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Abstract. The aim of this paper is to study the asymptotic behavior of ag-
gregated Weyl multifractional Ornstein–Uhlenbeck processes mixed with
Gamma random variables. This allows us to introduce a new class of pro-
cesses, Gamma-mixed Weyl multifractional Ornstein–Uhlenbeck processes
(GWmOU), and study their elementary properties such as Hausdorff dimen-
sion, local self-similarity and short-range dependence. We also prove that
these processes approach the multifractional Brownian motion.
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1. INTRODUCTION

Fractional Ornstein–Uhlenbeck (fOU) processes are one of the most well studied
and widely applied classes of stochastic processes [8]. Recently, in [10], an inter-
esting class of processes, of interest for various applications, has been introduced
employing sequences of fOU processes with random coefficients.

Let us first present a brief summary of their construction. Let BH =
{BH(t), t ∈ R} be a fractional Brownian motion (fBm) with Hurst index
H > 1/2, defined on a probability space (ΩBH ,FBH ,PBH ). Consider a sequence
of stationary fOU processes Xk, k ­ 1, with random coefficients defined by the
stochastic integral

(1.1) Xk
t =

t∫
−∞

eγk(t−s) dBH
s , t ∈ R,

with initial condition Xk
0 =

∫ 0

−∞ e
γk(t−s) dBH

s . The random coefficients
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γk, k ­ 1, are independent random variables on a probability space (Ωγ ,Fγ ,Pγ)
and for any k ­ 1, −γk ∼ Γ(1− h, λ) with 0 < h < 1−H and λ > 0.

Assume that the family {γk, k ­ 1} is independent of BH . The processes
Xk, k ­ 1, defined above are Pγ-almost surely fOU processes (see [8]). Let

(1.2) Yn(t) =
1

n

n∑
k=1

Xk(t), t ∈ R,

denote the so-called aggregated process. It has been proven that as n → ∞,
(Yn)n­1 converges weakly and in L2(ΩBH ) for fixed time, Pγ-almost surely to
a stochastic process denoted by Y λ := {Y λ(t), t ∈ R}, given by the stochastic
integral

(1.3) Y λ(t) =
t∫
−∞

(
λ

λ+ t− s

)1−h
dBH

s , t ∈ R.

The limiting process Y λ is stationary, almost self-similar and exhibits long-range
dependence (see [13] or [10]). The asymptotic behavior of Y λ with respect to λ
has also been studied, as λ varies between∞ and 0. The process Y λ ranges from
a fBm with index H to a fBm with index h+H .

When BH is a standard Brownian motion (i.e. H = 1/2), Gamma-mixed
Ornstein–Uhlenbeck processes have been studied in [13].

Our goal is to construct a new kind of processes, called Gamma-mixed Weyl
multifractional Ornstein–Uhlenbeck (GWmOU) processes, in analogy to the lim-
iting procedure that leads to the process defined in (1.3). In our construction we
replace the processes Xk, 1 ¬ k ¬ n, in the aggregated process (1.2) by Weyl
multifractional Ornstein–Uhlenbeck (WmOU) processes mixed with Gamma ran-
dom variables defined by the Wiener integral

Xk
α(t)(t) =

1

Γ(α(t))

t∫
−∞

(t− s)α(t)−1eγk(t−s) dBs, t ∈ R,

whereB = {B(s), s ∈ R} is a Brownian motion on (ΩB,FB, PB), and γk, k ­ 1,
are independent random variables on (Ωγ ,Fγ , Pγ), also independent of B, and for
any k ­ 1, −γk ∼ Γ(1 − h, λ) with 0 < h < 1 and λ > 0. Moreover, α is a
Hölder continuous function with exponent 0 < β ¬ 1. The processes Xk, k ­ 1,
are Pγ-almost surely WmOU processes (see Section 2).

We define a GWmOU, denoted Y λ
α , by

Y λ
α(t)(t) =

1

Γ(α(t))

t∫
−∞

(
λ

λ+ t− s

)1−h
(t− s)α(t)−1 dBs, t ∈ R.

It is non-stationary, locally asymptotically self-similar and exhibits short-range de-
pendence. We will also study the Hölder exponent and the box and Hausdorff di-
mension of the process Y λ

α . In addition, we will investigate the asymptotic behav-
ior of Y λ

α with respect to λ; we will prove that Y λ
α approaches the multifractional
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Brownian motion (see [17]) as λ→∞, while its integrated renormalized process

Ŷ λ
α (t) = λh−1

t∫
0

Y λ
α (s) ds, t ­ 0,

(here we suppose that the function α is constant) converges to a fractional Brown-
ian motion modulo a constant as λ→ 0.

The motivation of this work comes from two facts. On the one hand, Gamma-
mixed processes are good models for various applications; for example, the limit-
ing process Y λ defined by (1.3) is a successful model of heart rate variability and
could also be a good model of a lot of Gaussian stationary data with long-range de-
pendence (see [10], [13] for more details). Moreover, the so-called Gamma-mixed
Poisson processes (also named Pólya processes) have many practical applications,
one of them being the study of reliability of engineering systems [9]. On the other
hand, multifractional Ornstein–Uhlenbeck processes are omnipresent in physics.
For further details and references, we refer the reader to [15]. Also, for more details
about the construction and study of several classes of multifractional processes,
see e.g. [3], [2], [5], [4], [17], [19]. The above motivate mixing multifractional
Ornstein–Uhlenbeck processes (Weyl version) with Gamma random variables, in
order to introduce GWmOU processes, as a counterpart of the limiting process
Y λ, a new candidate to model several short range, variable fractal dimension and
non-stationary physical phenomena.

The paper is structured as follows. Section 2 presents a short summary of re-
sults on WmOU processes. In Section 3 we introduce GWmOU processes as lim-
its of aggregated Weyl multifractional Ornstein–Uhlenbeck processes mixed with
Gamma-distributed random variables. Finally, Section 4 contains some interesting
properties of GWmOU processes including their asymptotic behavior.

2. PRELIMINARIES

WmOU processses have been introduced as a multifractional generalization of
Weyl fractional Ornstein–Uhlenbeck processes (WfOU).

Let us begin with a brief review of WfOU processes (see [14]). First, we recall
some elementary definitions of fractional calculus (see [16], [18]). The Weyl frac-
tional derivative of order α > 0, denoted by aD

α
t , for a = −∞, can be defined by

its inverse using the Weyl fractional integral,

aD
−α
t f(t) = aI

α
t f(t) =

1

Γ(α)

t∫
a

(t− s)α−1f(s) ds, t ­ a.

For n − 1 ¬ α < n, aDα
t is defined as the ordinary derivative of order n of the

Weyl fractional integral of order n− α,

aD
α
t = (d/dt)n aD

α−n
t .
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WfOUs are stochastic processes obtained as solutions of the fractional Langevin
equation

(aDt + w)αX(t) = W (t), α > 0, w > 0,

whereW (t) is a Gaussian white noise. They are defined explicitly by the stochastic
integral

Xα(t) =
1

Γ(α)

t∫
−∞

(t− s)α−1e−w(t−s) dBs, t ∈ R,

where B = {B(s), s ∈ R} is the standard Brownian motion and α > 1/2 to
ensure that Xα(t) has finite variance.

Similarly to the generalization of fractional Brownian motion to multifractional
Brownian motion (see [17]), an extension of WfOU processes is obtained by re-
placing the parameter α by a Hölder continuous function with exponent 0 < β ¬ 1,
i.e. there exists a constant K such that

|α(t)− α(s)| ¬ K|t− s|β ∀s, t,

and α(t) > 1/2 for all t.
Let us recall WmOU processes and their properties needed in what follows. For

more details we refer the reader to [15].
A WmOU process is a Gaussian process defined by the Wiener integral

Xα(t)(t) =
1

Γ(α(t))

t∫
−∞

(t− s)α(t)−1e−w(t−s) dBs, t ∈ R.

We have

(2.1) EB[(Xα(t)(t+ s)−Xα(t)(t))
2]

=
−|s|2α(t)−1

Γ(2α(t)) cos(πα(t))
− 2|s|2w3−2α(t)Sα(t)(w|s|),

where Sϑ(x) is a continuous function given explicitly by

Sϑ(x) = −
√
π

8Γ(ϑ) cos(πϑ)

[ ∞∑
m=0

x2m

22m(m+ 1)!Γ(m+ 5/2− ϑ)

−
(
x

2

)2ϑ−1 ∞∑
m=0

x2m

22m(m+ 1)!Γ(m+ 3/2 + ϑ)

]
for every x > 0 and 1/2 < ϑ < 3/2. The relevant variance is equal to

E[Xα(t)(t)
2] =

(2w)1−2α(t)Γ(2α(t)− 1)

Γ(α(t))2
.
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On the other hand, for s < t the covariance of the WmOU is given by

E[Xα(t)(t)Xα(s)(s)]

=
e−w(t−s)(t− s)α(t)+α(s)−1

Γ(α(t))
ψ
(
α(s), α(s) + α(t); 2w(t− s)

)
,

where ψ(α, γ; z) is the confluent hypergeometric function. The variance and the
covariance functions are divergent when w → 0. However, if we set Zα(t)(t) =
Xα(t)(t) −Xα(t)(0), it has been proven in [15] that for α(t) ∈ (1/2, 3/2) and by
identifying α(t) withH(t)+1/2,whenw → 0 the process Zα(t)(t) approaches (in
the sense of finite-dimensional distributions) BH(t)(t), the multifractional Brown-
ian motion (with moving average definition) defined in [17] by

BH(t)(t) =
1

Γ(H(t) + 1/2)

×
( 0∫
−∞

[(t− s)H(t)−1/2 − (−s)H(t)−1/2] dBs +
t∫
0

(t− s)H(t)−1/2 dBs

)
.

For the basic properties of WmOU processes such as short-range dependence, local
self-similarity and Hausdorff dimension, we refer the reader to [15].

Let us now recall a sufficient criterion for weak convergence, which will be
needed in what follows. By Prokhorov’s theorem, the convergence of finite-di-
mensional distributions and tightness yield weak convergence. For processes X ,
Xn, n ­ 1, with paths in C([a, b],R), one has the following sufficient criterion
(Billingsley [6, Theorem 12.3], or [7]).

THEOREM 2.1. Suppose that the finite-dimensional distributions of the family
(Xn)n­1 converge to those of X . If, in addition, there exist constants ζ > 0, θ > 1
and cζ,θ, depending only on ζ and θ, such that for all s, t ∈ [a, b] with a,b ∈ R,
a < b,

E[|Xn(t)−Xn(s)|ζ ] ¬ cζ,θ|t− s|θ

for all n ­ 1, then the family (Xn)n­1 is tight and consequently

Xn → X weakly in C[a, b] as n→∞.

3. AGGREGATED WEYL MULTIFRACTIONAL ORNSTEIN–UHLENBECK PROCESSES
MIXED WITH GAMMA DISTRIBUTION

Let us now consider a sequence of WmOU processes mixed with Gamma distribu-
tion random variables Xk

α := {Xk
α(t)(t), t ∈ R } defined by the following Wiener

integral:

(3.1) Xk
α(t)(t) =

1

Γ(α(t))

t∫
−∞

(t− s)α(t)−1eγk(t−s) dBs, t ∈ R,
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where B = {B(s), s ∈ R} is a Brownian motion defined on a probability space
(ΩB,FB, PB) and for any k ­ 1, −γk ∼ Γ(1 − h, λ) with 0 < h < 1 and λ > 0
are independent random variables, also independent of B, defined on a probability
space (Ωγ ,Fγ , Pγ).

The processes Xk
α, k ­ 1, are Pγ-almost surely WmOU processes defined on

(ΩB,FB, PB). We define their empirical mean by

Y n
α(t)(t) =

1

n

n∑
k=1

Xk
α(t)(t)

for every t ∈ R and n ­ 1.
Throughout the paper we assume that

(3.2) 1/2 < αinf ¬ αsup < 3/2,

where αinf := inft∈R α(t) and αsup := supt∈R α(t).
We will also need the following notations:

• mα[a, b] = min{α(t) : t ∈ [a, b]} and Mα[a, b] = max{α(t) : t ∈ [a, b]} for
all real a < b. EB and Eγ denote the expectations with respect to PB and Pγ
respectively.

• C denotes a generic constant depending only on [a, b], λ and h.

• Cx,y denotes a generic constant depending on [a, b], λ, h, x and y such that
0 < x < 2mα[a, b]− 1 and 0 < y < 3/2− h−Mα[a, b].

• Cx,yη denotes a generic constant depending on [a, b], λ, h, x and y such that
0 < x < 2mα[a, b]−1, 0 < y < 3/2−h−Mα[a, b] and 0 ¬ η < mα[a, b]−1/2.

3.1. The limit of aggregated processes. If 0 < h < 3/2 − αsup, we define a zero
mean Gaussian process Y λ

α := {Y λ
α(t)(t), t ∈ R} by

(3.3) Y λ
α(t)(t) =

1

Γ(α(t))

t∫
−∞

(
λ

λ+ t− s

)1−h
(t− s)α(t)−1 dBs, t ∈ R.

It is easy to see that the Wiener integral in (3.3) is well-defined. The process Y λ
α

will be called a Gamma-mixed Weyl multifractional Ornstein–Uhlenbeck process,
abbreviated as GWmOU.

Given a compact interval [a, b] ⊂ R, the following result proves that Pγ-a.s.,
as n→∞, Y n

α(t)(t) converges to Y λ
α(t)(t) in L2(ΩB), uniformly in t ∈ [a, b].

THEOREM 3.1. Fix real numbers a, b such that a < b. If 0 < h < 3/2 −
Mα[a, b], then Pγ-a.s.,

(3.4) Y n
α(t)(t) −−−→n→∞

Y λ
α(t)(t) in L2(ΩB)
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uniformly in t ∈ [a, b]. In particular, if 0 < h < 3/2−αsup, then Pγ-a.s., for every
t ∈ R,

(3.5) Y n
α(t)(t) −−−→n→∞

Y λ
α(t)(t) in L2(ΩB).

Proof. We prove (3.4). For every x > 0, n ­ 1, set

fn(x) :=
1

n

n∑
k=1

eγkx, c(x) := Eγ [eγ1x] =

(
λ

λ+ x

)1−h
.

By the law of large numbers, we have Pγ-a.s., for every x > 0,

(3.6) fn(x) =
1

n

n∑
k=1

eγkx −−−→
n→∞

c(x),

and for every c > 0 and d < 3/2− h,

(3.7)
1

n

n∑
k=1

eγkc

(−γk)d−1/2
−−−→
n→∞

Eγ

[
eγ1c

(−γ1)d−1/2

]
=

λ1−hΓ(3/2− d− h)

Γ(1− h)(λ+ c)3/2−d−h .

Using the change of variable u = t− s, we can write

EB[(Y n
α(t)(t)− Y

λ
α(t)(t))

2]

=
1

Γ(α(t))2
EB

[( t∫
−∞

(t− s)α(t)−1
(
fn(t− s)− c(t− s)

)
dBs

)2]
=

1

Γ(α(t))2

t∫
−∞

(t− s)2α(t)−2
(
fn(t− s)− c(t− s)

)2
ds

=
1

Γ(α(t))2

∞∫
0

u2α(t)−2(fn(u)− c(u))2 du.

Hence, for every m ­ 2 and t ∈ [a, b],

(3.8) EB[(Y n
α(t)(t)− Y

λ
α(t)(t))

2]

=
1

Γ(α(t))2

[ 1∫
0

u2α(t)−2(fn(u)− c(u))2du+
m∫
1

u2α(t)−2(fn(u)− c(u))2 du

+
∞∫
m

u2α(t)−2(fn(u)− c(u))2 du
]

¬ K
[ 1∫

0

u2mα[a,b]−2(fn(u)− c(u))2du+
m∫
1

u2Mα[a,b]−2(fn(u)− c(u))2 du

+
∞∫
m

u2Mα[a,b]−2(fn(u)− c(u))2 du
]

:= K[A(n,m) +B(n,m) + C(n,m)],
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where K is the maximum of the continuous function z 7→ 1/Γ(z) on the interval
[mα[a, b],Mα[a, b]].

Combining (3.6), fn(u) ¬ 1, c(u) ¬ 1 and (3.2) with Lebesgue’s dominated
convergence theorem, we conclude that Pγ-a.s, for every m ­ 2,

(3.9) A(n,m) −−−→
n→∞

0, B(n,m) −−−→
n→∞

0.

Now we will estimate C(n,m) for all m ­ 2. We have

C(n,m) =
∞∫
m

(fn(u)− c(u))2u2Mα[a,b]−2 du

¬ 2
∞∫
m

fn(u)2u2Mα[a,b]−2 du+ 2
∞∫
m

c(u)2u2Mα[a,b]−2 du.

Moreover, by the change of variable v = (−γj − γk)u and 2
√

(−γj)(−γk) ¬
−γj − γk,

∞∫
m

fn(u)2u2Mα[a,b]−2 du =
1

n2

n∑
k,j=1

∞∫
m

eγjueγkuu2Mα[a,b]−2 du

=
1

n2

n∑
k,j=1

1

(−γj − γk)2Mα[a,b]−1

∞∫
m(−γj−γk)

v2Mα[a,b]−2e−v dv

¬ 21−2Mα[a,b]

n2

n∑
k,j=1

e−
m
2

(−γj−γk)

[(−γj)(−γk)]Mα[a,b]−1/2

∞∫
m(−γj−γk)

v2Mα[a,b]−2e−v/2 dv

¬ Γ(2Mα[a, b]− 1)

(
1

n

n∑
j=1

e−
m
2

(−γj)

(−γj)Mα[a,b]−1/2

)2

.

Combining this with (3.7) we get, Pγ-a.s.,

lim sup
n→∞

∞∫
m

fn(u)2u2Mα[a,b]−2 du

¬ Γ(2Mα[a, b]− 1)

(
λ1−hΓ(3/2−Mα[a, b]− h)

Γ(1− h)(λ+m/2)3/2−Mα[a,b]−h

)2

−−−→
m→∞

0.

On the other hand, since

∞∫
0

(
λ

λ+ u

)2−2h

u2Mα[a,b]−2 du

= λ2Mα[a,b]−1β(3− 2Mα[a, b]− 2h, 2Mα[a, b]− 1) <∞,
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we have

∞∫
m

c(u)2u2Mα[a,b]−2 du =
∞∫
m

(
λ

λ+ u

)2−2h

u2Mα[a,b]−2 du −−−→
m→∞

0.

which implies that Pγ-a.s.,

(3.10) lim sup
n→∞

C(n,m) −−−→
m→∞

0.

Therefore, by applying the convergences (3.9) and (3.10) in (3.8) we deduce that
Pγ-a.s.,

lim sup
n→∞

sup
t∈[a,b]

EB[(Y n
α(t)(t)− Y

λ
α(t)(t))

2] = 0,

which finishes the proof of (3.4).
Finally, the convergence (3.5) is a direct consequence of (3.4), (3.2) and 0 <

h < 3/2− αsup. �

The weak convergence of the sequence (Y n
α )n­1 is established in our next the-

orem.

THEOREM 3.2. Fix real a < b. Suppose that 0 < h < 3/2 −Mα[a, b] and
min{2mα[a, b]− 1, 2β} < 1. Then Pγ-a.s.,

(3.11) Y n
α −−−→n→∞

Y λ
α in C[a, b],

where C[a, b] is the space of continuous functions on [a, b].

Proof. First, since Pγ-almost surely, Y n
α and Y λ

α are zero mean Gaussian pro-
cesses whose finite-dimensional distributions are determined by their covariances,
(3.4) implies the convergence Pγ-almost surely of the finite-dimensional distribu-
tions of (Y n

α )n­1 to those of Y λ
α . Thus, in order to prove (3.11) it remains to prove

the Pγ-a.s. tightness of (Y n
α )n­1 by using Theorem 2.1.

Throughout the proof all the results are given Pγ-almost surely.
Let t, t+ τ ∈ [a, b] be such that |τ | < min(λ/2, 1). Then

(3.12) EB[(Y n
α(t+τ)(t+ τ)− Y n

α(t)(t))
2]

= EB

[(
1

n

n∑
k=1

(Xk
α(t+τ)(t+ τ)−Xk

α(t)(t))

)2]
¬ 2EB

[(
1

n

n∑
k=1

Ukt (τ)

)2]
+ 2EB

[(
1

n

n∑
k=1

V k
t (τ)

)2]
,

where

Ukt (τ) := Xk
α(t)(t+ τ)−Xk

α(t)(t), V k
t (τ) := Xk

α(t+τ)(t+ τ)−Xk
α(t)(t+ τ).
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We will first prove that for every n ­ 1,

(3.13) EB

[(
1

n

n∑
k=1

Ukt (τ)

)2]
¬ C|τ |2mα[a,b]−1.

To this end, by using Hölder’s inequality and (2.1), we can write

EB

[(
1

n

n∑
k=1

Ukt (τ)

)2]
¬ 1

n

n∑
k=1

EB[Ukt (τ)2]

=
−|τ |2α(t)−1

Γ(2α(t)) cos(πα(t))
− 2|τ |2 1

n

n∑
k=1

(−γk)3−2α(t)Sα(t)(−γk|τ |).

Since 1/2 < α(t) < 3/2 and cos(πα(t)) < 0, we get

−Sα(t)(−γk|τ |)

=

√
π

8Γ(α(t)) cos(πα(t))

∞∑
m=0

(−γk|τ |)2m

22m(m+1)!Γ(m+5/2−α(t))

−
√
π

8Γ(α(t)) cos(πα(t))

(
−γk|τ |

2

)2α(t)−1 ∞∑
m=0

(−γk|τ |)2m

22m(m+1)!Γ(m+3/2+α(t))

¬ −
√
π

8Γ(α(t)) cos(πα(t))

(
−γk|τ |

2

)2α(t)−1 ∞∑
m=0

(−γk|τ |)2m

22m(m+1)!Γ(m+3/2+α(t))

¬ C(−γk|τ |)2α(t)−1
∞∑
m=0

(−γk|τ |)2m

22m((m+1)!)2
,

where the last inequality comes from Γ(m + 3/2 + α(t)) ­ (m + 1)! and the
fact that the functions Γ(x) and cos(πx) are continuous at every x with 1/2 <
mα[a, b] ¬ x ¬Mα[a, b] < 3/2.

As a consequence,

(3.14) EB

[(
1

n

n∑
k=1

Ukt (τ)

)2]
¬ C|τ |2α(t)−1

(
1 +

1

n

n∑
k=1

(−γk)2
∞∑
m=0

(−γk|τ |)2m

22m((m+ 1)!)2

)
.

Moreover, by the law of large numbers, we obtain

(3.15) lim
n→∞

1

n

n∑
k=1

(−γk)2
∞∑
m=0

(−γk|τ |)2m

22m((m+ 1)!)2

= Eγ

[
(−γ1)2

∞∑
m=0

(−γ1|τ |)2m

22m((m+1)!)2

]
=

1

Γ(1−h)λ2

∞∑
m=0

Γ(2m+3−h)

22m((m+1)!)2

(
|τ |
λ

)2m

¬ C
∞∑
m=0

Γ(2m+3−h)

22m((m+1)!)2

(
1

2

)2m

<∞,
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where we have used the fact that the radius of convergence of the power series∑∞
m=0

Γ(2m+3−h)
22m((m+1)!)2

xm is 1. By combining (3.14) and (3.15), we obtain (3.13).
Let us now turn to the second term in (3.12). It remains to prove that for every

n ­ 1,

EB

[(
1

n

n∑
k=1

V k
t (τ)

)2]
¬ Cδ,ρ|τ |2β.(3.16)

To this end, from (3.1) we can write

(3.17) V k
t (τ) = V k

t,1(τ) + V k
t,2(τ),

where

V k
t,1(τ) =

(
1

Γ(α(t+ τ))
− 1

Γ(α(t))

) t+τ∫
−∞

(t+ τ −u)α(t+τ)−1eγk(t+τ−u) dBu,

V k
t,2(τ) =

1

Γ(α(t))

t+τ∫
−∞

(
(t+ τ −u)α(t+τ)−1− (t+ τ −u)α(t)−1

)
eγk(t+τ−u) dBu.

Then

EB

[(
1

n

n∑
k=1

V k
t (τ)

)2]
¬ 2EB

[(
1

n

n∑
k=1

V k
t,1(τ)

)2]
+ 2EB

[(
1

n

n∑
k=1

V k
t,2(τ)

)2]
.

Combining the mean value theorem and the fact that any continuous function has
a maximum on any compact interval, we get∣∣∣∣ 1

Γ(α(t+ τ))
− 1

Γ(α(t))

∣∣∣∣2Γ(2α(t+ τ)− 1) ¬ C|α(t+ τ)− α(t)|2.

Moreover, since α is β-Hölder continuous, and since 2
√

(−γj)(−γk) ¬ −γj −γk
and 1− 2α(t+ τ) < 0, we have

EB

[(
1

n

n∑
k=1

V k
t,1(τ)

)2]
=

(
1

Γ(α(t+τ))
− 1

Γ(α(t))

)2 1

n2

n∑
j,k=1

t+τ∫
−∞

(t+τ−u)2α(t+τ)−2e(γj+γk)(t+τ−u) du

=

(
1

Γ(α(t+τ))
− 1

Γ(α(t))

)2

Γ(2α(t+τ)−1)
1

n2

n∑
j,k=1

(−γj−γk)1−2α(t+τ)

¬ C|τ |2β
[

1

n

n∑
k=1

(−γk)1/2−α(t+τ)

]2

.
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Moreover,

1

n

n∑
k=1

(−γk)1/2−α(t+τ) −−−→
n→∞

λα(t+τ)−1/2

Γ(1− h)
Γ(3/2− α(t+ τ)− h) <∞.

Thus, we conclude that for every n ­ 1,

(3.18) EB

[(
1

n

n∑
k=1

V k
t,1(τ)

)2]
¬ C|τ |2β.

On the other hand, by the change of variable t+ τ − u = x, we have

EB

[(
1

n

n∑
k=1

V k
t,2(τ)

)2]
=

1

Γ(α(t))2

1

n2

×
n∑

j,k=1

t+τ∫
−∞

[(t+ τ − u)α(t+τ)−1 − (t+ τ − u)α(t)−1]2e(γj+γk)(t+τ−u) du

=
1

Γ(α(t))2

1

n2

n∑
j,k=1

∞∫
0

[xα(t+τ)−1 − xα(t)−1]2e(γj+γk)x dx

=
[α(t+ τ)− α(t)]2

Γ(α(t))2

1

n2

n∑
j,k=1

∞∫
0

[log(x)xc
x
t,τ−1]2e(γj+γk)x dx

for some cxt,τ ∈ (mα[a, b],Mα[a, b]), where the last equality comes from the mean
value theorem.

Let 0 < δ < 2mα[a, b] − 1, 0 < ρ < 3/2 −Mα[a, b] − h and define µ =
1/(2mα[a, b]− 1− δ). Since α is β-Hölder continuous, we can write

EB

[(
1

n

n∑
k=1

V k
t,2(τ)

)2]
=

[α(t+ τ)− α(t)]2

Γ(α(t))2

1

n2

n∑
j,k=1

∞∫
0

log(x)2x2cxt,τ−2e(γj+γk)x dx

=
[α(t+ τ)− α(t)]2

Γ(α(t))2

1

n2

n∑
j,k=1

( 1∫
0

log(x)2x2cxt,τ−2e(γj+γk)x dx

+
∞∫
1

log(x)2x2cxt,τ−2e(γj+γk)x dx
)

¬ C|τ |2β
( 1∫

0

x2mα[a,b]−2−δ dx+
1

n2

n∑
j,k=1

∞∫
1

x2Mα[a,b]−2+2ρe(γj+γk)x dx

)
¬ C|τ |2β

(
µ+

1

n2

n∑
j,k=1

∞∫
0

x2Mα[a,b]−2+2ρe(γj+γk)x dx

)
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¬ C|τ |2β
(
µ+

1

n2

n∑
j,k=1

Γ(2Mα[a, b]−1+2ρ)

(−γj−γk)2Mα[a,b]−1+2ρ

)
¬ C|τ |2β

(
µ+

21−2ρ−2Mα[a,b]

n2

n∑
j,k=1

Γ(2Mα[a, b]−1+2ρ)

(
√

(−γj)(−γk))2Mα[a,b]−1+2ρ

)
= C|τ |2β

×
(
µ+21−2ρ−2Mα[a,b]Γ(2Mα[a, b]−1+2ρ)

(
1

n

n∑
k=1

1

(−γk)Mα[a,b]−1/2+ρ

)2)
.

Combining this with

1

n

n∑
k=1

1

(−γk)Mα[a,b]−1/2+ρ
−−−→
n→∞

λMα[a,b]−1/2+ρ

Γ(1− h)
Γ(3/2−Mα[a, b]−h−ρ) <∞,

we deduce that for every n ­ 1,

(3.19) EB

[(
1

n

n∑
k=1

V k
t,2(τ)

)2]
¬ Cδ,ρ|τ |2β.

Thus, combining (3.18) and (3.19), we get (3.16).
Therefore, from (3.12), (3.13) and (3.16) we obtain, for every n ­ 1,

(3.20) EB[(Y n
α(t+τ)(t+ τ)− Y n

α(t)(t))
2] ¬ Cδ,ρ|τ |min{2mα[a,b]−1,2β}.

Let a < b. For s < t ∈ [a, b], we can find 2k + 2 points u1, . . . , u2k+2 ∈ [s, t]
with b − a = kmin{λ/2, 1} + c, 0 ¬ c < min{λ/2, 1} and 0 < ui+1 − ui <
min{λ/2, 1} such that [t, s] =

⋃2k+2
i=1 [ui, ui+1].

Using Minkowski’s inequality, (3.20) and Proposition 4.1 (because 0 <
min{2mα[a, b]− 1, 2β} < 1 ) we conclude that for every n ­ 1 and s, t ∈ [a, b],

EB[(Y n
α(t)(t)− Y

n
α(s)(s))

2] ¬ Cδ,ρ|t− s|min{2mα[a,b]−1,2β}.

Consequently, given r > 0 and using again the fact that Y n
α is Pγ-almost surely

Gaussian, there exists a constant Cr depending only on r such that

EB[|Y n
α(t)(t)− Y

n
α(s)(s)|

r] = Cr
(
EB[(Y n

α(t)(t)− Y
n
α(s)(s))

2]
)r/2

¬ Cr(Cδ,ρ)r/2|t− s|rmin{mα[a,b]−1/2,β}

for all n ­ 1 and s, t ∈ [a, b]. If we choose so that rmin{mα[a, b]− 1/2, β} > 1,
Theorem 2.1, implies that the family (Y n

α )n­1 is tight, as desired. �
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3.2. Properties of GWmOU processes and asymptotic behavior with respect to λ.
In this section we study several interesting properties of the GWmOU process Y λ

α ,
such as the Hölder exponent and short-range dependence. In addition, we investi-
gate the asymptotic behavior of Y λ

α when λ→∞ and when λ→ 0.
Let us first compute the variance and the covariance of Y λ

α . An easy computa-
tion shows that for all t ∈ R the variance is given by

EB[Y λ
α(t)(t)

2] =
λ2−2h

Γ(α(t))2

t∫
−∞

(λ+ t− s)2h−2(t− s)2α(t)−2 ds(3.21)

=
λ2α(t)−1

Γ(α(t))2
β(3− 2h− 2α(t), 2α(t)− 1),

where β is the beta function defined by β(x, y) =
∫ 1

0
ux−1(1 − u)y−1 du for

x, y > 0. Hence a GWmOU process is in general not stationary.
In addition, for s < t, using the change of variable z = λ/(λ + s − u), the

covariance of Y λ
α is given by

(3.22) EB[Y λ
α(t)(t)Y

λ
α(s)(s)]

=
1

Γ(α(t))Γ(α(s))

×
s∫
−∞

(
λ

λ+ t− u

)1−h( λ

λ+ s− u

)1−h
(t− u)α(t)−1(s− u)α(s)−1 du

=
λα(t)+α(s)−1

Γ(α(t))Γ(α(s))
G(α(t), α(s), h, t− s/λ),

with

G(a, b, c, d) =
1∫
0

(1 + dz)c−1

(1 + [d− 1]z)1−a (1− z)b−1z2−[a+b]−2c dz.

In order to study the local properties of GWmOU processes we will need the fol-
lowing result.

PROPOSITION 3.1. Fix a compact interval [a, b] ⊂ R.

(1) If 0 < h < 3/2−Mα[a, b], then there exists a constant Cδ,ρ such that

(3.23) EB[(Y λ
α(t+τ)(t+ τ)− Y λ

α(t)(t))
2] ¬ Cδ,ρ|τ |min{2mα[a,b]−1,2β}

for all t, t+ τ ∈ [a, b] with |τ | < min{λ/2, 1}.

(2) If 0 < h < 3/2−Mα[a, b], Mα[a, b] < 1 and α(t)− 1/2 < β for all t, then

(a) there exist constants C2 and ε < 1 such that

(3.24) EB[(Y λ
α(t+τ)(t+ τ)− Y λ

α(t)(t))
2] ­ (C2/2)|τ |2Mα[a,b]−1

for all t, t+ τ ∈ [a, b] with |τ | < ε,
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(b) as τ → 0,

(3.25) EB[(Y λ
α(t+τ)(t+ τ)− Y λ

α(t)(t))
2] = C2|τ |α(t)−1/2 +O(|τ |2α(t)−1).

Proof. The inequality (3.23) is a direct consequence of (3.20) and (3.4).
Let us now prove (3.24). For convenience, for all t, t+ τ ∈ [a, b] with |τ | < 1,

we set

Uλt (τ) = Y λ
α(t)(t+ τ)− Y λ

α(t)(t), V λ
t (τ) = Y λ

α(t+τ)(t+ τ)− Y λ
α(t)(t+ τ)

= V λ
t,1(τ) + V λ

t,2(τ),

where

V λ
t,1(τ) =

(
1

Γ(α(t+τ))
− 1

Γ(α(t))

) t+τ∫
−∞

(t+τ−u)α(t+τ)−1 λ1−h

(λ+t+τ−u)1−h dBu,

V λ
t,2(τ) =

1

Γ(α(t))

×
t+τ∫
−∞

[(t+τ−u)α(t+τ)−1−(t+τ−u)α(t)−1]
λ1−h

(λ+t+τ−u)1−h dBu.

Hence

(3.26) EB[(Y λ
α(t+τ)(t+ τ)− Y λ

α(t)(t))
2] ­ EB[Uλt (τ)2] + 2EB[Uλt (τ)V λ

t (τ)]

­ EB[Uλt (τ)2]− 2E[Uλt (τ)2]1/2E[V λ
t (τ)2]1/2.

The last inequality follows from the Cauchy–Schwarz inequality. By Lemma 4.1
below and the inequality (4.10), there exist constants C1 and C2 depending only
on [a, b], λ and h such that

(3.27) C2|τ |2α(t)−1 ¬ E[(Uλt )2] ¬ C1|τ |2α(t)−1.

On the other hand,

EB[V λ
t (τ)2] ¬ 2

(
EB[V λ

t,1(τ)2] + EB[V λ
t,2(τ)2]

)
.

A standard computation combined with the mean value theorem and the fact that
any continuous function has a maximum on any compact interval, we obtain

EB[V λ
t,1(τ)2]

=

(
1

Γ(α(t+ τ))
− 1

Γ(α(t))

)2

λ2α(t+τ)−1β
(
3− 2α(t+ τ)− 2h, 2α(t+ τ)− 1

)
¬ C|α(t+ τ)− α(t)|2 ¬ C|τ |2β.
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Moreover, by the change of variable x = t+ τ − u, we have

EB[V λ
t,2(τ)2]

=
λ2−2h

Γ(α(t))2

t+τ∫
−∞

[(t+τ−u)α(t+τ)−1−(t+τ−u)α(t)−1]2(λ+ t+τ−u)2h−2 du

=
λ2−2h

Γ(α(t))2

∞∫
0

[xα(t+τ)−1−xα(t)−1]2(λ+x)2h−2 dx

=
λ2−2h[α(t+τ)−α(t)]2

Γ(α(t))2

∞∫
0

log(x)2x2axt,τ−2 (λ+x)2h−2 du

for some axt,τ ∈ (mα[a, b],Mα[a, b]), the last equality following from the mean
value theorem. Let 0 < σ < 2mα[a, b]−1 and 0 < ς < 3/2−Mα[a, b]−h. Since α
is β-Hölder continuous, for c = 3−2h−2Mα[a, b]−2ς and d = 2Mα[a, b]−1+2ς
we have

EB[V λ
t,2(τ)2] =

λ2−2h[α(t+ τ)− α(t)]2

Γ(α(t))2

( 1∫
0

log(x)2x2cxt,τ−2(λ+ x)2h−2 dx

+
∞∫
1

log(x)2x2axt,τ−2(λ+ x)2h−2 dx
)

¬ C|τ |2β
( 1∫

0

x2mα[a,b]−2−σ dx+
∞∫
1

x2Mα[a,b]−2+2ς(λ+ x)2h−2 dx
)

¬ C|τ |2β(1/(2mα[a, b]− 1− σ) + β(c, d)) ¬ Cσ,ς |τ |2β.

We then deduce that

(3.28) EB[V λ
t (τ)2] ¬ Cσ,ς |τ |2β.

Combining (3.27), (3.28) and the Cauchy–Schwarz inequality yields

(3.29) |E[Uλt (τ)V λ
t (τ)]| ¬ E[Uλt (τ)2]1/2E[V λ

t (τ)2]1/2 ¬ Cσ,ς |τ |β+α(t)−1/2.

Thus, by plugging (3.27) and (3.29) in (3.26), we get

EB[(Y λ
α(t+τ)(t+ τ)− Y λ

α(t)(t))
2] ­ C2|τ |2α(t)−1 − Cσ,ς |τ |α(t)−1/2+β

­ |τ |2Mα[a,b]−1(C2 − Cσ,ς |τ |β−Mα[a,b]+1/2).

By assuming that α(t)− 1/2 ¬Mα[a, b]− 1/2 < β, the function

g : τ 7→ C2 − Cσ,ς |τ |β−Mα[a,b]+1/2

is continuous in τ and converges to C2 when τ → 0. So there exists ε > 0 such
that g(τ) > C = C2 for |τ | < ε, which gives the inequality (3.24).
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On the other hand, by the assumption α(t) − 1/2 ¬ Mα[a, b] − 1/2 < β and
using the equivalence (4.11), (3.28) and (3.29), we immediately obtain (3.25). �

In the following, we state interesting properties of GWmOU processes such as
continuity, Hölder exponent at t, Hausdorff dimension and local asymptotic self-
similarity. The same properties hold for WmOU processes, the proofs of which
are based on [15, Lemma 3.1], of which Proposition 3.1 is the counterpart for
GWmOU processes. Having Proposition 3.1 at hand, the proofs for GWmOU pro-
cesses proceed analogously to those in [15]. Therefore, we omit them.

3.2.1. Continuity

PROPOSITION 3.2. The process {Y λ
α(t)(t), t ∈ R} admits a continuous modifi-

cation.

In the following properties: Hölder exponent, Hausdorff dimension and local
asymptotic self-similarity, we make the additional assumptions that α(t)−1/2 < β
for all t in the domain of α and Mα[a, b] < 1.

3.2.2. Hölder exponent

PROPOSITION 3.3. Let [a, b] ⊂ R be an interval. For any 0 ¬ η < mα[a, b]−
1/2, with probability 1, there exists a constant Cδ,ρη such that

|Y λ
α(t)(t)− Y

λ
α(s)(s)| ¬ C

δ,ρ
η |t− s|η ∀t, s ∈ [a, b].

We now turn to the Hölder continuity of GWmOU processes. Let us first recall
the following definition.

DEFINITION 3.1. A real-valued function is said to have Hölder exponent β at
a point t0 if

lim
h→0

|f(t0 + h)− f(t0)|
|h|γ

= 0 for any γ < β,

lim sup
h→0

|f(t0 + h)− f(t0)|
|h|γ

=∞ for any γ > β.

PROPOSITION 3.4. With probability 1, the Hölder exponent of Y λ
α(t)(t) at a

point t0 in the domain is α(t0)− 1/2.

3.2.3. Hausdorff dimension. Let dimH A, dimB A, and dimB A denote the Haus-
dorff dimension, the lower box dimension, and the upper box dimension of a set A
in Rn, respectively. Given a compact interval [a, b] ⊂ R, Gα[a, b] = {(t, Y λ

α(t)(t)) :

t ∈ [a, b]} stands for the graph of the process Y λ
α(t)(t) restricted to [a, b]. For more

information on these notions see [11]. We now formulate our result.
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PROPOSITION 3.5. Let [a, b] be an interval in the domain of definition of α.
With probability 1, dimH Gα[a, b] = dimBGα[a, b] = dimBGα[a, b] = 5/2 −
mα[a, b].

3.2.4. Local asymptotic self-similarity. WmOU processes are locally asymptotically
self-similar, in the following sense defined in [4].

DEFINITION 3.2. Let X(t) be a Gaussian process. We say that X(t) is locally
asymptotically self-similar with parameter H at a point t0 if the limit process{

lim
h→0+

X(t0 + hu)−X(t0)

hH
, u ∈ R

}
exists and is nontrivial for every t0.

This property holds true for GWmOU processes. Before stating this result, let
us first recall that a fractional Brownian motion with Hurst index H is a centered
Gaussian process with covariance

E[BH(t)BH(s)] = 1
2 [|t|2H + |s|2H − |t− s|2H ].

PROPOSITION 3.6. For any t0 the stochastic process

{
lim
h→0+

Y λ
α(t0+hu)(t0 + hu)− Y λ

α(t0)(t0)

hα(t0)/2−1/4
, u ∈ R

}
is, modulo a constant, a fractional Brownian motion with Hurst index α(t0)/2
− 1/4.

3.2.5. Short-range dependence. We are now interested in the strength of the depen-
dence of GWmOU processes.

DEFINITION 3.3 ([12]). Let X(t) be a Gaussian process with covariance de-
noted by c(s, t) = cov(X(s), X(t)) and correlation ρ(s, t) defined by

ρ(s, t) =
c(s, t)√

c(t, t)c(s, s)
.

We say that X(t) is long-range dependent if

∞∫
0

|ρ(t, t+ τ)| dτ =∞,

and it is short-range dependent if the integral is finite.
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The following lemma provides an upper bound for the inverse of the variance
of the process Y λ

α with 0 < h < 3/2− αsup and 1/2 < α(t) for all t.

LEMMA 3.1. For all t the function t 7→ 1/EB[Y λ
α(t)(t)

2] is upper bounded.

Proof. From (3.21), we find that

1

EB[Y λ
α(t)(t)

2]
=
λ1−2α(t)[2α(t)− 1]Γ(α(t))2Γ(2− 2h)

Γ(2α(t))Γ(3− 2h− 2α(t))
.

The functions z 7→ λ1−2z , z 7→ 2z − 1, z 7→ Γ(z)2, z 7→ Γ(2z) and z 7→
Γ(3− 2h− 2z) are continuous for z ∈ [1/2, αsup]. As a consequence,

(3.30)
1

EB[Y λ
α(t)(t)

2]
¬ C. �

We are thus led to the following short-range dependence property of GWmOU
processes.

PROPOSITION 3.7. For 0 < h < 1−αsup, the GWmOU process is short-range
dependent.

Proof. Set y = τ/λ. Using (3.22) and (3.30), we have

0 ¬ ρα(t, t+ τ) ¬ CG(α(t+ τ), α(t), h, y).

Since 0 ¬ u ¬ 1 and 1/2 < α(t) < 1 for all t, we obtain

G(α(t+ τ), α(t), h, y)

=
1∫
0

u2−[α(t)+α(t+τ)]−2h(1− u)α(t)−1(1 + yu)h−1(yu+ 1− u)α(t+τ)−1 du

¬ yα(t+τ)−1 (y + 1)h−1
1∫
0

u−α(t)−h(1− u)α(t)−1 du.

Therefore,

∞∫
0

|ρα(t, t+ τ)|dτ ¬ C
∞∫
0

yα(t+λy)−1(y + 1)h−1 dy
1∫
0

u−α(t)−h(1− u)α(t)−1 du

¬ Cβ(1− h− αsup, 1/2)β(1− h− α(t), α(t)) <∞,

since 0 < h < 1− αsup. �

We are now interested in the asymptotic behavior of the process Y λ
α when

λ→∞.
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PROPOSITION 3.8. Let {Y λ
α(t)(t) , t ­ 0} be a GWmOU process restricted to

t ­ 0 and set α(t) = H(t)+1/2 with 0 < h < 3/2−αsup. Then for fixed t in R+,

Y λ
α(t)(t)− Y

λ
α(t)(0) −−−→

λ→∞
BH(t)(t) in L2(ΩB).

Proof. For each s ¬ t set cλ(t − s) = (λ/(λ + t − s))1−h, for each t ­ 0 let
Xλ
α(t)(t) = Y λ

α(t)(t)− Y
λ
α(t)(0), and denote

AλH(t)(t) =
0∫
−∞

(
[cλ(t− s)(t− s)H(t)−1/2 − cλ(−s)(−s)H(t)−1/2]

− [(t− s)H(t)−1/2 − (−s)H(t)−1/2]
)
dBs

=:
0∫
−∞

[Aλ1,H(t)(t, s)−A1,H(t)(t, s)] dBs,

Dλ
H(t)(t) =

t∫
0

(t− s)H(t)−1/2(cλ(t− s)− 1) dBs.

By substituting α(t) = H(t) + 1/2 we get

Xλ
α(t)(t)−BH(t)(t) = Xλ

H(t)+1/2(t)−BH(t)(t)

=
1

Γ(H(t) + 1/2)
[AλH(t)(t) +Dλ

H(t)(t)].

Thus,

EB[(Xλ
α(t)(t)−BH(t)(t) )2] =

1

Γ(H(t)+1/2)2
EB[(AλH(t)(t) +Dλ

H(t)(t))
2]

¬ 2

Γ(H(t)+1/2)2

(
EB[AλH(t)(t)

2]+EB[Dλ
H(t)(t)

2]
)
.

Let us first evaluate the asymptotic behavior of EB[AλH(t)(t)
2] when λ→∞.

For fixed t ­ 0, it is easily seen that

(3.31) Aλ1,H(t)(t, s) −−−→λ→∞
A1,H(t)(t, s).

Using the elementary inequality, for any p ­ 0 and x, y ∈ R,∣∣|x|p − |y|p∣∣ ¬ (p ∨ 1)2(p−2)+ [|x− y|p + |y|(p−1)+ |x− y|p∧1]

and the fact that cλ(x) ¬ 1 for all x > −λ, we have, for s < 0,

|cλ(t− s)(t− s)H(t)−1/2 − cλ(−s)(−s)H(t)−1/2|
¬ cλ(t−s)|(t−s)H(t)−1/2−(−s)H(t)−1/2|+(−s)H(t)−1/2|cλ(t−s)−cλ(−s)|
¬ |(t−s)H(t)−1/2−(−s)H(t)−1/2|+2t1−h(−s)H(t)−1/2(t−s)h−1.
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Moreover, for fixed t > 0 such that H(t) 6= 1/2, when s→ −∞ we get(
(t− s)H(t)−1/2 − (−s)H(t)−1/2

)2 ∼ (H(t)− 1/2)2t2(−s)2H(t)−3.

As a result, s 7→ ((t− s)H(t)−1/2 − (−s)H(t)−1/2)2 is integrable at −∞, because
2H(t)− 3 < −1, and as s→ 0− as well, since 2H(t)− 1 > −1. Consequently,

0∫
−∞

(
(t− s)H(t)−1/2 − (−s)H(t)−1/2

)2
ds <∞.

Also, by the hypothesis 2− 2H(t)− 2h > 0,

0∫
−∞

(−s)2H(t)−1(t− s)2h−2 ds = t2H(t)+2h−2β(2− 2H(t)− 2h, 2H(t)) <∞.

The dominated convergence theorem shows that for fixed t ­ 0,

lim
λ→∞

EB[AλH(t)(t)
2] = 0.

Similarly, one shows that for fixed t ­ 0, limλ→∞EB[Dλ
H(t)(t)

2] = 0, which
proves the desired result. �

On the other hand, we now consider the asymptotic behavior of Y λ
α when

λ → 0. In the following result, it is assumed that α(t) = α for all t, 1 − α <
h < 3/2− α and 1/2 < α < 1.

PROPOSITION 3.9. Let {Ŷ λ
α , t ­ 0} be the process defined by

Ŷ λ
α (t) = λh−1

t∫
0

Y λ
α (s) ds, t ­ 0.

Then
Ŷ λ
α (t) −−→

λ→0
Yα(t) in L2(ΩB),

where

Yα(t) :=

1

Γ(α)(h+ α− 1)

[ 0∫
−∞

(t− u)h+α−1 − (−u)h+α−1 dBu +
t∫
0

(t− u)h+α−1 dBu

]
.

Moreover, the process (Yα(t))t­0 is (modulo a constant) a fractional Brownian
motion with Hurst index h+ α− 1/2.
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Proof. For each t ­ 0, we have

λh−1
t∫
0

Y λ
α (s) ds =

1

Γ(α)

t∫
−∞

dBu
t∫

u∨0

(λ+ s− u)h−1(s− u)α−1 ds

=
1

Γ(α)

0∫
−∞

dBu
t∫
0

(λ+ s− u)h−1(s− u)α−1 ds

+
1

Γ(α)

t∫
0

dBu
t∫
u

(λ+ s− u)h−1(s− u)α−1 ds.

Using the same computations as in the proof of Proposition 3.8, it is easily checked
that for every t ­ 0,

Ŷ λ
α (t) −−→

λ→0
Yα(t) :=

1

Γ(α)(h+ α− 1)

[ 0∫
−∞

(t− u)h+α−1 − (−u)h+α−1 dBu +
t∫
0

(t− u)h+α−1 dBu

]
in L2(ΩB). Moreover, it is obvious that the process (Yα(t))t­0 is (modulo a con-
stant) a fractional Brownian motion (with moving average definition) with Hurst
index h+ α− 1/2. �

4. APPENDIX

PROPOSITION 4.1. For all 0 < p < 1 and k ­ 2,

(4.1)
k∑
i=1

xpi ¬ 2(k−1)(1−p)
( k∑
i=1

xi

)p
if xi ­ 0 for i = 1, . . . , k.

Proof. For k ­ 2, 0 < p < 1 and xi ­ 0 for all i = 1, . . . , k, we will denote
by A(k) the inequality

A(k) :
k∑
i=1

xpi ¬ 2(k−1)(1−p)
( k∑
i=1

xi

)p
.

Let k = 2. Since the function x 7→ xp, x ­ 0, is concave for every 0 < p < 1, we
get

xp + yp ¬ 21−p(x+ y)p,

so A(2) holds true.
Let us assume thatA(n−1) holds. UsingA(2),A(n−1), by easy computations

we get A(n). Thus by induction, the proof is complete. �
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Throughout the appendix, it is supposed that 0 < h < 3/2−Mα[a, b],Mα[a, b]
< 1 and mα[a, b] > 1/2 for any compact interval [a, b] ⊂ R.

LEMMA 4.1. Fix a compact interval [a, b] ⊂ R. There exists a constant C
depending only on [a, b], λ and h such that

EB[(Y λ
α(t)(t+ τ)− Y λ

α(t)(t))
2] ¬ C|τ |2α(t)−1

for all t, t+ τ ∈ [a, b] with |τ | < 1.

Proof. Set η = 3 − 2h − 2α(t), ν = 2α(t) − 1 and y = |τ |/λ. Using (3.21),
we get

(4.2) EB[(Y λ
α(t)(t+ τ)− Y λ

α(t)(t))
2]

= EB[(Y λ
α(t)(t+ τ))2] + EB[Y λ

α(t)(t)
2]− 2EB[Y λ

α(t)(t+ τ)Y λ
α(t)(t)]

=
2λν

Γ(α(t))2
β(η, ν)− 2EB[Y λ

α(t)(t+ τ)Y λ
α(t)(t)].

Let us first evaluate the second term on the right hand side. By (3.22) we have

(4.3) −2EB[Y λ
α(t)(t+ τ)Y λ

α(t)(t)]

=
−2λν

Γ(α(t))2

1∫
0

uη−1(1− u)α(t)−1(1 + yu)h−1(yu+ 1− u)α(t)−1 du.

By applying the mean value theorem to the function t 7→ (1+yt)h−1 for t ∈ [0, u],
we obtain

(4.4) −2EB[Y λ
α(t)(t+ τ)Y λ

α(t)(t)]

=
−2λν

Γ(α(t))2

1∫
0

uη−1(1− u)ν−1

(
1 + y

u

1− u

)α(t)−1

du

+
2λν(1− h)

Γ(α(t))2
y

1∫
0

(1 + yCu)h−2uη (1− u)α(t)−1(yu+ 1− u)α(t)−1 du

=: Aλ,h(α(t), y) +Bλ,h(α(t), y).

Let us begin by providing an upper bound for Aλ,h. Using the inequality

1− yu

1− (1− y)u
¬
(

1 + y
u

1− u

)α(t)−1

,
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for y 6= 0 we have

(4.5) Aλ,h(α(t), y)

¬ −2λν

Γ(α(t))2

1∫
0

uη−1(1− u)ν−1 du+
2λνy

Γ(α(t))2

1∫
0

uη (1− u)ν−1

1− (1− y)u
du

=
−2λν

Γ(α(t))2
β(η, ν) +

2λνy

Γ(α(t))2
β(ν, η + 1) 2F1(1, η + 1, 3− 2h, 1− y),

where 2F1 is called the hypergeometric function, and the last equality is due to
Euler’s representation integral of 2F1 (see [1, Theorem 2.2.1]).

Using Euler’s transformation formula (see [1, Theorem 2.2.5]), we get

(4.6) 2F1(1, η + 1, 3− 2h, 1− y) = y2α(t)−2
2F1(2− 2h, ν, 3− 2h, 1− y).

Set a = 2− 2h, b = 2mα[a, b]− 1 and c = 3− 2h− 2Mα[a, b] + 2mα[a, b]. For
y 6= 0, we have

(4.7) 2F1(a, ν, a+ 1, 1− y)

=
Γ(a+ 1)

Γ(ν)Γ(η + 1)

1∫
0

xν−1(1− x)η(1− (1− y)x)−a dx

¬ C
1∫
0

xb−1(1− x)c−b−1(1− (1− y)x)−a dx = CF (y) ¬ C,

the last inequality coming from the fact that the function F is continuous on
[1, 1/λ]. By plugging (4.6) in (4.5) and using (4.7), we infer that

Aλ,h(α(t), |τ |) ¬ −2λν

Γ(α(t))2
β(η, ν) + C|τ |ν .(4.8)

On the other hand, since η, λ, Cu > 0, 0 < h < 1, and α(t) < 1, we have

Bλ,h(α(t), |τ |) ¬ 2λα(t)−1(1− h)

Γ(α(t))2
β(α(t), α(t))|τ |α(t) ¬M |τ |ν ,(4.9)

where M is the maximum of the continuous function

z 7→ (2λz−1(1− h)/Γ(z)2)β(z, z)

on [mα[a, b],Mα[a, b]]. Thus, by plugging (4.8) and (4.9) in (4.4), we get

−2EB[Y λ
α(t)(t+ τ)Y λ

α(t)(t)] ¬
−2λν

Γ(α(t))2
β(η, ν) + (M + C)|τ |ν .

Then

EB[(Y λ
α(t)(t+ τ)− Y λ

α(t)(t))
2] ¬ C1|τ |ν ,

where C1 = M + C, which establishes the desired result. �
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LEMMA 4.2. Fix a compact interval [a, b] ⊂ R.

(1) There exists a constant C2 depending only on [a, b], λ and h such that

(4.10) EB[(Y λ
α(t)(t+ τ)− Y λ

α(t)(t))
2] ­ C2|τ |2α(t)−1

for all t, t+ τ ∈ [a, b] with |τ | < 1.

(2) As τ → 0,

(4.11) EB[(Y λ
α(t)(t+ τ)− Y λ

α(t)(t))
2] = C2|τ |α(t)−1/2 +O(|τ |2α(t)−1).

Proof. With the notation of Lemma 4.1, since α(t) < 1 for all t, we have

Bλ,h(α(t), y) ¬ EB[(Y λ
α(t)(t+ τ)− Y λ

α(t)(t))
2].

For τ 6= 0, using Cu ∈ ]0, 1[ we get(
1

|τ |
+

1

λ

)α(t)+h−3

|τ |2α(t)−2 ¬ (1 + y)h+α(t)−3(4.12)

¬ (1− u+ yu)α(t)−1(1 + yCu)h−2.

Set
h(z, x) = (λx)3−z−h(x+ λ)z+h−3,

a continuous function on [mα[a, b],Mα[a, b]] × [0, 1], and let C2 be the minimum
of the function

(z, x) 7→ 2λ2z−2(1− h)

Γ(z)2
β(4− 2h− 2z, z)h(z, x)

for (z, x) ∈ [mα[a, b],Mα[a, b]]× [0, 1]. Then

EB[(Y λ
α(t)(t+ τ)− Y λ

α(t)(t))
2] ­ C2|τ |ν ,

which gives (4.10).
Let us now prove (4.11). If instead of (4.12) we use the following inequality for

y 6= 0: (
1

|τ |
+

1

λ

)α(t)+h−3

|τ |α(t)−3/2 ¬ (1 + y)α(t)+h−3,

then (4.10) becomes

EB[(Y λ
α(t)(t+ τ)− Y λ

α(t)(t))
2] ­ C2|τ |α(t)−1/2.



294 K. Es-Sebaiy et al.

Combining Lemma 4.1 and the last inequality, we get

C2|τ |α(t)−1/2 ¬ EB[(Y λ
α(t)(t+ τ)− Y λ

α(t)(t))
2] ¬ C1|τ |α(t)−1/2.

To prove (4.11), it remains to show thatC2 ¬ C1 = M+C. Since 0 < h < 3/2−z
and z < 1, we obtain

β(4− 2h− 2z, z) ¬ β(z, z) and h(z, x) ¬ λ1−z.

Therefore,

C2 ¬
2λ2z−2(1− h)

Γ(z)2
β(4− 2h− 2z, z)h(z, x) ¬M ¬ C1,

which completes the proof. �
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