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Abstract. We investigate various inequalities for the one-dimensional
Cauchy measure. We also consider analogous properties for one-
dimensional sections of multidimensional isotropic Cauchy measures. The
paper is a continuation of our previous investigations [2], where we found,
among intervals with fixed measure, the ones with the extremal mea-
sure of the boundary. Here for the above mentioned measures we inves-
tigate inequalities that are analogous to those proved for Gaussian mea-
sures by Borell [1] and by Landau and Shepp [5]. We also consider a
1-symmetrization for Cauchy measures, analogous to the one defined for
Gaussian measures by Ehrhard [3], and we prove the concavity of this oper-
ation.
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1. INTRODUCTION

Gaussian measures occupy a central place in various areas of mathematics. They
satisfy important inequalities due to Prekopa–Leindler [8], Borell [1], Ehrhard [3]
and Landau–Shepp [5].

The aim of this paper and the previous paper [2] is to find appropriate analogues
of these inequalities for rotationally invariant, standard Cauchy measures. The first
step is to examine the one-dimensional case. Even here the situation is different
than in the Gaussian case, as half-lines are no longer minimal sets (in the sense of
the measure of the boundary). It turns out that there are three types of minimal sets,
depending on the measure (see [2]). Further, we consider one-dimensional sections
of n-dimensional Cauchy measure (we call them “Cauchy-type measures”) and
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carry out a suitable version of the Ehrhard symmetrization procedure (see [3]),
which turns out to be a very effective tool for our goals. We prove that the 1-
symmetrization is a concave operation on convex subsets of Rn, which is the first
step in the direction of n-dimensional setting.

The classical isoperimetric theorem on the plane states that among all Borel
sets with fixed Lebesgue measure the disk has the smallest perimeter. The multidi-
mensional version of the theorem states that in every finite dimension there exists
a set with the smallest measure of the boundary and this minimum is attained for
the ball. Here by “the measure of the boundary” we mean the following: if A is a
Borel set and Bh = {x ∈ Rn : ‖x‖ < h} we put Ah = A + Bh = {x ∈ Rn :

dist(x,A) < h}. Then the measure of the boundary of A is lim suph→0+
|Ah|−|A|

h ,
where |A| denotes the Lebesgue measure ofA. For brevity we call this limit (when-
ever it exists, finite or not) the perimeter of the set A.

Let us start with the definition of the (additive) perimeter for probability mea-
sures. To avoid problems with the existence, we restrict our discussion to convex
Borel sets. Let A be such a set. Put

per(A) = lim sup
h→0+

µ(Ah)− µ(A)

h
,

whenever the limit is finite.
For a different (multiplicative) kind of measuring the boundary, and the cor-

responding isoperimetric problem, see the papers [4], [6], where the so-called S-
hypothesis was solved.

Fifty years ago mathematicians generalized the isoperimetric theorem. Because
the Gaussian distribution is one of the most important probability measures, this
problem was first investigated for that measure. It turned out (see [9] and [1]) that
among all convex Borel sets in Rn with the same fixed measure, the half-space, i.e.
{x ∈ Rn : xn > a}, has the smallest Gaussian perimeter.

During investigation of these isoperimetric properties of Gaussian measures in
Rn many interesting and useful inequalities were found. For instance C. Borell
proved the following [1, Theorem 3.1]:

Let γ be the standard Gaussian measure in Rn, let A be a Borel subset of Rn
and letB be the unit ball. Let γ(A) = Φ(α), where Φ is the distribution function of
the standard one-dimensional Gaussian distribution N(0, 1). Then for all ε > 0,

γ(A+ εB)  Φ(α+ ε).

Equivalently, using Φ−1, the inverse function of Φ, one can formulate the above
inequality as follows:

Φ−1(γ(A+ εB))− Φ−1(γ(A))  ε.
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H. J. Landau and L. A. Shepp proved the following [5, Theorem 4]:

Let γ be the Gaussian measure in Rn, C a convex set, and s any number such
that γ(C)  Φ(s). If s > 0 then for every a > 1,

γ(aC)  Φ(as).

Equivalently, in terms of Φ−1, the Landau–Shepp inequality can be formulated
as follows:

Φ−1(γ(aC))  aΦ−1(γ(C)).

The most complete approach to the Gaussian isoperimetric theory was pre-
sented in the paper of A. Ehrhard [3], who constructed a family of so-called k-
symmetrizations, 1 ¬ k ¬ n, in Rn equipped with the standard n-dimensional
Gaussian distribution γn. Ehrhard established various basic properties of these
symmetrizations, among other things, their convexity. He started with the Borell
inequality for 1-dimensional Gaussian measure, applied this inequality to 1-sym-
metrization and then via a certain induction procedure with respect to k, he man-
aged to transfer the inequality to k-symmetrizations for k = 2, . . . , n. This finally
resulted in the Borell inequality for Gaussian measures in Rn.

Ehrhard’s symmetrization preserves the measure γn of a set and does not in-
crease its perimeter. Using this symmetrization Ehrhard also proved the following
deep result:

Let γ be the standard Gaussian measure in Rn, A and B two Borel convex
sets in Rn and let Φ−1 be the inverse of the distribution function of the standard
one-dimensional Gaussian measure N(0, 1). Then for all 0 ¬ λ ¬ 1,

Φ−1(γ(λA+ (1− λ)B))  λΦ−1(γ(A)) + (1− λ)Φ−1(γ(B)).

All the above-mentioned inequalities have interesting and deep consequences
for Gaussian processes (see [1], [5], [3]). In this paper we examine analogous in-
equalities for the one-dimensional Cauchy and “Cauchy-type” measures. The lat-
ter arise as one-dimensional sections of the standard rotationally invariant multi-
dimensional Cauchy distributions. Therefore, to generalize the one-dimensional
case, we have to deal with such measures.

Our main results are given in Theorems 2.2 and 3.2 (analogues of the Borell
inequality) and Theorems 2.3 and 3.3 (analogues of the Landau–Shepp inequal-
ity). In Theorems 3.4 and 3.5 we show that if we deal with the standard isotropic
(rotation invariant) Cauchy measure µn in Rn, then it is still possible to define
an analogue of Ehrhard’s 1-symmetrization for µn and that this symmetrization
preserves convexity of sets.

For a different kind of measures and related interesting results, see [7].
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2. CAUCHY MEASURES

The standard Cauchy distribution µ = µ1 on the real line R1 has density function

f(x) =
1

π(1 + x2)
, x ∈ R,

and the rotationally invariant Cauchy distribution µn in Rn has the following den-
sity:

fn(x) =
cn

(1 + |x|2)(n+1)/2
, x ∈ Rn, cn =

πn/2

Γ(n/2)
.

We will use the distribution function of the one-dimensional standard Cauchy mea-
sure

(2.1) F (t) =
t∫
−∞

1

π(1 + x2)
dx =

1

2
+

1

π
arctan t

and its inverse, F−1, given for 0 < t < 1 by F−1(t) = − cot(πt).
Let µ be the standard one-dimensional Cauchy measure. For a < b we define

g := g(a, b) by the equality

(2.2) µ(−∞, g) = µ(a, b),

and g∗ := g∗(a, b) is defined by the identity

(2.3) µ(−g∗, g∗) = µ(a, b).

We obtain

LEMMA 2.1. We have

g(a, b) = −1 + ab

b− a
,

(g∗)2(a, b) =
√

1 + g2(a, b) + g(a, b) =

√
1 + a2

√
1 + b2 − 1− ab
b− a

.

Proof. By the definition of g we have µ(−∞, g) = µ(a, b), hence formula (2.1)
implies F (g) = F (b) − F (a). But F (g) = 1

2 + 1
π arctan g and F (b) − F (a) =

1
π (arctan b− arctan a), hence

g = tan

(
arctan b− arctan a− π

2

)
= − cot(arctan b− arctan a) = −1 + ab

b− a
.

In order to prove the second formula, we observe that

2 arctan g∗(a, b) =
π

2
+ arctan g(a, b), hence

2 g∗(a, b)

1− (g∗(a, b))2
= − 1

g(a, b)
.
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Solving for g∗, we get

(g∗)2(a, b) =
√

1 + g2(a, b) + g(a, b) =

√
1 + a2

√
1 + b2 − 1− ab
b− a

. �

REMARK 2.1. Observe that g(a, b) = F−1(µ(−∞, g(a, b))) = F−1(µ(a, b)),
hence all facts concerning g(a, b) could be formulated in terms of F−1(µ(a, b)).

For the standard Cauchy measure on R1 the extremality of intervals or half-lines
was explained in [2, Theorem 2.1] as follows:

THEOREM 2.1 (Extremal intervals for Cauchy measure). • If µ(a, b) > 1/2,
then

per(−g∗, g∗) < per(a, b) < per(−∞, g).

• If µ(a, b) < 1/2, then

per(−∞, g) < per(a, b) < per(−g∗, g∗).

• If µ(a, b) = 1/2 (and then −a = 1/b > 0), then

per(−∞, 0) = per(−1/b, b) = per(−1, 1) = 1/π.

2.1. Borell-type inequality. Now we prove an analogue of the Borell inequality for
the standard Cauchy distribution in R.

THEOREM 2.2. For every a < b and every r > 0,

(2.4) g(a− r, b+ r)− g(a, b)  r/2.

If µ(a, b) < 1/2, then

(2.5) g(a− r, b+ r)− g(a, b)  r

for all r > 0 small enough. In fact, for r ¬ 2/
√

3, the last inequality holds when-
ever µ(a, b) < 1/3.

An equivalent formulation of (2.4) in terms of F−1 is

(2.6) F−1(µ(a− r, b+ r))− F−1(µ(a, b))  r/2.

Proof. Taking into account the formula (2.2) we obtain

g(a− r, b+ r)− g(a, b) = −1 + (a− r)(b+ r)

(b+ r)− (a− r)
+

1 + ab

b− a

= r
(b+ r)b+ (a− r)a+ 2

((b+ r)− (a− r))(b− a)
,
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hence it is enough to prove that

(b+ r)b+ (a− r)a+ 2

((b+ r)− (a− r))(b− a)
 (b+ r)b+ (a− r)a

((b+ r)− (a− r))(b− a)
 1

2
.

The last inequality is true because

2(b+ r)b+ 2(a− r)a− ((b+ r)− (a− r))(b− a)

= 2(b+ r)b− (b+ r)(b− a) + 2(a− r)a+ (a− r)(b− a)

= (b+ r)[2b− b+ a] + (a− r)[2a+ b− a] = (b+ a)2  0.

To justify (2.5) we have to solve the inequality

(b+ r)b+ (a− r)a+ 2

((b+ r)− (a− r))(b− a)
 1,

equivalent to

2
1 + ab

b− a
 r.

This, by Lemma 2.1, is equivalent to

g(a, b) ¬ − r/2,

which justifies (2.5), because g(a, b) < 0 for µ(a, b) < 1/2.
Further if r ¬ 2/

√
3, then g(a, b) ¬ − 1/

√
3 implies g(a, b) ¬ − r/2, which

yields (2.5). The inequality g(a, b) ¬ − 1/
√

3 is in turn equivalent to

µ(a, b) ¬
−1/
√
3∫

−∞

dt

π(1 + t2)
=

1

2
+

1

π

(
arctan

−1√
3

)
=

1

3
. �

Comparison between Gaussian and Cauchy cases. By the Borell inequality, for
the standard n-dimensional Gaussian measure γ, every Borel setA and every r  0
we have

Φ−1(γ(A+ r))− Φ−1(γ(A))  r.

By contrast, for the one-dimensional Cauchy measure µ, every intervalA and every
r  0,

F−1(µ(A+ r))− F−1(µ(A))  r/2.

Comment. For Gaussian measures it is crucial that we have the same value r on
both sides of the inequality for all Borel sets. Ehrhard [3] makes this property the
cornerstone of his version of “Gaussian symmetrization”. For the one-dimensional
Cauchy measure and all intervals we only have “r/2” on the right.
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2.2. Landau–Shepp-type inequality

THEOREM 2.3. For every a < b and every r > 0 the following holds:

g(ra, rb)  rg(a, b) if and only if r  1.

Equivalently, for r  1,

F−1(µ(ra, rb))  rF−1(µ(a, b)).

Proof. By straightforward computation

g(ra, rb)− rg(a, b) = −1 + r2ab

r(b− a)
+ r

1 + ab

b− a
=

r2 − 1

r(b− a)
. �

2.3. Concavity of g(a, b)

THEOREM 2.4. The function g(a, b) = F−1(µ(a, b)) is a concave function of
(a, b) for a < b.

Proof. Let us start with the explicit formulas for the second derivatives:

∂2g

∂a2
= −2

1 + b2

(b− a)3
,

∂2g

∂b2
= −2

1 + a2

(b− a)3
,

∂2g

∂a∂b
= 2

1 + ab

(b− a)3
.

Computing the determinant of the Hessian matrix of g(a, b), we obtain

det Hess(g)(a, b) = (b− a)−6 [(1 + a2)(1 + b2)− (1 + ab)2] = (b− a)−4  0,

which, together with ∂2g
∂a2

< 0, shows that the Hessian matrix is negative definite. �

3. ONE-DIMENSIONAL SECTIONS OF MULTIDIMENSIONAL CAUCHY MEASURES

3.1. Concavity of g(a, b). For a more general probability density function f we
again use the earlier introduced (in a less general context) notation g(a, b) for a
function of intervals (a, b), −∞ ¬ a < b <∞, by

(3.1)
b∫
a

f(t) dt =
g(a,b)∫
−∞

f(t) dt.

Assume that f is differentiable and denote for simplicity

(3.2) χ(x) = (1/f(x))′.

In the lemma below we formulate a basic condition on the probability densities we
investigate, which is equivalent to concavity of our function g(a, b) with respect to
variables (a, b).
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LEMMA 3.1. Assume that the probability density f is differentiable, strictly
decreasing on (0,∞) and f(−x) = f(x). Also assume that 1/f is strictly convex
and denote by χ(x) = (1/f(x))′ its derivative. Then the function g(a, b) is strictly
concave (as a function of a, b, for a < b) if and only if

(3.3)
χ(a)χ(b)

χ(a)− χ(b)
 χ(g(a, b)).

Proof. Differentiating the defining equality (3.1), we obtain

∂g

∂a
=
− f(a)

f(g(a, b))
,

∂g

∂b
=

f(b)

f(g(a, b))
,

f(g(a, b))
∂2g

∂a2
= − f ′(a)− f ′(g(a, b))

f2(a)

f2(g(a, b))
,

f(g(a, b))
∂2g

∂b2
= f ′(b)− f ′(g(a, b))

f2(b)

f2(g(a, b))
,

f(g(a, b))
∂2g

∂a∂b
= f ′(g(a, b))

f(a) f(b)

f2(g(a, b))
.

We check that the Hessian matrix of the function g is negative definite.
For all a < b, by (3.1), we obtain g(a, b) < b. The strict convexity of 1/f

implies that −f ′(x)/f2(x) is strictly increasing, so that

− f
′(b)

f2(b)
> − f ′(g(a, b))

f2(g(a, b))
, hence

∂2g

∂b2
< 0.

Moreover,

f2(g(a, b)) det Hess(g)(a, b)

=
f ′(g(a, b))

f2(g(a, b))
[f ′(a) f2(b)− f ′(b) f2(a)]− f ′(a) f ′(b),

and the non-negativity of the above expression is equivalent to

f ′(g(a, b))

f2(g(a, b))

[
f ′(a)

f2(a)
− f ′(b)

f2(b)

]
 f ′(a)

f2(a)

f ′(b)

f2(b)
.

Taking into account the definition of χ, we rewrite the above inequality as follows:

χ(g(a, b))(χ(a)− χ(b))  χ(a)χ(b).

By the requirement that 1/f(x) is strictly convex, we see that χ(x) =
−f ′(x)/f2(x) is strictly increasing, so the expression in brackets on the left-hand
side above is negative. Dividing by this expression, we obtain (3.3), which con-
cludes the proof. �
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REMARK 3.1. Observe that if a < 0 < b and g(a, b) < 0, then the left-hand
side of (3.3) is positive, while the right-hand side is negative and the inequality
holds automatically.

In all the remaining cases we have χ(g(a, b))χ(a)χ(b) ¬ 0 and

χ(a)− χ(b)

χ(g(a, b))χ(a)χ(b)
 0.

Multiplying both sides of (3.3) by this expression, we obtain

1

χ(b)
− 1

χ(a)
¬ 1

χ(g(a, b))
,

except when a < 0 < b and simultaneously g(a, b) < 0.

The next theorem is crucial for all the presentation that follows. It consists of an
indirect verification that the condition (3.3) holds for the one-dimensional sections
of multidimensional isotropic Cauchy measures. The main difficulty to overcome
is the lack of explicit formulas, which are available in the case of one-dimensional
Cauchy measure.

We proceed in two steps. First, we reduce the problem, via an application of
the Lagrange metod, to the case of symmetric intervals (−p, p), p  0. Next, we
compare g(−p, p) with an auxiliary function x(p), introduced by the condition
χ(x(p)) = χ(p)/2. Again, a direct comparison seems to be out of reach, and we
apply compositions with a distribution function H .

THEOREM 3.1. Suppose that να,n, α  0, n = 2, 3, . . . , is the probability
measure with density

(3.4)

fα,n(x) =
cα,n

(1 + α2 + x2)(n+1)/2
,

cα,n = (1 + α2)n/2Γ

(
n+ 1

2

)
/

(√
π Γ

(
n

2

))
.

Then the function g(a, b) := gα(a, b), defined by (3.1), is a concave function of
two variables a, b for a < b.

Proof. Denote χ(x) = d
dx

1
fα,n(x)

. We will check that (3.3) holds. We rewrite it
in the equivalent form

(3.5)
(

1

χ(b)
− 1

χ(a)

)−1
 χ(g(a, b)).

The assumptions of the previous lemma are satisfied and

χ(x) =
1 + n

cα,n
x(1 + α2 + x2)(n−1)/2.
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Observe that if we multiply both sides of (3.1) by a positive constant, then g(a, b)
remains unchanged. Moreover, the inequality (3.5) is homogeneous, that is, invari-
ant under multiplication of χ by a positive constant. Therefore, we put cα,n = 1+n
in the remaining part of the proof. We note that limx→∞ χ(x) =∞.

First, let us observe that lima→−∞ g(a, b)=g(−∞, b)=b and lima→−∞ χ(a)
= −∞, so we obtain equality in (3.5) for a = −∞. Analogously, limb→∞ g(a, b)
= g(a,∞) = − a. Since χ(−a) = −χ(a), we also get equality for b = ∞. For
a = b we have g(a, a) = −∞, hence (3.5) obviously holds.

To prove (3.5) in full generality we use the Lagrange method to find extremal
values of the function F (a, b) = 1

χ(b) −
1

χ(a) under the condition g(a, b) = t, with
t ∈ (−∞,∞) fixed:

F (a, b) + λg(a, b) =
1

χ(b)
− 1

χ(a)
+ λg(a, b).

We obtain

∂F (a, b)

∂a
+ λ

∂g(a, b)

∂a
= 0,

∂F (a, b)

∂b
+ λ

∂g(a, b)

∂b
= 0.

By (3.1) we infer that

∂g(a, b)

∂a
= − fα,n(a)

fα,n(g(a, b))
and

∂g(a, b)

∂b
=

fα,n(b)

fα,n(g(a, b))
,

hence (
1

χ(a)

)′
fα,n(a)

=
−λ

fα,n(g(a, b))
and

(
1

χ(b)

)′
fα,n(b)

=
−λ

fα,n(g(a, b))
,

which implies
(1/χ(a))′

fα,n(a)
=

(1/χ(b))′

fα,n(b)
= − λ

fα,n(g(a, b))
.

Now we compute the explicit form of the function (1/χ(x))′

fα,n(x)
:

(1/χ(x))′

fα,n(x)
=

(
1

x(1 + α2 + x2)(n−1)/2

)′
· (1 + α2 + x2)(n+1)/2

n+ 1

= −1 + α2 + nx2

(n+ 1)x2
.

Thus, this function is equal to−n/(n+1)−(1+α2)/(x2(n+1)), and is obviously
even and injective on (0,∞). Hence, the extremal values of F can only be attained
at a = ±b. Thus, it is sufficient to check the inequality for a = −b. By Remark 3.1
we may and will assume that g(a, b) > 0.
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Denote b = −a = p and h(p) = g(−p, p). Since χ(−p) = −χ(p), in order to
prove (3.5) it is enough to show that for p > 0,

(3.6) 2χ(h(p)) ¬ χ(p).

Observe that if h(p) < 0, then χ(h(p)) < 0, while χ(p)  0, so that (3.6) is
satisfied, hence we will assume further that h(p)  0. We also note that for n > 2
no explicit formula for g (or h) is available and no direct verification of (3.6) seems
to be possible. To overcome this difficulty, we introduce an auxiliary function x(p)
by the formula

(3.7) χ(x(p)) = 1
2χ(p).

Since χ is increasing on (0,∞) and χ(x)  0 for x  0, we obtain

(3.8) 0 ¬ x(p) ¬ p.

Set H(z) =
∫ z
−∞ fα,n(t) dt. By the definition of h(p) we obtain

(3.9) H(h(p)) =
h(p)∫
−∞

fα,n(t) dt =
p∫
−p
fα,n(t) dt = 2

p∫
0

fα,n(t) dt.

In order to prove that h(p) ¬ x(p), it is enough to show that

H(h(p))−H(x(p)) =
h(p)∫
−∞

fα,n(t) dt−
x(p)∫
−∞

fα,n(t) dt ¬ 0.

If we prove that the derivative of the left-hand side is non-negative, then this will
justify the above statement. Indeed, the value of the above difference at p = 0 is
(−1/2); at∞ the value is 0, as both h(p) and x(p) tend to infinity p→∞.

From the definition of χ(p) and (3.9) we obtain

x(p)

p
=

1

2

(
1 + α2 + p2

1 + α2 + x2(p)

)(n−1)/2
.

Let us rewrite this in the form

x(p)(1 + a2 + x2(p))(n−1)/2 = 1
2(1 + a2 + p2))(n−1)/2.

Differentiating the left-hand side, we obtain

(3.10) x′(p)(1+a2+x2(p))(n−1)/2+(n−1)x2(p)x′(p)(1+a2+x2(p))(n−3)/2

= x′(p)(1+a2+x2(p))(n−3)/2(1+a2+nx2(p)),
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while the derivative of the right-hand side is

(3.11) 1
2(1 + a2 + x2(p))(n−1)/2 + 1

2(n− 1)p2(1 + a2 + x2(p))(n−3)/2

= 1
2(1 + a2 + p2))(n−3)/2(1 + a2 + np2).

Comparing (3.10) and (3.11), we get

x′(p) =
1

2

(
1 + α2 + p2

1 + α2 + x2(p)

)(n−3)/2 1 + α2 + np2

1 + α2 + nx2(p)
.

By the definition of h(p),

d

dp
H(h(p)) =

2

(1 + α2 + p2)(n+1)/2
.

Taking into account the formulas for x′(p) and for x(p), we obtain

d

dp
H(x(p)) =

x′(p)

(1 + α2 + x2(p))(n+1)/2

=
1

2

(1 + α2 + p2)(n−3)/2

(1 + α2 + x2(p))n−1
1 + α2 + np2

1 + α2 + nx2(p)

= 2
(1 + α2 + p2)(n−3)/2

(1 + α2 + p2)n−1
x2(p)

p2
1 + α2 + np2

1 + α2 + nx2(p)

= 2
x2(p)

p2(1 + α2 + p2)(n+1)/2

1 + α2 + np2

1 + α2 + nx2(p)
.

We thus obtain

d

dp
[H(h(p))−H(x(p))] = 2

p2(1 + α2 + nx2(p))− x2(p)(1 + α2 + nx2(p))

p2(1 + α2 + p2)(n+1)/2(1 + α2 + np2)

=
(1 + α2)(p2 − x2(p))

p2(1 + α2 + p2)(n+1)/2(1 + α2 + np2)
 0.

In view of (3.8), that means 0 ¬ h(p) ¬ x(p) ¬ p. The proof is now complete. �

3.2. Borell-type inequality for measures with densities fα,n. In this section we
prove the main result of the paper. It is the inequality (3.14) and the authors be-
lieve that it is the appropriate analogue of the Borell inequality for the measures
να,n. Observe that in the Gaussian case, on the right-hand side of the analogous
inequality we have the value r, while in our case we only have r/21/n and the
inequality is strict.
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THEOREM 3.2. For a < b and every r > 0,

(3.12) gα(a− r, b+ r)− gα(a, b)  r

21/n
,

where gα := gα,n is defined by the density fα,n. If να(a, b) < 1/2, then

(3.13) gα(a− r, b+ r)− gα(a, b)  r

for all r > 0 small enough.

In terms of F−1 we can write (3.12) as

(3.14) F−1(να,n(a− r, b+ r))− F−1(να,n(a, b))  r

21/n
.

The proof of the theorem essentially goes along the lines indicated in the proof
of Theorem 3.1. We first use Lagrange’s method to reduce the problem to finding
extremal values of the appropriate function. Next, we consider several cases; here
again, we rely on the indirect method, introducing various auxiliary functions.

Proof of Theorem 3.2. We first prove the differential form of the inequalities:

−∂gα
∂a

+
∂gα
∂b
 1

21/n
or, if να(a, b) < 1/2, then −∂gα

∂a
+
∂gα
∂b
 1.

By the formulas for the partial derivatives of gα we obtain the following form of
these inequalities:

fα,n(a) + fα,n(b)  1

21/n
fα,n(gα(a, b)) for all a < b,(3.15)

fα,n(a) + fα,n(b)  fα,n(gα(a, b)) if να(a, b) < 1/2.

Let G(a, b) = fα,n(a) + fα,n(b). We seek extrema of G under the condition
gα(a, b) = t, with t ∈ (−∞,∞) fixed; in the second inequality we assume that
gα(a, b) = t < 0. Using the Lagrange method, we obtain

∂G

∂a
+ λ

∂gα
∂a

= 0,
∂G

∂b
+ λ

∂gα
∂b

= 0 or, equivalently,

f ′(a)− λ f(a)

f(gα(a, b))
= 0, f ′(b) + λ

f(b)

f(gα(a, b))
= 0.

We thus obtain
f ′(a)

f(a)
=

λ

f(gα(a, b))
= −f

′(b)

f(b)
.

Since f ′(x)
f(x) = −(n+1)x

1+α2+x2
, we get

a

1 + α2 + a2
=

−b
1 + α2 + b2

, equivalently, (a+ b)(1 + α2 + ab) = 0.
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Now, we prove the first part of the theorem.

CASE 1: −a = b = p > 0, h(p) = gα(−p, p). Our first inequality reduces to

(3.16) h′(p) = 2

(
1 + α2 + h2(p)

1 + α2 + p2

)(n+1)/2

 1

21/n
,

or equivalently

1 + α2 + h2(p)

1 + α2 + p2
 1

22/n
.

Define p1 := p1(α) by

1 + α2

1 + α2 + p21
=

1

22/n
,

or more explicitly p21 = (1 + α2)(22/n − 1). Note that for 0 < p < p1 we obtain

2

(
1 + α2 + h2(p)

1 + α2 + p2

)(n+1)/2

> 2

(
1 + α2

1 + α2 + p21

)(n+1)/2

=
1

21/n
.

We thus assume that p  p1. Define an auxiliary function z := z(p)  0 such that

2

(
1 + α2 + z2(p)

1 + α2 + p2

)(n+1)/2

=
1

21/n
.

It is enough to show that z(p) ¬ h(p). We obtain

h′(p) = 2

(
1 + α2 + h2(p)

1 + α2 + p2

)(n+1)/2

,

hence
h′(p)

(1 + α2 + h2(p))(n+1)/2
=

2

(1 + α2 + p2)(n+1)/2
.

On the other hand, z′(p) = p/(22/nz(p)) and, by the definition of z(p), we obtain

z′(p)

(1 + α2 + z2(p))(n+1)/2
=

p

z(p)

21−1/n

(1 + α2 + p2)(n+1)/2
.
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Therefore,

d

dp

[h(p)∫
−∞

dt

(1 + α2 + t2)(n+1)/2
−
z(p)∫
−∞

dt

(1 + α2 + t2)(n+1)/2

]
=

h′(p)

(1 + α2 + h2(p))(n+1)/2
− z′(p)

(1 + α2 + z2(p))(n+1)/2

=
2

(1 + α2 + p2)(n+1)/2
− p

z(p)

21−1/n

(1 + α2 + p2)(n+1)/2

=
2

(1 + α2 + p2)(n+1)/2

(
1− 1

21/n
p

z(p)

)
=

2

(1 + α2 + p2)(n+1)/2

22/nz2(p)− p2

21/nz(p)(21/nz(p) + p)
< 0,

since 22/nz2(p) − p2 = −(1 + α2)(22/n − 1) < 0. Taking into account that the
value at∞ of the function being differentiated is 0, that is,

∞∫
−∞

dt

(1 + α2 + t2)(n+1)/2
−
∞∫
−∞

dt

(1 + α2 + t2)(n+1)/2
= 0,

we obtain h(p)  z(p)  0 for p  p1. This ends the proof of Case 1 and shows
that

(3.17) h′(p)  1

21/n
.

We note that the above observation also yields

h(p1)  0, hence να(−p1, p1)  1/2.

CASE 2: ab = −(1 + α2). Put a = −(1 + α2)/b, b > 0. Then the left-hand
side of (3.15) takes the form

fα,n(−(1 + α2)/b) + fα,n(b),

while the right-hand side is f(gα,n((1+α2)/b, b)). We multiply both sides of (3.15)
by the constant (1 + α2)(n+1)/2 and put p = b/

√
1 + α2, h(p) = gα,n(−1/p, p).

Taking into account the scaling property of G, we obtain the following form of the
inequality:

(3.18) (1 + pn+1)

(
1 + h2(p)

1 + p2

)(n+1)/2

 1

21/n
.

Define

φ(p) =
1 + pn+1

(1 + p2)(n+1)/2
.
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Then

φ′(p) =
p(n+ 1)

(1 + p2)(n+3)/2
(pn−1 − 1).

Therefore, φ is decreasing on (0, 1), increasing on (1,∞), attains its minimum at
p = 1 and φ(1) = 2/2(n+1)/2 ¬ 1/21/n for n = 2, 3, . . . . Observe that the left-
hand side of (3.18) is invariant with respect to the mapping p 7→ 1/p. Therefore, we
consider only p  1. For such p we define yet another auxiliary function y(p)  0
by the identity

(1 + pn+1)

(
1 + y2(p)

1 + p2

)(n+1)/2

=
1

21/n
.

Differentiating, we obtain

y′(p) =
p

y(p)

1 + y2(p)

1 + p2
(1− pn−1),

hence y(p) is decreasing on (1,∞), while h(p) is increasing, since

h′(p)

(1 + h2(p))n+12
=

1 + pn+1

(1 + p2)(n+1)/2
.

Moreover, for p = 1 we deduce from Case 1 that y(1) = z(1), so from the mono-
tonicity of y(p) and h(p) we obtain

y(p) ¬ y(1) = z(1) ¬ h(1) ¬ h(p),

which implies that

(1 + pn+1)

(
1 + h2(p)

1 + p2

)(n+1)/2

 (1 + pn+1)

(
1 + y2(p)

1 + p2

)(n+1)/2

=
1

21/n
.

This ends the proof of Case 2 for the differential form of inequality (3.12).
In order to prove (3.12) we use the concavity of the function g. Denote

ψa,b(r) = g(a− r, b+ r).

By Theorem 2.4, the function ψa,b(r) is concave for r > 0. The concavity implies

ψa,b(r)− ψa,b(0)

r
 ψ′a,b(r) = ψ′a−r,b+r(0).

However, by the expressions for the derivatives of g and (3.15), we obtain

ψ′a−r,b+r(0) =
fα,n(a− r)

g(a− r, b+ r)
+

fα,n(b+ r)

g(a− r, b+ r)
 1

21/n
,

which finally gives (3.12) and ends the proof of the first part of the theorem.
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In order to prove (3.13), observe that from [2, Lemma 5.1] we know that if
ab = −(1 + α2), then να(a, b) > 1/2, so gα(a, b) = t > 0 for such pairs (a, b),
thus we exclude that case from our further considerations. What remains is the case
−a = b = p > 0 and, as in Case 1, we put h(p) = gα(−p, p). We note that our
inequality reduces to

h′(p) = 2

(
1 + α2 + h2(p)

1 + α2 + p2

)(n+1)/2

 1,

or equivalently

1

(1 + α2 + h(p)2)(n+1)/2
¬ 2

(1 + α2 + p2)(n+1)/2
.

However, this means that

per(−p, p)  per(−∞, gα(−p, p))

and the fundamental Lemma 5.2 in [2] proves that the above inequality holds when-
ever να(−p, p) < 1/2, ending the proof of the second part of the theorem in the
differential form. The general version can again be obtained from the concavity
of g. �

3.3. Landau–Shepp-type inequality for measures with densities fα,n
THEOREM 3.3. For every a < b and every α  0,

(3.19) gα(ra, rb)  rgα(a, b) if and only if r  1.

Proof. We write the differential form of the above inequality. To do this, we
rewrite (3.19) in the form

gα(ra, rb)− gα(a, b)

r − 1
 gα(a, b)

and, when r → 1, we obtain

dgα(ra, rb)

dr

∣∣∣∣
r=1

 gα(a, b),

or equivalently

(3.20)
∂gα(a, b)

∂a
a+

∂gα(a, b)

∂b
b  gα(a, b).

Taking into account the formulas for partial derivatives of gα, we obtain

−fα(a)

fα(g(a, b))
a+

fα(b)

fα(g(a, b))
b  gα(a, b),
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or equivalently

(3.21) −fα(a)a+ fα(b)b  gα(a, b)fα(g(a, b)).

We will show that (3.21) holds, again using the Lagrange method. We put

F (a, b) = −fα(a)a+ fα(b)b+ λgα(a, b)

and obtain

∂F (a, b)

∂a
= −f ′α(a)a− fα(a) + λ

∂gα(a, b)

∂a
= 0,

∂F (a, b)

∂b
= f ′α(b)b+ fα(b) + λ

∂gα(a, b)

∂b
= 0.

Taking again into account the formulas for partial derivatives of gα, we obtain

−f ′α(a)a− fα(a)− λ f(a)

f(gα(a, b))
= 0,

f ′α(b)b+ fα(b) + λ
f(b)

f(gα(a, b))
= 0,

which implies
f ′α(a)

f(a)
a =

f ′α(b)

f(b)
b.

Thus, if
−(n+ 1)a2

1 + α2 + a2
=
−(n+ 1)b2

1 + α2 + b2
,

then a = ±b. We now put p = −a = b > 0 and h(p) = gα(−p, p), and consider
(3.21) for these values of a and b:

2fα(p)p  fα(h(p))h(p).

Taking into account the formula (3.16) for h′(p), we obtain an equivalent form of
the desired inequality:

h′(p)  h(p)

p
.

We will show that

(3.22)
h(p)

p
¬ 1

21/n
.

In view of (3.17), this will end the proof of the theorem.
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The scaling property implies that it is enough to prove (3.22) only for f0,n. For
this purpose, define

Λ(p) = 2
p∫
0

dt

(1 + t2)(n+1)/2
−
p/21/n∫
−∞

dt

(1 + t2)(n+1)/2
.

We obtain

Λ(0) < 0, Λ(∞) = 2
∞∫
0

dt

(1 + t2)(n+1)/2
−
∞∫
−∞

dt

(1 + t2)(n+1)/2
= 0.

Moreover,

Λ′(p) =
2

(1 + p2)(n+1)/2
− 1

21/n
1

(1 + p2/22/n)(n+1)/2

=
2

(1 + p2)(n+1)/2
− 2

(22/n + p2)(n+1)/2
 0,

hence Λ(p) ¬ 0, which means that

h(p)∫
−∞

dt

(1 + t2)(n+1)/2
= 2

p∫
0

dt

(1 + t2)(n+1)/2
¬

p/21/n∫
−∞

dt

(1 + t2)(n+1)/2
,

and this proves (3.20).
To finish the proof, observe that (3.20) holds for all a, b with a < b. We rewrite

this by putting ra in place of a and rb in place of b to obtain

∂gα(ra, rb)

∂(ra)
(ra) +

∂gα(ra, rb)

∂(rb)
(rb)  gα(ra, rb).

The above inequality, however, can in turn be written as

d

dr

[
gα(ra, rb)

r

]
 0,

which means that gα(ra, rb)/r is increasing as a function of r. The proof of the
theorem is now complete. �

3.4. Concavity of the function gy(a, b). Let y ∈ Rn−1 and consider the density

f|y|,n(t) =
c

(1 + |y|2 + t2)(n+1)/2
,

which is a one-dimensional section of the n-dimensional isotropic Cauchy distri-
bution in the direction of y. We denote this density as fα,n(t) with α = |y|. As
before, for z1 < z2, we define the function g(z1, z2) := gα(z1, z2) by the identity

z2∫
z1

dt

(1 + α2 + t2)(n+1)/2
=

gα(z1,z2)∫
−∞

dt

(1 + α2 + t2)(n+1)/2
.



148 T. Byczkowski and T. Żak

Introducing a new variable u by the formula t =
√

1 + α2 u, we obtain the follow-
ing important scaling identity for the functions gα:

(3.23) gα(z1, z2) =
√

1 + α2 g0

(
z1√

1 + α2
,

z2√
1 + α2

)
.

We prove the following:

THEOREM 3.4. The function

Rn−1 × R2 3 (y, a, b) 7→ g|y|(a, b), a < b,

is concave, as a function of n+ 1 variables, for a < b.

Proof. We begin by computing the derivatives, using the identity (3.23):

∂gα
∂z1

∣∣∣∣
(z1,z2)

=
∂g0
∂z1

∣∣∣∣
(

z1√
1+α2

,
z2√
1+α2

)

,
∂gα
∂z2

∣∣∣∣
(z1,z2)

=
∂g0
∂z2

∣∣∣∣
(

z1√
1+α2

,
z2√
1+α2

)

,

∂gα
∂α

=
α

1 + α2

[
gα − z1

∂gα
∂z1
− z2

∂gα
∂z2

]
.

Differentiating once again with respect to α, we obtain

∂2gα
∂α2

=
1− α2

(1 + α2)2

[
gα−z1

∂gα
∂z1
−z2

∂gα
∂z2

]
+

α

1 + α2

[
∂gα
∂α
−z1

∂2gα
∂z21

(−z1α)

(1 + α2)3/2

− z1
∂2gα
∂z1∂z2

−z2α
(1 + α2)3/2

− z2
∂2gα
∂z22

−z2α
(1 + α2)3/2

− z2
∂2gα
∂z1∂z2

−z1α
(1 + α2)3/2

]
.

Taking into account the formula for ∂gα∂α , we obtain

∂2gα
∂α2

=
1

α(1 + α2)

∂gα
∂α

+
α2

(1 + α2)2

[
z21
∂2gα
∂z21

+ 2z1z2
∂2gα
∂z1∂z2

+ z22
∂2gα
∂z22

]
.

The above calculations enable us to write down the Hessian matrix of gα(z1, z2),
as a function of three variables, in the following form:

∂2gα
∂z21

∂2gα
∂z1∂z2

A

∂2gα
∂z1∂z2

∂2gα
∂z22

B

A B ∂2gα
∂α2

 ,

where A = −α
1+α2

(
z1
∂2gα
∂z21

+ z2
∂2gα
∂z1∂z2

)
and B = −α

1+α2

(
z2
∂2gα
∂z22

+ z1
∂2gα
∂z1∂z2

)
.
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We compute the determinant of the above matrix by multiplying the first row
by α

1+α2 z1 and adding to the third row; analogously, we multiply the second row
by α

1+α2 z2 and add to the third one. We thus get the determinant of the matrix
∂2gα
∂z21

∂2gα
∂z1∂z2

−α
1+α2

(
z1
∂2gα
∂z21

+ z2
∂2gα
∂z1∂z2

)
∂2gα
∂z1∂z2

∂2gα
∂z22

−α
1+α2

(
z2
∂2gα
∂z22

+ z1
∂2gα
∂z1∂z2

)
0 0 1

α(1+α2)
∂gα
∂α

 .
The determinant is the product of the determinant of the upper left 2 × 2 corner
and the term 1

α(1+α2)
∂gα
∂α . Since we already know that gα(z1, z2) is concave as a

function of z1, z2, everything reduces to the proof that ∂gα∂α < 0, that is, gα(z1, z2)
is decreasing as a function of α. This, however, follows from the Landau–Shepp
inequality (Theorem 3.3): for r  1,

g0(rz1, rz2)  rg0(z1, z2).

Indeed, assume that 0 < α1 < α2. From the above property and the scaling prop-
erty (3.23) of g, we get

gα1(z1, z2) =
√

1 + α2
1 g0

(
z1√

1 + α2
1

,
z2√

1 + α2
1

)

=
√

1 + α2
1 g0

(
z1√

1 + α2
2

√
1 + α2

2

1 + α2
1

,
z2√

1 + α2
2

√
1 + α2

2

1 + α2
1

)


√

1 + α2
1

√
1 + α2

2

1 + α2
1

g0

(
z1√

1 + α2
2

,
z2√

1 + α2
2

)
=
√

1 + α2
2 g0

(
z1√

1 + α2
2

,
z2√

1 + α2
2

)
= gα2(z1, z2).

The above inequality shows that gα(a, b) is concave as a function of (α, a, b) for
α  0 and a < b. Since the norm y 7→ |y| = α is a convex function and gα(a, b)
is decreasing as a function of α, the theorem follows. �

Now, let x = (y,x) ∈ R× Rn−1. For a Borel subset D of Rn denote

D(x) = {y ∈ R : (y,x) ∈ D}

and define

S(D) = {(z,x) ∈ R× Rn−1 : g|x|(D
(x)) > z} :=

⋃
x;z

{(z,x) : g|x|(D
(x)) > z}.



150 T. Byczkowski and T. Żak

S(D) is a version of Ehrhard’s 1-symmetrization, adapted to the standard isotropic
n-dimensional Cauchy measure. Observe that the operation S is monotonic, that
is, if D and C are Borel subsets of Rn such that C ⊆ D then also S(C) ⊆ S(D).

THEOREM 3.5 (Concavity of Cauchy 1-symmetrization). The 1-symmetriza-
tion S is a concave operation on convex subsets of Rn; that is, for any convex
Borel subsets D1, D2 of Rn and every 0 < λ < 1 we have

S(λD1 + (1− λ)D2) ⊇ λS(D1) + (1− λ)S(D2).

If D1 = D2 = D is convex, then S(D) is a convex subset of Rn, hence the
operation S carries convex sets into convex sets.

Proof. Let D1, D2 be convex Borel subsets of Rn. Because yi ∈ D(xi)
i if and

only if (yi,xi) ∈ Di, for i = 1, 2, and

(λy1 + (1− λ)y2, λx1 + (1− λ)x2)

= λ(y1,x1) + (1− λ)(y2,x2) ∈ λD1 + (1− λ)D2,

we have
λy1 + (1− λ)y2 ∈ (λD1 + (1− λ)D2)

(λx1+(1−λ)x2)

and so

λD
(x1)
1 + (1− λ)D

(x2)
2 ⊆ (λD1 + (1− λ)D2)

(λx1+(1−λ)x2).

Observe that the function g|x|(z1, z2), as a function of the interval (z1, z2), is in-
creasing in the following sense: if the measure of (z1, z2) is greater than the mea-
sure of (z3, z4), then g|x|(z1, z2) > g|x|(z3, z4).

From the above inclusion, together with the concavity of g, we obtain

(3.24) g|λx1+(1−λ)x2|((λD1 + (1− λ)D2)
(λx1+(1−λ)x2))

 g|λx1+(1−λ)x2|(λD
(x1)
1 + (1− λ)D

(x2)
2 )

 λg|x1|(D
(x1)
1 ) + (1− λ)g|x2|(D

(x2)
2 ).

The definition of S implies

S(λD1 + (1− λ)D2) =
⋃
x;z

{(z,x) : g|x|((λD1 + (1− λ)D2)
(x)) > z}

=
⋃

x1,x2;z1,z2

{λ(z1,x1) + (1− λ)(z2,x2) :

g|λx1+(1−λ)x2|((λD1 + (1− λ)D2)
(λx1+(1−λ)x2)) > λz1 + (1− λ)z2}
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because obviously, if x1, x2 and z1, z2 run over Rn−1 and R, respectively, so do
x = λx1 + (1− λ)x2 and z = λz1 + (1− λ)z2. Using (3.24), we finally obtain⋃
x1,x2,z1,z2

{λ(z1,x1) + (1− λ)(z2,x2) :

g|λx1+(1−λ)x2|((λD1 + (1− λ)D2)
(λx1+(1−λ)x2)) > λz1 + (1− λ)z2}

⊇
⋃

x1,x2,z1,z2

{λ(z1,x1) + (1− λ)(z2,x2) :

λg|x1|(D
(x1)
1 ) + (1− λ)g|x2|(D

(x2)
2 ) > λz1 + (1− λ)z2}

⊇
⋃

x1,x2,z1,z2

{λ(z1,x1) + (1− λ)(z2,x2) :

λg|x1|(D
(x1)
1 ) > λz1, (1− λ)g|x2|(D

(x2)
2 ) > (1− λ)z2}

⊇ λ
⋃

x1,z1

{(z1,x1) : g|x1|(D
(x1)
1 ) > z1}

+ (1− λ)
⋃

x2,z2

{(z2,x2) : g|x2|(D
(x2)
2 ) > z2}

= λS(D1) + (1− λ)S(D2).

Thus, S is a concave operation on convex subsets of Rn. If D1 = D2 = D is
convex, then λD1 + (1 − λ)D2 ⊆ D and S(D) ⊇ S(λD1 + (1 − λ)D2) ⊇
λS(D) + (1− λ)S(D), hence S(D) is a convex subset of Rn, and this completes
the proof. �
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