ε0(α) taken from (3.16).
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Let us write e−m
1/αs in a somewhat different way:

e−m
1/αs = e−(1+3ε0(α))1/αm1/αse[(1+3ε0(α))1/α−1]m1/αs.

Now, since the function s 7→ e[(1+3ε0(α))1/α−1]m1/αs is increasing, we have

I0 ¬ K0e
(1+ε0(α))mte[(1+3ε0(α))1/α−1]m1/α(k3t)

k3t∫
k2

e−(1+3ε0(α))1/αm1/αsηt(s) ds,

and using (2.2) we get

I0 ¬ K0e
(1+ε0(α))mte[(1+3ε0(α))1/α−1]m1/α(k3t)e−t(1+3ε0(α))m,

so that
I0 ¬ K0e

−2ε0(α)mte[(1+3ε0(α))1/α−1]m1/αk3t,

and to finish the proof we need to show that the exponent is nonpositive, i.e.

2ε0(α)m ­ [(1 + 3ε0(α))1/α − 1]m1/αk3.

This is clear in view of (3.16). We have proved (3.13), therefore the proof of (3.1)
is complete. �

Now we will give estimates for small times. In the range ρ(x, y) < 1 the result
is similar to the estimate for an α-stable process from [11]. When ρ(x, y) ­ 1,
the bound is exponential. To shorten notation, following [11], we denote dα =
d+ αdw.

THEOREM 3.2. Let Xt be a relativistic α-stable process on F with density
function p(·, ·, ·) given by (2.12). Let t ∈ (0, 1). Then there exist constants Ki =
Ki(α) > 0, i = 5, . . . , 10, such that:

(1) for ρ(x, y) ­ 1,

(3.17) K5te
−K6ρ(x,y) ¬ p(t, x, y) ¬ K7te

−K8ρ(x,y),

(2) for ρ(x, y) < 1,

(3.18) K9 min

(
t

ρ(x, y)dα
, t−d/(αdw)

)
¬ p(t, x, y) ¬ K10 min

(
t

ρ(x, y)dα
, t−d/(αdw)

)
.

Proof. (1) Case ρ(x, y) ­ 1. The lower bound. From (2.6) and (2.8), we have

ηt(u) > ctu−1−α for u > u0t
1/α
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where u0 is taken from (3.5). Then

p(t, x, y) ­ C1e
mt

∞∫
u0t1/α

s−d/dwe−C2s
−1

dw−1 ρ(x,y)
dw
dw−1

e−m
1/αsηt(s) ds

­ ct
∞∫

u0t1/α

s−d/dw−1−αe−C2s
−1

dw−1 ρ(x,y)
dw
dw−1

e−m
1/αs ds.

Since t ∈ (0, 1) and ρ(x, y) ­ 1 we have u0t1/α < u0ρ(x, y), so that

p(t, x, y) ­ ct
∞∫

u0ρ(x,y)

s−d/dw−1−αe−C2s
−1

dw−1 ρ(x,y)
dw
dw−1

e−m
1/αs ds

­ cte−C2(u0ρ(x,y))
−1

dw−1 ρ(x,y)
dw
dw−1

∞∫
u0ρ(x,y)

s−d/dw−1−αe−m
1/αs ds

­ cte−c′ρ(x,y)
∞∫

u0ρ(x,y)

e−c
′′s ds = cte−c

′′′ρ(x,y).

The upper bound. Using (2.9) we get

p(t, x, y) ¬ ct
∞∫
0

s−d/dw−1−αe−C4s
−1

dw−1 ρ(x,y)
dw
dw−1

e−m
1/αs ds.

The function s 7→s−d/dw−1−αe−C4s
−1

dw−1 ρ(x,y)
dw
dw−1 is increasing on (0, c10ρ(x, y)),

so that

p(t, x, y) ¬ ct
(c10ρ(x,y)∫

0

s−d/dw−1−αe−C4s
−1

dw−1 ρ(x,y)
dw
dw−1

ds

+
∞∫

c10ρ(x,y)

s−d/dw−1−αe−m
1/αs ds

)
¬ ct

(
ρ(x, y)−d/dw−αe−c

′ρ(x,y) + ρ(x, y)−d/dw−1−α
∞∫

c10ρ(x,y)

e−m
1/αs ds

)
¬ cte−c′′ρ(x,y),

and the proof of (3.17) is complete.

(2) Case ρ(x, y) < 1. The upper bound. We have

p(t, x, y) = emt
∞∫
0

g(s, x, y)e−m
1/αsηt(s) ds ¬ c

∞∫
0

g(s, x, y)ηt(s) ds,

which is the transition property of an α-stable process, so from [11, Theorem 3.1]
we get

p(t, x, y) 6 K10 min
(
tρ(x, y)−dα , t−

d
αdw

)
.



200 H. Balsam and K. Pietruska-Pałuba

The lower bound. To begin, note that

tρ(x, y)−dα ¬ t−
d

αdw ⇐⇒ t1/α ¬ ρ(x, y)dw .

• If t1/α ¬ ρ(x, y)dw , then u0t1/α ¬ u0ρ(x, y)dw and further

p(t, x, y) ­ emt
2u0ρ(x,y)dw∫
u0ρ(x,y)dw

C1s
−d/dwe−C2s

−1
dw−1 ρ(x,y)

dw
dw−1

e−m
1/αsηt(s) ds

­ cρ(x, y)−d
2u0ρ(x,y)dw∫
u0ρ(x,y)dw

ts−1−α ds ­ ctρ(x, y)−dα .

• If t1/α > ρ(x, y)dw , then

e−C2s
−1

dw−1 ρ(x,y)
dw
dw−1

= e−C2s
−1

dw−1 (ρ(x,y)dw )
1

dw−1
> e−C2s

−1
dw−1 (t1/α)

1
dw−1

,

so

p(t, x, y) ­ emt
2u0t1/α∫
u0t1/α

C1s
−d/dwe−C2s

−1
dw−1 (t1/α)

1
dw−1

e−m
1/αsηt(s) ds

­ ct−
d

αdw

2u0t1/α∫
u0t1/α

ts−1−α ds ­ ct−
d

αdw ,

and the proof is complete. �

As a corollary, we identify the domain of the Dirichlet form of a relativistic
α-stable process on F and we provide estimates on the Dirichlet form itself.

PROPOSITION 3.1. Let (E ,D(E)) be the Dirichlet form of a relativistic α-
stable process on F, with density function p(·, ·, ·) given by (2.12). Then

D(E) = Lip(αdw/2, 2, 2, F )

and∫
F

∫
F

(f(x)− f(y))2J1(x, y)µ(dx)µ(dy)

¬ E(f, f) ¬
∫
F

∫
F

(f(x)− f(y))2J2(x, y)µ(dx)µ(dy)

where

Ji(x, y) = Ki,1

(
ρ(x, y)−dα1{ρ(x,y)<1} + e−Ki,2ρ(x,y)1{ρ(x,y)­1}

)
for certain constants Ki,1,Ki,2 > 0, i = 1, 2.
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Proof. First observe that

sup
t<1

1

2t

∫∫
ρ(x,y)­1

(f(x)− f(y))2p(t, x, y)µ(dx)µ(dy) ¬ C‖f‖2L2(F,µ),

for both α-stable and relativistic α-stable processes.
Indeed, for a relativistic process, since (f(x) − f(y))2 ¬ 2(f(x)2 + f(y)2),

from symmetry and Fubini–Tonelli we have for any f ∈ L2(F, µ) and t < 1,
using (3.17),

1

2t

∫∫
ρ(x,y)­1

(f(x)− f(y))2p(t, x, y)µ(dx)µ(dy)

¬ 2K7

∫
F

∫
{y: ρ(x,y)­1}

f(x)2e−K8ρ(x,y) µ(dy)µ(dx)

= 2K7

∫
F

f(x)2
( ∫
ρ(x,y)­1

e−K8ρ(x,y) µ(dy)

)
µ(dx).

Since µ is a d-measure, we can write∫
ρ(x,y)­1

e−K8ρ(x,y) µ(dy) =
∞∑
n=0

∫
2n¬ρ(x,y)<2n+1

e−K8ρ(x,y) µ(dy)

¬ c
∞∑
n=0

e−K82n2dn <∞

(Cauchy condensation test). Consequently,

1

2t

∫∫
ρ(x,y)­1

(f(x)− f(y))2p(t, x, y)µ(dx)µ(dy) ¬ C‖f‖2L2(F,µ).

For an α-stable process we proceed similarly, taking into account the fact that in
that case the bound (3.18) holds also for ρ(x, y) ­ 1.

Suppose now f ∈ Lip(αdw/2, 2, 2, F ) = D(Estab). For a relativistic process
we have (suppose t < 1)

Et(f, f) =
1

2t

∫
F

∫
F

(f(x)− f(y))2p(t, x, y)µ(dx)µ(dy)

=
1

2t

( ∫∫
ρ(x,y)<1

. . .+
∫∫

ρ(x,y)­1
. . .
)

¬ 1

2t

∫∫
ρ(x,y)<1

(f(x)− f(y))2p(t, x, y)µ(dx)µ(dy) + C‖f‖22

¬ Estab(f, f) + C‖f‖22,

so that f ∈ D(E). The opposite inclusion is proven similarly.
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The formulas for J1(·, ·), J2(·, ·) are easy consequences of (3.17) and (3.18).
Assume f ∈ D(E). As above, we write

Et(f, f) =
1

2t

∫∫
ρ(x,y)<1

. . . µ(dx)µ(dy) +
1

2t

∫∫
ρ(x,y)­1

. . . µ(dx)µ(dy)

=: E(1)t (f, f) + E(2)t (f, f).

The Dominated Convergence Theorem gives

1

C

∫∫
ρ(x,y)¬1

(f(x)− f(y))2

ρ(x, y)dα
µ(dx)µ(dy) ¬ lim inf

t→0
E(1)t (f, f)

¬ lim sup
t→0

E(1)t (f, f) ¬ C
∫∫

ρ(x,y)¬1

(f(x)− f(y))2

ρ(x, y)dα
µ(dx)µ(dy)

for some C > 0, and for the part E(2)t we have the straightforward estimates (recall
t < 1)

K5

∫∫
ρ(x,y)­1

(f(x)− f(y))2e−K6ρ(x,y) µ(dx)µ(dy) ¬ E(2)t (f, f)

¬ K7

∫∫
ρ(x,y)­1

(f(x)− f(y))2e−K8ρ(x,y) µ(dx)µ(dy).

The proof is complete. �
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