PROBABILITY AND

MATHEMATICAL STATISTICS

Vol. 41, Fasc. 1 (2021), pp. 153–171 Published online 22.4.2021 doi:10.37190/0208-4147.41.1.10

ON STRONGLY ORTHOGONAL MARTINGALES IN UMD BANACH SPACES

BY

IVAN S. YAROSLAVTSEV (LEIPZIG)

Abstract. In the present paper we introduce the notion of strongly orthogonal martingales. Moreover, we show that for any UMD Banach space X and for any X-valued strongly orthogonal martingales M and N such that N is weakly differentially subordinate to M, one has, for all 1 ,

$$\mathbb{E}\|N_t\|^p \leqslant \chi^p_{p,X} \mathbb{E}\|M_t\|^p, \quad t \ge 0,$$

with the sharp constant $\chi_{p,X}$ being the norm of a decoupling-type martingale transform and lying in the range

$$\max\{\sqrt{\beta_{p,X}}, \sqrt{\hbar_{p,X}}\} \leqslant \max\{\beta_{p,X}^{\gamma,+}, \beta_{p,X}^{\gamma,-}\} \leqslant \chi_{p,X} \leqslant \min\{\beta_{p,X}, \hbar_{p,X}\},\$$

where $\beta_{p,X}$ is the UMD_p constant of X, $\hbar_{p,X}$ is the norm of the Hilbert transform on $L^p(\mathbb{R}; X)$, and $\beta_{p,X}^{\gamma,+}$ and $\beta_{p,X}^{\gamma,-}$ are the Gaussian decoupling constants.

2020 Mathematics Subject Classification: Primary 60G44, 60H05; Secondary 60B11, 32U05.

Key words and phrases: strongly orthogonal martingales, weak differential subordination, UMD, sharp estimates, decoupling constant, martingale transform, Hilbert transform, diagonally plurisubharmonic function.

THE FULL TEXT IS AVAILABLE HERE