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ON THE EXACT ASYMPTOTICS OF EXIT TIME FROM A CONE OF AN
ISOTROPIC α-SELF-SIMILAR MARKOV PROCESS WITH A
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Abstract. In this paper we identify the asymptotic tail of the distribution
of the exit time τC from a cone C of an isotropic α-self-similar Markov
processXt with a skew-product structure, that is,Xt is a product of its radial
process and an independent time changed angular component Θt. Under
some additional regularity assumptions, the angular process Θt killed on
exiting the cone C has a transition density that can be expressed in terms of
a complete set of orthogonal eigenfunctions with corresponding eigenvalues
of an appropriate generator. Using this fact and some asymptotic properties
of the exponential functional of a killed Lévy process related to the Lamperti
representation of the radial process, we prove that

Px(τC > t) ∼ h(x)t
−κ1

as t→∞ for h and κ1 identified explicitly. The result extends the work of
De Blassie (1988) and Bañuelos and Smits (1997) concerning the Brownian
motion.
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1. INTRODUCTION

For a dimension d ­ 2 and an index α > 0 on some probability space (Ω,F ,Px)
we consider an Rd-valued α-self-similar isotropic Markov process {Xt, t ­ 0},
where Px(·) = P(· |X0 = x). We recall that the process X is said to be α-self-
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similar if for every x ∈ Rd and λ > 0,

the law of (λXλ−αt, t ­ 0) under Px is the same as under Pλx.

Moreover, this process is said to be isotropic (or O(d)-invariant) if for any x ∈ Rd
and % ∈ O(d),

the law of (%(Xt), t ­ 0) under Px is the same as under P%(x),

where O(d) is the group of orthogonal transformations on Rd. In this paper we
assume that the radial process Rt = |Xt| and the angular process Xt/Rt do not
jump at the same time. Then by Liao and Wang [15, Theorem 1] the process Xt

observed up to its first hitting time of 0 has a skew-product structure:

(1.1) Xt = RtΘA(t),

where A(t) is a strictly increasing continuous process defined by

(1.2) A(t) =
t∫
0

R−αs ds, t < T0,

for

(1.3) T0 = inf{t > 0 : Xt = 0} = inf{t > 0 : Rt = 0},

and Θt is an O(d)-invariant Markov process on the unit sphere Sd−1 and is inde-
pendent of the radial process Rt. The classical example concerns d-dimensional
Brownian motion that may be expressed as a product of a Bessel process and a
time changed spherical Brownian motion. Moreover, the Bessel process is indepen-
dent of the spherical Brownian motion. More generally, any continuous isotropic
Markov proces will have the above representation (1.1) with possibly different
time change; see [9]. In particular, a self-similar diffusion will have it. Note that
an isotropic self-similar Markov process might not satisfy (1.1) though. The most
famous examples are the symmetric (1/α)-stable Lévy processes for α > 1/2.
Their Lévy measures are absolutely continuous on Rd\{0}, so their radial and an-
gular parts may jump together, and thus do not possess a skew product structure as
defined above.

We will also consider an open cone C in Rd generated by a domain D in the
unit sphere Sd−1, that is, C =

⋃
r>0 rD. We define the first exit time of Xt from

the cone C by

(1.4) τC = inf{t > 0 : Xt 6∈ C}.

The purpose of this paper is to study the asymptotic behavior of the exit probability
Px(τC > t) as t→∞ for x ∈ C. In fact we prove that

(1.5) Px(τC > t) ∼ h(x)t−κ1
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as t →∞ for h and κ1 identified explicitly, where we write f(t) ∼ g(t) for some
positive functions f and g iff limt→∞ f(t)/g(t) = 1.

The main idea of the proof is based on the following steps. In the first step we
give the representation

qD(t, θ, η) =
∞∑
j=1

e−λjtmj(θ)mj(η),

of the transition density for the angular process Θt killed upon exiting the cone C
in terms of orthogonal eigenfunctions mj with corresponding eigenvalues λj
of −S|D for the generator S of Θt restricted to D with the Dirichlet boundary
condition. Then

Px(τC > t) =
∞∑
j=1

mj(x/|x|)
(∫
D

mj dσ
)
E|x|[e−λjA(t), t < T0]

for σ being the normalized surface measure on Sd−1. Using the Lamperti [12]
transformation we can express the process {Rt, t < T0} as a time change of the ex-
ponential of an R∪{−∞}-valued Lévy process, that is, there exists an R∪{−∞}-
valued Lévy process ξt starting from 0 and with lifetime ζ, whose law does not
depend on |x|, such that

(1.6) Rt = |x| exp(ξA(t)), 0 ¬ t < T0.

This gives the following representation of the tail exit probability:

Px(τC > t) =
∞∑
j=1

mj(x/|x|)
(∫
D

mj dσ
)
P(Ieλj (αξ) > |x|

−αt),

where

(1.7) It(αξ) =
t∫
0

exp(αξs) ds,

eλj is an independent exponential random variable with intensity λj and I(αξ) =
limt→ζ It(αξ) is an exponential functional. The final result (1.5) follows from
Rivero [19, Lemma 4] and Maulik and Zwart [17, Theorem 3.1] concerning the
tail asymptotics of the exponential functional I(αξ). In this case κ1 solves the
equation

(1.8) φ(ακ1) = λ1

for the Laplace exponent of the process ξ.
Our main result (1.5) extends the work of De Blassie [6] and Bañuelos and

Smits [1] concerning the Brownian motion (see also [18] for the case of α-stable
processes).
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The asymptotic (1.5) also determines the critical exponents of integrability of
the exit time τC . In this sense it generalizes the result of a series of papers con-
cerning α-stable processes: see Kulczycki [11] and Bañuelos and Bogdan [2] and
references therein.

The paper is organized as follows. In Preliminaries we state and prove the main
facts used later. In Section 3 we give the main result and its proof.

2. PRELIMINARIES

2.1. Skew-product structure. Let Xt be an α-self-similar isotropic Markov pro-
cess with skew-product representation (1.1). The process Θt is an O(d)-invariant
Markov process on Sd−1 with transition semigroup Qt and infinitesimal genera-
tor S.

Throughout this paper, we assume the following.

ASSUMPTION 2.1. Θt possesses a bounded transition density q(t, θ, η) with
respect to σ, the normalized surface measure on Sd−1, and there exist positive
constants C and β such that

(2.1) q(t, θ, η) ¬ Ct−β

for all (t, θ, η) ∈ (0, 1)× Sd−1 × Sd−1.

EXAMPLE 2.1 (Brownian motion). In the case when Θt is a Brownian mo-
tion, Assumption 2.1 is satisfied. Indeed, the generator S of Θt is a multiple of the
Laplace–Beltrami operator ∆Sd−1 on Sd−1. Moreover, it is known that the transi-
tion density h(t, θ, η) of Θt has a Gaussian upper bound:

(2.2) h(t, θ, η) ¬ c1t
−(d−1)/2e−c2d(θ,η)2/t, t > 0, θ, η ∈ Sd−1,

for some positive constants c1 and c2.

EXAMPLE 2.2 (Subordinate Brownian motion). Fix γ ∈ (0, 1). Let Wt be a
Brownian motion on Sd−1 with transition density h(t, θ, η). Let St be a γ-stable
subordinator, i.e., a Lévy process in R, supported by [0,∞), with Laplace trans-
form

E[e−ϑSt ] = exp(−tϑγ), ϑ > 0.

Assumption 2.1 is also satisfied when Θt = WSt . Indeed, in this case Θt is an
O(d)-invariant pure jump Markov process on Sd−1 with transition density

q(t, θ, η) =
∞∫
0

h(u, θ, η)pt(u) du,

where pt(u) is the probability density of St. By Theorem 37.1 of Doetsch [8],

(2.3) lim
u→∞

p1(u)u1+γ =
γ

Γ(1− γ)
.
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The limit (2.3) together with the scaling property

pt(u) = t−1/γp1(t−1/γu)

gives the following upper bound:

pt(u) ¬ c1tu
−1−γ , t, u > 0.

Using (2.2) one can now observe that

q(t, θ, η) ¬ c3t
− d−1

2γ ∧ t

d(θ, η)d−1+2γ

for (t, θ, η) ∈ (0,∞)× Sd−1 × Sd−1.

We will now give sufficient conditions for Assumption 2.1 to be satisfied for
a general O(d)-invariant Markov process Θt on Sd−1. If we identity Sd−1 with
O(d)/O(d − 1) then Θt may be viewed as a Lévy process on the compact ho-
mogeneous space O(d)/O(d − 1). Furthermore, the generator S of Θt was given
by Hunt [10] (see also Liao [13]) explicitly. We state this result as follows. Let
C∞(Sd−1) be the space of smooth functions on Sd−1 and let π : O(d) → Sd−1

be the map g 7→ go for o = (0, . . . , 0, 1) ∈ Rd. Restricted to a sufficiently small
neighborhood V of o, the map

ϕ : (y1, . . . , yd) 7→ π(e
∑d
j=1 yjOj )

is a diffeomorphism and (y1, . . . , yd) may be used as local coordinates on ϕ(V ),
where (O1, . . . , Od) is a basis of the Lie algebra of O(d). Then by [13, Theorem
2.2] the domain of S contains C∞(Sd−1) and for f ∈ C∞(Sd−1),

(2.4) Sf(o) = Tf(o) +
∫

Sd−1

(
f(θ)− f(o)−

d∑
j=1

yj(θ)
∂f(o)

∂yj

)
ν(dθ),

where o is the origin in Sd−1, T is an O(d)-invariant second order differential
operator on Sd−1 and ν is an O(d− 1)-invariant measure on Sd−1, called the Lévy
measure of Θt, that satisfies ν({o}) = 0 and

(2.5)
∫

Sd−1

[dist(θ, o)]2 ν(dθ) <∞.

SinceO(d)/O(d−1) is irreducible, all theO(d)-invariant second order differential
operators are multiples of ∆Sd−1 . Therefore we may rewrite (2.4) as

(2.6) Sf(o) = a∆Sd−1f(o) +
∫

Sd−1

(
f(θ)− f(o)−

d∑
j=1

yj(θ)
∂f(o)

∂yj

)
ν(dθ)

for some a ­ 0.
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Note that when Θt is the subordinate Brownian motion defined in Example 2.2,
we have a = 0 and the Lévy measure satisfies

ν � d(θ, o)−d+1−2γ near o.

As already observed, in this case Assumption 2.1 holds true.
This phenomenon holds for more general Θt. Using [14, Theorems 3 and 6] we

can state the following proposition giving sufficient conditions for Assumption 2.1
to hold.

PROPOSITION 2.1. Θt is a Lévy process on Sd−1 with infinitesimal generator
S given by (2.6). Assume that either a > 0 or the Lévy measure ν is asymptotically
larger than d(θ, o)−γ near θ = o for some γ ∈ (d− 1, d− 1 + 2). Then Θt has a
bounded transition density q(t, θ, η) and it satisfies Assumption 2.1.

For any open subset D ⊂ Sd−1 we define the first exit time of Θt from D by

(2.7) τΘ
D = inf{t > 0 : Θt 6∈ D}.

Let ΘD be the killed process of Θ upon exiting D, that is, ΘD
t = Θt if t < τΘ

D and
ΘD
t = ∂ if t ­ τΘ

D , where ∂ is a cemetery state. Its infinitesimal generator is S|D,
the restriction of S to D with the Dirichlet boundary condition. Then

(2.8) qD(t, θ, η) = q(t, θ, η)− Eθ[q(t− τΘ
D ,ΘτΘ

D
, η); τΘ

D < t]

is the transition density of ΘD. Clearly, qD(t, θ, η) ¬ q(t, θ, η) for all t > 0 and
θ, η ∈ Sd−1. As a consequence, the transition semigroup QDt associated to the
subprocess ΘD is compact on L2. Let {λj}∞j=1 be the eigenvalues of−S|D written
in increasing order and repeated according to their multiplicity, and mj the corre-
sponding eigenfunctions normalized by ‖mj‖2 = 1. Then by [5, Theorem 2.1.4],
mj ∈ L∞ for all j and QDt has a transition density qD(t, θ, η), which can be rep-
resented as the series

(2.9) qD(t, θ, η) =
∞∑
j=1

e−λjtmj(θ)mj(η)

that converges uniformly on [δ,∞)×D ×D for all δ > 0.

REMARK 2.1. Note that we do not assume any regularity condition on the
boundary ∂D of D. Thus qD(t, θ, η) (or mj(θ)) need not vanish continuously
on ∂D.

REMARK 2.2. If Sd−1 \D is not empty, then from the monotonicity of Dirich-
let eigenvalues we have λ1 > 0; see [3, Section I.5] for more details (cf. also
Lemma 2.2 below).
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REMARK 2.3. Assume that qD(t, θ, η) is strictly positive for t > 0 and
θ, η ∈ D. Then we knoww from Jentzsch’s theorem [20, Theorem V.6.6] that
λ1 is a simple eigenvalue for −S|D. Using standard arguments, like the ones in
[4, proof of Theorem 2.4], one can show that qD(t, θ, η) is strictly positive when
Θt is a Brownian motion on Sd−1 andD is connected or Θt is a subordinate Brow-
nian motion on Sd−1 satisfying the conditions of Example 2.2.

In our analysis the crucial fact is the following lower bound for the eigenvalues
λj (j ­ 1).

LEMMA 2.2. Assume (2.1) holds true. Then for every j ­ 1, we have

(2.10) λj ­ [Cσ(D)]−1/βj1/β

and

(2.11) ‖mj‖∞ ¬ eC[σ(D)]1/2λβj .

Proof. We will follow the same idea as in [7, proof of Lemma 2.7]. In particu-
lar, since the λj are ordered increasingly, we see from (2.9) and (2.1) that

je−λjt ¬
∞∑
i=1

e−λit =
∫
D

qD(t, θ, θ)σ(dθ) ¬ Cσ(D)t−β.

Taking t = λ−1
j we obtain j ¬ Cσ(D)λβj and (2.10) follows immediately.

Note that

mj(θ) = eλjtQDt mj(θ) = eλjt
∫
D

qD(t, θ, η)mj(η)σ(dη).

By the Cauchy–Schwarz inequality,

‖mj‖∞ ¬ eλjt sup
θ

(∫
D

qD(t, θ, η)2 σ(dη)
)1/2(∫

D

mj(η)2 σ(dη)
)1/2

¬ C[σ(D)]1/2eλjtt−β.

The proof is completed by setting t = λ−1
j . �

2.2. Positive self-similar Markov processes. Recall that Rt = |Xt| is a positive
(R+-valued) α-self-similar Markov process starting at |x|. According to Lamperti
[12], up to its first hitting time of 0, Rt may be expressed as a time change of the
exponential of an R ∪ {−∞}-valued Lévy process. More formally, there exists an
R ∪ {−∞}-valued Lévy process ξt starting from 0 and with lifetime ζ, whose law
does not depend on |x|, such that

(2.12) Rt = |x| exp(ξA(t)), 0 ¬ t < T0,
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where T0 is the first hitting time of 0 by R defined formally in (1.3) and A(t)

is the positive continuous functional given by A(t) =
∫ t

0
Rαs ds. The law of ξ is

characterized completely by its Lévy–Khinchin exponent

(2.13) Ψ(z) = logE[eizξ1 ]

=−q + ibz − σ2

2
z2 +

+∞∫
−∞

(eizy − 1− izy1{|y|<1}) Π(dy),

where q ­ 0, σ ­ 0, b ∈ R and Π is a Lévy measure satisfying the condition∫
R(1 ∧ |y|2) Π(dy) < ∞. The lifetime ζ of ξ is an exponential random variable

with parameter q, with the convention that ζ = ∞ when q = 0. Observe that the
process ξ does not depend on the starting point of X . Hence we will denote the
law of ξ by P.

For fixed α > 0, we define the exponential functional It(αξ) by (1.7). Then by
a change of variable s = A(u),

It(αξ) =
A−1(t)∫

0

exp(αξA(u))R
−α
u du = |x|−αA−1(t).

Hence A(|x|αt) is the right inverse of the strictly increasing continuous process
It(αξ) and we can recover the law of (Rt, t < T0) from the law of ξt for fixed |x|
and α > 0. In particular, we have

(2.14) (T0,Px)
d
= (|x|αI(αξ),P).

As mentioned in [12], the probabilities Px(T0 = +∞), Px(T0 < +∞,
RT0− = 0) and Px(T0 < +∞, RT0− > 0) are 0 or 1 independently of x. More-
over, we have

(1) if Px(T0 = +∞) = 1, then ζ = +∞, lim supt→∞ ξt = +∞, and limt→∞A(t)
= +∞;

(2) if Px(T0 < +∞, RT0− = 0) = 1, then ζ = +∞, limt→∞ ξt = −∞, and
limt→T0−A(t) = +∞;

(3) if Px(T0 < +∞, RT0− > 0) = 1, then ζ is an exponentially distributed ran-
dom time with parameter q > 0. Moreover, A(T0−) has the same distribution
as that of ζ, thus the functional A(t) always jumps from a finite value to +∞,
that is, Px(A(T0−) < +∞, A(T0) = +∞) = 1.

Let eλ be an independent exponential random variable with parameter λ. Then

E|x|[e−λA(t), t < T0] = P|x|(A(t) < eλ, t < T0).
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Note that by the construction above we find that t < T0 is equivalent to A(t) < ζ.
Thus

(2.15)

E|x|[e−λA(t), t < T0] = P|x|(A(t) < eλ ∧ ζ) = P
(eλ∫

0

exp(αξs) ds > |x|−αt
)
,

where in the last equality we have used the fact that |x|αIt(αξ) is the right inverse
of A(t). The equation (2.15) will give (along with the representation (2.9)) another
main ingredient of the proof of the main result. In the last step we will need the tail
asymptotic behaviour of the exponential function Ieλ(αξ) described below.

2.3. Exponential functional of a killed Lévy process. Let ξλ be a Lévy process with
Lévy–Khinchin exponent Ψ given by (2.13) killed by the independent exponential
time eλ with parameter λ > 0. Thus the resulting process has lifetime ζ ′ = eλ ∧ ζ,
an exponential random variable with parameter λ+ q.

We define the Laplace exponent of ξ via

(2.16) E(exp(ϑξt)) = exp(tφ(ϑ)), t ­ 0, ϑ ∈ Ξ,

where Ξ = {ϑ : φ(ϑ) < ∞}. By (2.13), for ϑ ∈ Ξ we have φ(ϑ) = Ψ(−iϑ). It
is easy to see from the Hölder inequality that φ(ϑ) is a convex function. From now
we assume that ξ satisfies the following conditions.

ASSUMPTION 2.2. ξ is not arithmetic, that is, there is no d such that the sup-
port of ξ1 is dN.

ASSUMPTION 2.3. There exists a constant ϑ∗ > α(1 ∨ (2β)) such that φ(ϑ)
< ∞ for 0 < ϑ < ϑ∗ and limϑ→ϑ∗ φ(ϑ) = ∞, where β is the constant in
Assumption 2.1.

Under Assumption 2.3, for every λ > 0, there exists a unique 0 < κ < ϑ∗ such
that

(2.17) φ(ακ) = λ.

Moreover,
E[ξλ1 eακξ

λ
1 ] = φ′(ακ) <∞.

In the proof we will use the following crucial result giving the tail asymptotics
of the distribution of the exponential functional.

THEOREM 2.3 ([19, Lemma 4], [17, Theorem 3.1]). Suppose that Assumptions
2.2 and 2.3 are satisfied. Then, as t→∞,

(2.18) tκP(Ieλ(αξ) > t) ∼ 1

αφ′(ακ)
E[Ieλ(αξ)κ−1].
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EXAMPLE 2.3 (Linear Brownian motion with drift). Let σ > 0, b ∈ R and
ξt = σBt + bt, where Bt is a standard linear Brownian motion. Then φ(ϑ) =
σ2ϑ2

2 + bϑ and for

κ =
1

ασ2
(
√

2σ2λ+ b2 − b),

we have E[eακσ(B1+b), 1 < eλ] = 1. By Theorem 2.3,

lim
t→∞

tκP(Ieλ(αξ) > t) = Cκ,

where

Cκ =
1

α
√

2σ2λ+ b2
E
{[eλ∫

0

exp(ασBs + αbs) ds
]κ−1}

.

By the scaling property of Brownian motion, the random variable
eλ∫
0

exp(ασBs + αbs) ds

has the same distribution as the integral

α2σ2

4
eλ∫

0

exp

(
2Bs +

4b

ασ2
s

)
ds.

Note that α2σ2

4 eλ is an exponentially distributed random variable with parameter
4

α2σ2λ independent of Bt. Yor [21] (see also [16, Theorem 4.12]) proved the fol-
lowing identity in law:

(2.19) Ieλ(αξ)
d
=
Z1,a

2γκ
,

where a = κ + 2b
ασ2 , Z1,a is a beta variable with parameters (1, a), and γκ is a

gamma variable with parameter κ, which is independent of Z1,a. Since

E[Zκ−1
1,a ] =

1∫
0

tκ−1a(1− t)a−1 dt =
Γ(κ)Γ(a+ 1)

Γ(a+ κ)

and

E[γ1−κ
κ ] =

1

Γ(κ)

∞∫
0

t1−κtκ−1e−t dt =
1

Γ(κ)
,

we have

E[(Ieλ(αξ))κ−1] =
21−κΓ(a+ 1)

Γ(κ+ a)
=

21−κΓ
(
κ+ 2b

ασ2 + 1
)

Γ
(
2κ+ 2b

ασ2

) .

Therefore,

Cκ =
4

α2σ22κ
Γ
(
κ+ 2b

ασ2 + 1
)

Γ
(
2κ+ 2b

ασ2 + 1
) .
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3. MAIN RESULT

Let

(3.1) M(x) =
∑

j:λj=λ1

(∫
D

mj dσ
)
mj(x/|x|)

be an eigenfunction corresponding to the eigenvalue λ1 of the operator S in D
with the Dirichlet boundary condition. Moreover, let κ1 solve φ(ακ1) = λ1; that
is, (1.8) is satisfied.

Recall that τC is the exit time from the cone C of the α-self-similar Markov
process Xt with a skew-product structure (1.1). The main result of this paper is the
following asymptotic.

THEOREM 3.1. Under Assumptions 2.1–2.3, we have

(3.2) Px(τC > t) ∼ 1

αφ′(ακ1)
E[Ieλ1

(αξ)κ1−1]M(x)(|x|−αt)−κ1

as t→∞.

REMARK 3.1. M(x) does not depend on the choice of the eigenfunction mj

with λj = λ1. Indeed, if we have another choice m′j , then there exists an or-
thogonal matrix (aik) such that m′i =

∑
k aikmk, which is equivalent to mj =∑

i aijm
′
i. Thus,∑
i

(∫
D

m′i dσ
)
m′i =

∑
i

(∑
j

∫
D

aijmj dσ
)
m′i

=
∑
j

(∫
D

mj dσ
)∑

i

aijm
′
i =
∑
j

(∫
D

mj dσ
)
mj .

EXAMPLE 3.1. Assume Xt is an isotropic α-self-similar diffusion process
on Rd. Then the radial process Rt = |Xt| is a positive α-self-similar diffusion
process and Θt is a (possibly nonstandard) Brownian motion on Sd−1 with in-
finitesimal generator a∆Sd−1 for some a > 0. Using the Lamperti relation, we
have ξt = σBt + bt for some σ > 0 and b ∈ R, where Bt is a standard Brownian
motion. Clearly, Assumptions 2.1–2.3 are satisfied. It follows from Example 2.3
that

lim
t→∞

t−κ1Px(τC > t) =
4

α2σ2

Γ
(
κ1 + 2b

ασ2 + 1
)

Γ
(
2κ1 + 2b

ασ2 + 1
)( |x|2

2

)κ1

M(x),

where M(x) is defined by (3.1). In particular, when Xt is a d-dimensional Brown-
ian motion, we have α = 2, σ = 1, b = d/2− 1, and a = 1/2. Thus

(3.3) lim
t→∞

t−κ1Px(τC > t) =
Γ(κ1 + d/2)

Γ(2κ1 + d/2)

(
|x|2

2

)κ1

M(x),
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where
κ1 =

1

2
(
√

2λ1 + (d/2− 1)2 − (d/2− 1)).

This recovers the seminal result of De Blassie [6] (see also [1, Corollary 1]).

Proof of Theorem 3.1. We start the proof from the observation that τC is just
the first time t that Rt = 0 or the angular process ΘA(t) 6∈ D, that is,

(3.4) Px(τC > t) = Px(T0 > t, τΘ
D > A(t)).

By the assumed independence of Rt and Θt in (1.1) we have

(3.5) Px(τC > t) =
∞∫
0

Px/|x|(τΘ
D > u) duP|x|(A(t) ¬ u, t < T0).

By (2.9) the exit probability Pθ(τΘ
D > t) can be represented as

(3.6) Pθ(τΘ
D > t) =

∫
D

qD(t, θ, η) dσ(η) =
∞∑
j=1

e−λjtmj(θ)
∫
D

mj dσ.

Thus by (2.15),

(3.7) Px(τC > t) =
∞∑
j=1

mj(x/|x|)
∫
D

mj dσ
∞∫
0

e−λju duP|x|(A(t) ¬ u, t < T0)

=
∞∑
j=1

mj(x/|x|)
(∫
D

mj dσ
)
E|x|[e−λjA(t), t < T0]

=
∞∑
j=1

mj(x/|x|)
(∫
D

mj dσ
)
P(Ieλj (αξ) > |x|

−αt).

For j ­ 1 let κj (j ­ 1) be the solutions of

(3.8) φ(ακj) = λj .

Since λj →∞, we have lim infj→∞ κj ­ ϑ∗/α. Fix a κ0 with

(3.9) 1 ∨ κ1 ∨ (2β) < κ0 < ϑ∗/α.

Then there are only a finite number of j’s (with j ­ 1), forming a set A say, such
that κ1 < κj ¬ κ0. Applying Theorem 2.3 for j ∈ A we obtain

lim
t→∞

tκ1P(Ieλj (αξ) > |x|
−αt) = 0.

Hence

(3.10) lim
t→∞

tκ1
∑

j:κj¬κ0

mj(x/|x|)
(∫
D

mj dσ
)
P(Ieλj (αξ) > |x|

−αt)

=
1

αφ′(ακ1)
E[Ieλ1

(αξ)κ1−1]M(x)|x|ακ1 .
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Now we consider the summation over j ∈ Ac, that is, for κj > κ0. By the
Markov and Hölder inequalities,

tκ0P(Ieλj (αξ) > |x|
−αt) ¬ |x|ακ0E

[(eλj∫
0

exp(αξs) ds
)κ0
]

¬ |x|ακ0E
[
(eλj )

κ0−1

eλj∫
0

exp(ακ0ξs) ds
]
.

Using the independence of eλj and ξs, we have

tκ0P(Ieλj (αξ) > |x|
−αt) ¬ |x|ακ0E

[
(eλj )

κ0

eλj∫
0

esφ(ακ0) ds
]

¬ |x|ακ0E[(eλj )
κ0e

φ(ακ0)eλj ]

= |x|ακ0

∞∫
0

uκ0eφ(ακ0)uλje
−λju du

= |x|ακ0
λjΓ(κ0 + 1)

(λj − φ(ακ0))κ0+1

¬ c|x|ακ0λ−κ0
j

for some constant c > 0. By (2.10), (2.11) and the fact κ0 > 2β, we have

(3.11)
∑

j:κj>κ0

|mj(x/|x|)| ·
∣∣∣∫
D

mj dσ
∣∣∣P(Ieλj (αξ) > |x|

−αt)

¬ c|x|ακ0

(∑
j

j
−κ0−β

β

)
t−κ0 .

Combining (3.10) and (3.11) completes the proof. �

REFERENCES

[1] R. Bañuelos and R. G. Smits, Brownian motion in cones, Probab. Theory Related Fields 108
(1997), 299–319.

[2] R. Bañuelos and K. Bogdan, Symmetric stable processes in cones, Potential Anal. 21 (2004),
263–288.

[3] I. Chavel, Eigenvalues in Riemannian Geometry, Pure Appl. Math. 115, Academic Press, Or-
lando, FL, 1984.

[4] K. L. Chung and Z. X. Zhao, From Brownian Motion to Schrödinger’s Equation, Grundlehren
Math. Wiss. 312. Springer, Berlin, 1995.

[5] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math. 92, Cambridge
Univ. Press, Cambridge, 1990.

[6] R. D. De Blassie, Remark on exit times from cones in Rn of Brownian motion, Probab. Theory
Related Fields 79 (1988), 95–97.



38 Z. Palmowski and L. Wang

[7] H. Donnelly and P. Li, Lower bounds for the eigenvalues of Riemannian manifolds, Michigan
Math. J. 29 (1982), 149–161.

[8] G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation,
Springer, Berlin, 1974.

[9] A. Galmarino, Representation of an isotropic diffusion as a skew product, Z. Wahrsch. Verw.
Gebiete 1 (1963), 359–378.

[10] G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264–
293.

[11] T. Kulczycki, Exit time and Green function of cone for symmetric stable processes, Probab.
Math. Statist. 19 (1999), 337–374.

[12] J. Lamperti, Semi-stable Markov processes. I, Z. Wahrsch. Verw. Gebiete 22 (1972), 205–225.
[13] M. Liao, Lévy Processes in Lie Groups, Cambridge Tracts in Math. 162, Cambridge Univ.

Press, Cambridge, 2004.
[14] M. Liao and L. Wang, Lévy–Khinchin formula and existence of densities for convolution semi-

groups on symmetric spaces, Potential Anal. 27 (2007), 133–150.
[15] M. Liao and L. Wang, Isotropic self-similar Markov processes, Stochastic Process. Appl. 121

(2011), 2064–2071.
[16] H. Matsumoto and M. Yor, Exponential functionals of Brownian motion. I. Probability laws at

fixed time, Probab. Surv. 2 (2005), 312–347.
[17] K. Maulik and B. Zwart. Tail asymptotics for exponential functionals of Lévy processes,

Stochastic Process. Appl. 116 (2006), 156–177.
[18] P. J. Méndez-Hernández, Exit times from cones in Rd of symmetric stable processes, Illinois J.

Math. 46 (2002), 155–163.
[19] V. Rivero, Recurrent extensions of self-similar Markov processes and Cramér’s condition,

Bernoulli 11 (2005), 471–509.
[20] H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss. 215,

Springer, New York, 1974.
[21] M. Yor, Sur les lois des fonctionnelles exponentielles du mouvement brownien, considérées en

certains instants aléatoires, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 951–956.

Zbigniew Palmowski
Faculty of Pure and Applied Mathematics
Wrocław University of Science and Technology
Wybrzeże Wyspiańskiego 27
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