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Abstract. Let Y be a standard Gamma(k) distributed random variable (rv),
k > 0, and let X be an independent positive rv. If X has a hyperbolically
monotone density of order k (HMk), then Y · X and Y/X are general-
ized gamma convolutions (GGC). This extends work by Roynette et al. and
Behme and Bondesson. The same conclusion holds with Y replaced by a
finite sum of independent gamma variables with sum of shape parameters at
most k. Both results are applied to subclasses of GGC.
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1. INTRODUCTION

We consider classes of distributions on the positive real axis. Among these are
gamma distributions, distributions with hyperbolically monotone densities (HMk),
distributions with hyperbolically completely monotone densities (HCM) and gen-
eralized gamma convolutions (GGC). Generalized gamma convolutions were in-
troduced by O. Thorin [8], [9] in his study of infinite divisibility of the log-normal
distribution. The class GGC consists of limit distributions of convolutions of inde-
pendent gamma distributions and is closed with respect to (wrt) weak limits and
sums and products of independent rvs. A comprehensive study of GGC and its re-
lation to HCM can be found in [2] and [3]. For more on Bernstein functions and
infinite divisibility, see [6] and [7].

Recently, Behme and Bondesson [1] generalized a result of Roynette et al. [5]
on products Y ·X and quotients Y/X of a gamma distributed variable Y and an in-
dependent rv X with hyperbolically monotone density. More exactly, they proved
that if 0 < r ¬ k, k is a positive integer, Y ∼ Gamma(r) and X ∼ HMk,
then Y · X ∼ GGC and Y/X ∼ GGC [1, Theorem 1 and Corollary 1], while
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Roynette et al. [5] proved the case k = 1. It was conjectured in [1] that this
result remains true for all k > 0. We confirm this conjecture and prove that if
Y ∼ Gamma(k) and X ∼ HMk are independent rvs, then Y · X ∼ GGC and
Y/X ∼ GGC, for all k > 0 (Theorem 3.1). In addition, we prove the same result
when Y is replaced by a finite sum of independent gamma variables with the sum
of the shape parameters at most k (Theorem 4.1). The proofs are based on Bon-
desson’s characterization of GGC and explicit integral expressions for the relevant
functions. The results are applied to subclasses of GGC (Theorems 5.1 and 5.2).

The plan of this paper is as follows. Section 2 begins with the standard notation
and definitions used in this field and reviews a part of the set up in [1, Section 3].
We describe our approach in Section 3 and state and prove our main result (Theo-
rem 3.1). The last two sections contain applications and comments.

2. PRELIMINARIES

This section gives the background to our results and defines the concepts that are
needed to state and prove our theorems. A more complete presentation of this field
and a survey of many of its results can be found in [2] and [1]. A function f(x) is
called hyperbolically monotone (HM1) if, for every fixed u > 0, h(w) = f(uv) ·
f(u/v) is nonincreasing as a function of w = v + v−1. If k is a positive integer,
f is called hyperbolically monotone of order k (HMk) if (−1)j ·Djh(w) ­ 0 for
j = 1, . . . , k − 1, and (−1)k−1 · D(k−1)h(w) decreases. Finally, we say that f
is hyperbolically completely monotone if this holds for all positive integers k, or
equivalently h(w) is completely monotone (CM) with respect to w. See [2, Ch. 5]
and [1] for more on these classes. It is proved in [1, Section 2] that a density
function f(x) is HMk if and only if, for every u > 0,

(2.1) h(w) = f(uv) · f(u/v) =
∫

(w,∞)

(λ− w)k−1Hu(dλ)

for w = v+ v−1 and some nonnegative measure Hu(dλ) depending on u. Follow-
ing [2] we take (2.1) as our definition of HMk, k > 0.

DEFINITION 2.1. A rv X ∼ HMk if X has density f(x) satisfying (2.1).

We let Gamma(k, r) denote the standard class of gamma distributions with
density f(x) = rk · Γ(k)−1 · xk−1 · e−rx, x > 0, Gamma(k) = Gamma(k, 1).
A generalized gamma convolution (GGC) is a probability distribution F on [0,∞)
with Laplace transform

φ(s) =
∫
e−sx F (dx) = exp

(
−as+

∫
log

(
t

t+ s

)
U(dt)

)
, s ­ 0,

where a ­ 0 (called the left extremity) and U(dt) is a nonnegative measure on
(0,∞), with finite mass on all compact subintervals, such that

∫ 1

0
| log t|U(dt)

<∞ and
∫∞
1
t−1 U(dt) <∞ [2, Ch. 3].
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In the following we prepare for the proof of Theorem 3.1 and follow the presen-
tation in [1, Section 3]. Let X ∼ HMk with density f(x) and Y ∼ Gamma(k, r)
be independent rvs. Then the Laplace transform φ(s) of the quotient Y/X is given
by

φ(s) = E[e−sY/X ] =
∞∫
0

E[e−sY/x] · f(x) dx =
∞∫
0

(
rx

rx+ s

)k
· f(x) dx

and for any s, t > 0 we write φ(st)φ(s/t) as a product of two such integrals and
get

φ(st)φ(s/t) =
∞∫
0

∞∫
0

(
r2xy

(rx+ st)(ry + s/t)

)k
· f(x)f(y) dx dy

=
∞∫
0

∞∫
0

2u

v

(
r2u2

(ruv + st)(ru/v + s/t)

)k
· f(uv)f(u/v) du dv

=
∞∫
0

∞∫
0

2u

v

(
r2u2

(ruv + st)(ru/v + s/t)

)k
·
∫

(w,∞)

(λ− w)k−1Hu(dλ) du dv

after the standard hyperbolic change of variables x = uv, y = u/v, with Jacobian
−2u/v, and inserting the definition (2.1) of f being HMk. Next we fix an arbitrary
u > 0 and λ = b + b−1 ­ 2 for some b ­ 1. Changing the order of integration,
this gives integration with respect to v over the interval [b−1, b] in the innermost
integral

b∫
1/b

(
r2u2

(ruv + st)(ru/v + s/t)

)k
·
(
b+

1

b
− v − 1

v

)k−1 dv
v
.

We let b > 1 and note that b+ b−1 − v − v−1 = (b− v)(v − b−1)/v. After some
algebra and putting ru/s = a we find that a sufficient condition for Y/X ∼ GGC
is that the integral

(2.2) Jk =
b∫

1/b

(
(b− v)(v − b−1)
(v + ta)(v + t/a)

)k
· tk

(b− v)(v − b−1)
dv

is CM with respect to T = t + 1/t, for all a > 1 and b > 1. From now on we
assume that a and b are fixed but arbitrary such numbers. The substitution v 7→ v−1

confirms that the map t 7→ t−1 leaves Jk invariant and that Jk is a function of T .
The integrand in (2.2) is a rational function when k is a positive integer and

Jk can, at least in principle, be calculated explicitly. A straightforward calculation
gives J1 = (a − a−1)−1 · log((T + A)/(T + B)), where A = ab + (ab)−1

and B = ab−1 + a−1b, and it is easily seen that J1 is CM with respect to T , since



4 T. Sjödin

A > B. In the general integer case, Jk is expressed in terms of certain polynomials
Pk and Qk and the logarithm above [1, Theorem 1]. Our proof for k > 0 is based
on a transformation of the integral Jk to a new form that is more suitable for our
purposes and follows quite different lines.

3. MAIN RESULT

In this section we state and prove our first result that products and quotients of
independent rvs Y ∼ Gamma(k) and X ∼ HMk, k > 0, have GGC distributions.
This result generalizes, respectively, the cases k = 1 in [5] and k a positive integer
in [1], to arbitrary k > 0.

THEOREM 3.1. Let 0 < k ¬ l and let Y ∼ Gamma(k) and X ∼ HMl be
independent rvs. Then Y ·X ∼ GGC and Y/X ∼ GGC.

It is sufficient to prove Theorem 3.1 for k = l, since HMl ⊆ HMk for 0 < k ¬ l
[1, Section 5].

Proof. Since X ∼ HMk if and only if 1/X ∼ HMk it is enough to prove that
Y/X ∼ GGC. We evaluate Jk by a series of substitutions and start with

v = (bx+ b−1)(1 + x)−1, dv/dx = (b− b−1) · (1 + x)−2

and (b− v)(v − b−1) = (b− b−1)2x · (1 + x)−2. Then Jk =
∫∞
0
E(x) dxx , where

E(x) =

(
(b−b−1)2(

b2x+ 1
b2x

)
· 1t +2T +

(
x+ t

x

)
· t+

(
bx+ 1

bx +β
)
·α

)k
·(b−b−1)−1,

where α = a + a−1 and β = b + b−1. The denominator D inside the parentheses
in E(x) can be rewritten as

D = x ·
(
b2

t
+ t+ αb

)
+

1

x
·
(

1

b2t
+ t+

α

b

)
+ 2T + αβ,

and a standard substitution, making the second term in D equal to 1/ρ, trans-
forms D into

D1 = ρ−1 + ρ · (T +A)(T +B) + 2T + αβ,

where A = ab+ (ab)−1, B = ab−1 + a−1b. Now let δ = ρ ·
√

(T +A)(T +B)
and we get

(3.1) Jk =
∞∫
0

(b− b−1)2k((
δ + 1

δ

)√
(T +A)(T +B) + 2T + αβ

)k · (b− b−1)−1 dδδ ,
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which is our final expression for Jk. This is the transformation of Jk mentioned
at the end of Section 2. The expression inside the parentheses in the denominator
in (3.1) is now easily seen to have a CM derivative, since by direct calculation

− d2

dT 2

√
(T +A)(T +B) =

1

4
· (A−B)2

(T +A)3/2 · (T +B)3(2

is CM with respect to T . Composing that expression with the negative power func-
tion proves that Jk is CM with respect to T [4, Criterion 2, p. 441]. The proof of
Theorem 3.1 is complete. �

4. SUMS OF INDEPENDENT GAMMA VARIABLES

In this section we replace the gamma variable Y in Theorem 3.1 by a finite sum
of independent gamma variables with sum of shape parameters at most k, as was
suggested in [1, Section 5]. We prove that the conclusions of Theorem 3.1 remain
true (Theorem 4.1) and apply the result to subclasses of GGC in the next section.

THEOREM 4.1. Let Y = Y1 + · · ·+ Yn be a finite sum of independent gamma
variables, Yi ∼ Gamma(ki, ri), 1 ¬ i ¬ n, such that k1 + · · · + kn ¬ k, and let
X ∼ HMk be an independent rv. Then Y ·X ∼ GGC and Y/X ∼ GGC.

Proof. As noted above, it is no loss of generality to assume k1 + · · ·+ kn = k.
Let Y and X be as in the theorem. Then as above

φ(s) = E[e−sY/X ] =
∞∫
0

E[e−sY/x] · f(x) dx =
∞∫
0

n∏
i=1

(
rix

rix+ s

)ki
· f(x) dx

and

φ(st)(φ(s/t) =
∞∫
0

∞∫
0

2u

v

n∏
i=1

(
r2i u

2

(riuv + st)(riu/v + s/t)

)ki
· f(uv)f(u/v) du dv.

We now proceed as in the proof of Theorem 3.1 and find that it is sufficient to prove
that the following analogue of (2.2),

Jk =
b∫

1/b

n∏
i=1

(
(b− v)(v − 1/b)

(v + tai)(v + t/ai)

)ki
· tk

(b− v)(v − 1/b)
dv,

is CM with respect to T = t+ t−1, where we define ai = riu/s, 1 ¬ i ¬ n. Then
the same substitution v = (bx+ b−1)(1 + x)−1 as above gives

Jk =
∞∫
0

n∏
i=1

(b− b−1)2ki(
x ·
(
b2

t + t+αib
)

+ 1
x ·
(

1
b2t

+ t+ αi
b

)
+ 2T +αiβ

)ki · 1

b− b−1
dx

x
.
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An immediate change of the x-variable does not work here, since each factor would
require its special substitution. We turn to the Laplace transform instead. Denote
by Si(x) the expression inside the parentheses of the ith factor in the denominator
of the integrand. Then the integrand is CM with respect to Si(x), 1 ¬ i ¬ n,
and by Bernstein’s theorem there is a nonnegative measure ν(dλ) such that Jk =∫∞
0

dx
x

∫∞
0
ν(dλ) e−E(x), whereE(x) =

∑n
i=1 λiSi(x). Next we change the order

of integration in Jk, denote the inner integral by Ik and set out to prove that Ik is
CM with respect to T , for all choices of λi, 1 ¬ i ¬ n. Assume that

∑n
i=1 λi = p,

define α by
∑n

i=1 λiαi = p · α and choose a > 1 such that α = a+ a−1. Then

1

p
· E(x) = x ·

(
b2

t
+ t+ αb

)
+

1

x
·
(

1

b2t
+ t+

α

b

)
+ 2T + αβ

and performing the same substitutions as in the proof of Theorem 3.1 gives

Ik =
∞∫
0

e−p·((δ+
1
δ
)
√

(T+A)(T+B)+2T+αβ)dδ

δ
,

with α, p and a defined above and A = ab + (ab)−1, B = ab−1 + a−1b. This
shows that Jk is CM with respect to T , since the integrand is the composition of a
negative exponential function and a nonnegative function with a CM derivative [4,
Criterion 2, p. 441]. This completes the proof of Theorem 4.1. �

5. SOME CONSEQUENCES

Let A and B be classes of distributions and denote by A× B the class of products
Y · X of independent rvs Y ∼ A and X ∼ B, and similarly for quotients. Then
Gamma(k) × HMk ⊂ GGC and Gamma(k)/HMk ⊂ GGC, for k > 0, by
Theorem 3.1. IfZ ∼ GGC is independent of Y andX , then (Z ·Y )·X = Z ·(Y ·X)
∼ GGC and (Z · Y )/X = Z · (Y/X) ∼ GGC, since GGC is closed with respect
to independent products [3, Theorem 1], and we have the following result.

THEOREM 5.1. For any k > 0, (GGC × Gamma(k)) × HMk ⊂ GGC and
(GGC×Gamma(k))/HMk ⊂ GGC.

IfHk is the largest class of probability distributions such that Gamma(k)×Hk
⊂ GGC, then HMk×GGC ⊂ Hk. Similarly, if Gk is the largest class of probability
distributions such that Gk×HMk ⊂ GGC, then GGC×Gamma(k) ⊂ Gk. We can
use Theorem 4.1 to improve on this. Let GGC(k) be the class of rvs X ∼ GGC
with left extremity zero and total U -measure at most k.

THEOREM 5.2. For any k > 0, GGC(k) ⊂ Gk.

Proof. Every X ∼ GGC(k) is the weak limit of finite sums of independent
gamma variables with U -measure at most k and the conclusion follows from The-
orem 4.1. �
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6. FINAL COMMENTS

The extension of the integer case of [1, Theorem 1] to hold for all k ­ 1, and
even for all k > 0, was suggested to me by Professor Bondesson. Our proof shows
that, in contrast to what is believed in [1], the function Jk in (3.1) can be explicitly
calculated also in the noninteger case. The truth of Theorem 4.1 and the possibility
that GGC(k) is contained in Gk are mentioned in [1, Section 5].

Acknowledgments. The author thanks Professor Lennart Bondesson for introduc-
ing him to the problems studied here and for valuable comments and discussions.
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