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ON TAILS OF SYMMETRIC AND TOTALLY ASYMMETRIC
α-STABLE DISTRIBUTIONS∗
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Abstract. We estimate up to universal constants tails of symmetric and to-
tally asymmetric 1-dimensional α-stable distributions in terms of functions
of the parameters of these distributions. In particular, for values of α close
to 2 we specify where exactly the tail changes from being Gaussian and
starts to behave like in the Pareto distribution.
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1. INTRODUCTION

A random variableX is called (one-dimensional) stable if for any numbers a, b > 0
and independent copies X1, X2 of X there exist numbers c(a, b) and d(a, b) such
that

aX1 + bX2
d
= c(a, b)X + d(a, b).

Random variables of this type constitute an important family used in stochastic
modelling. Let us recall some fundamental properties of stable distributions; for
a comprehensive study see e.g. [12]. It is a classical result that c(a, b) is of the
form (aα + bα)1/α for α ∈ (0, 2]. The number α is sometimes called the index of
stability and a stable random variable with index α is called α-stable. For α 6= 1
the characteristic function of X is given by

E exp(itX) = exp

(
−σα|t|α

(
1− iβ sgn(t) tan

(
πα

2

))
+ iµt

)
,
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while for α = 1 the characteristic function is

E exp(itX) = exp

(
−σ|t|

(
1 + iβ

2

π
sgn(t) ln(|t|)

)
+ iµt

)
,

where σ > 0, β ∈ [−1, 1] and µ ∈ R is a shift parameter. β is a skewness (asym-
metry) parameter, while σ is a scale parameter. The case β = 0 is referred to as
the symmetric case, and β = −1 or β = 1 is the totally asymmetric case. When
µ = 0 we call X a strictly α-stable random variable, in which case the character-
istic function can be represented as

(1.1) E exp(itX) = exp
(∫
R
ψ(t, x) ν(dx)

)
,

where

ψ(t, x) =

{
eitx − 1 if α ∈ (0, 1),

eitx − 1− itx if α ∈ (1, 2),

and ν, called the Lévy measure, is given by

ν(dx) =
C1

xα+1
1(0,∞)(x)dx+

C2

|x|α+1
1(−∞,0)(x)dx,

where C1, C2 ­ 0 and C1 + C2 > 0. The relation between C1, C2 and β is given
by the equation β = C1−C2

C1+C2
. In particular, for the symmetric case we take C1 =

C2 = 1 and for the totally asymmetric case C1 = 1 and C2 = 0. Moreover, the
dependence of the scale parameter σ on the parameter α and the constants C1 and
C2 is given by σα = Γ(−α) cos

( (2−α)π
2

)
(C1 + C2), where Γ denotes the gamma

function.
There are usually no closed formulas for densities and distribution functions of

stable distributions. The exceptions are the Gaussian distribution (α = 2, β = 0),
the Cauchy distribution (α = 1, β = 0) and the Lévy distribution (α = 1/2,
β = 1). To deal with the lack of explicit densities for other cases the series expan-
sions were established; see [17] and [6, Chapt. XVII, Sect. 6]. For σ = 1, β = 0
there is the following series expansion of the density function of X: for α ∈ (0, 1),

fX(x) =
1

π

∑
n­1

(−1)n+1

n!
Γ(nα+ 1) sin

(
nα

2

)
1

xnα+1
,

while for α ∈ (1, 2] (see [15, Chapt. IV, Sect. 1])

fX(x) =
1

απ

∑
n­1

(−1)n

2n!
Γ

(
2n+ 1

α

)
x2n.
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The tail asymptotics of α-stable distributions are well-known [12, Property 1.2.15].
For α ∈ (0, 2) we have

lim
y→ ∞

yαP(X ­ y) = Cα
1 + β

2
σα,

lim
y→ −∞

|y|αP(X ¬ y) = Cα
1− β

2
σα,

where

Cα =
(∞∫

0

xα sinx dx
)−1

=
1

αΓ(−α) cos
( (2−α)π

2

) .
Observe that

Cα =


1 + o(1) as α→ 0+,
2
π (1 + o(1)) as α→ 1,

(2− α)(1 + o(1)) as α→ 2−.

For β = −1, limy→ ∞ y
αP(X ­ y) = 0, so the rate of convergence of P(X ­ y)

to 0 is faster than 1/yα. It is known [12, (1.2.11)] that the right rate of convergence
for α ∈ (1, 2) is given by

1 + o(1)√
2απ(α− 1)

(
|y|
κα

)− α
2(α−1)

exp

(
−(α− 1)

(
|y|
κα

) −α
α−1
)
,

where κα = ασ

cos
(

(2−α)π
2

) , and exactly the same for the left tails in the case of

β = 1. Recall that for α < 1 and β = 1, P(X < 0) = 0.
There is a rich literature on numerical calculation of stable densities and distri-

bution functions; see for example [7] and references therein. In this article we are
interested in ‘qualitative’ behavior of tails of symmetric and totally asymmetric
α-stable distributions. More precisely, we are interested in the description of these
tails in terms of functions of the parameters of the distribution up to universal con-
stants.

Let X be an α-stable random variable. As presented above, the asymptotic be-
havior of P(|X| > t) as t → ∞ is fully understood, but the value of the tail
P(X > t) for moderate values of t does not seem to be well investigated. The
study of densities of α-stable distributions goes back to Pólya [8] as well as Blu-
menthal and Getoor [1]. Upper bounds for densities of multidimensional α-stable
random variables were given by Watanabe [16]. The classical work by Pruitt [9]
provides estimates for the tails of suprema of Lévy processes. The idea of truncat-
ing the characteristic function used in both [9] and [16] is also applied in this work.
Some of the results presented here can be related to much more general work of
Grzywny et al. [2] where estimates for densities were provided together with ex-
plicit constants [3], which are however of rather intricate form. Also, upper bounds
for β 6= 0 can be found in [13], while lower bounds for |β| 6= 1 in [4].
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The value of the results presented here lies mainly in the transparency of con-
stants in the estimates, which, as we believe, have not been explicitly presented so
far. Also the approach based on elementary techniques might be of independent
interest especially since it outlines the nature of α-stable variables whose tails are
determined by the analysis of heavy-tailed jumps. The main novelty compared to
the results in [2] is that we also consider the strictly asymmetric case (β = 1).
Finally, the calculations we provide for α close to 2 allow us to establish the order
of the boundary value at which the tail of α-stable random variable alters from
behaving like a Gaussian and starts to resemble a tail of Pareto distribution (see
Remark 4.7).

2. METHODS

Our approach is based on the analysis of the series representation of α-stable ran-
dom variables as well as their characteristic functions. First, we present a classical
series representation (see [12, Section 1.4]).

Let (τi)i­1 be a sequence of arrival times of a Poissonian process with param-
eter 1, i.e. τi = Γ1 + · · ·+ Γi, where the sequence (Γk)k­1 is i.i.d. and for u ­ 0,
P(Γk ­ u) = e−u. Then

• for α ∈ (0, 1) and β = 1, X d
=
∑∞

i=1(ατi)
−1/α,

• for α ∈ (0, 1) ∪ (1, 2) and β = 0, X d
= (α/2)−1/α

∑∞
i=1 εiτ

−1/α
i (where εi are

independent Rademacher random variables),

• for α ∈ (1, 2) and β = 1, X d
= cα

∑∞
i=1(τ

−1/α
i − ai), for an α-dependent con-

stant cα and compensating terms ai given by ai= α−1
α (i(α−1)/α−(i−1)(α−1)/α).

Series representations are particularly useful for simulations (see e.g. [11]). Also,
it is worth mentioning that a more general class of infinitely divisible processes
admit a similar representation, known as Rosiński’s representation [10]. Working
with this representation turns out to be efficient when estimating tails of both sym-
metric and asymmetric α-stable random variables for α ∈ (0, 1). The proof of
convergence of the above series can be found in [12]. To verify the above series
representations, one simply calculates the characteristic function ofX in each case
and checks that it obeys the definition (1.1); the following two lemmas might serve
as a tool and will also be helpful in further calculations.

Lemma 2.1. Consider a Borel function f : R+ → R+ with
∫∞
0
f(x) dx < ∞.

Then E
∑∞

i=1 f(τi) =
∫∞
0
f(x) dx.

Proof. This is a consequence of the fact that for each i ­ 1, τi has the Erlang
distribution, i.e. its density function is given by xi−1e−x

(i−1)! , where x ­ 0. Since f
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is non-negative and integrable we can put the summation outside the expectation.
The result then follows easily. �

The second lemma uses equivalence between Poissonian arrival times and Pois-
sonian point processes; we omit the proof.

Lemma 2.2 ([14, Lemma 11.3.3]). For any a > 0 and a continuous function
f : R+ → C we have E

∏
τi<a

f(τi) = exp(−
∫ a
0

(1− f(x)) dx).

With the above properties the calculations of the characteristic function for the
asymmetric case and α ∈ (0, 1) are straightforward, while in the symmetric case it
suffices to notice that the characteristic function can be expressed as

EeitX = exp

(∞∫
0

(eitx − 1− itx)
dx

xα+1
+

0∫
−∞

(eitx − 1− itx)
dx

|x|α+1

)
= exp

(∞∫
0

(eitx − 1− itx+ e−itx − 1 + itx)
dx

xα+1

)
= exp

(
2
∞∫
0

(cos(tx)− 1)
dx

xα+1

)
.

The main trick used when dealing with the totally asymmetric case for α ∈ (0, 1)
is conditioning the series

∑∞
i=1(ατi)

−1/α on the first term. To this end we observe
that

∑∞
i=1(ατi)

−1/α can be written as (ατ1)
−1/α +

∑∞
i=1 α

−1/α(τ1 + τ̃i)
−1/α,

where for i ­ 1 we define

(2.1) τ̃i = τi+1 − τ1.

We notice that τ̃i
d
= τi and τ̃i, i ­ 1, are independent of τi. For x > 0 define the

series

S(x) =
∞∑
i=1

α−1/α(x+ τ̃i)
−1/α.

It is well-defined. Notice that S(x) is decreasing. With the use of Lemma 2.2 we
calculate the moments of S(x).

Lemma 2.3. The moment generating function of S(x) is

ΛS(x)(λ) = E exp(λS(x)) = exp(−f(λ, x)), λ ­ 0,

where

(2.2) f(λ, x) =
∞∫
0

1− exp(α−1/αλ(x+ y)−1/α) dy.
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Proof. Let a > 0. Then, by Lemma 2.2,

E exp
(
λ
∑̃
τi<a

α−1/α(x+ τ̃i)
−1/α

)
= E

∏̃
τi<a

exp(λα−1/α(x+ τ̃i)
−1/α)

= exp
(
−

a∫
0

1− exp(α−1/αλ(x+ y)−1/α) dy
)
.

Letting a → ∞ on both sides is allowed since S(x) is a convergent series and
the integral on the right-hand side stays finite. To see this we use the inequality
1 − eu ­ −2u for small positive u. Consider a sufficiently large constant y0 and
the quantity Iy0 =

∫ y0
0

(1−exp(α−1/αλ(x+y)−1/α)) dy, which is bounded. Then

f(λ, x) = Iy0 +
∞∫
y0

(
1− exp(α−1/αλ(x+ y)−1/α)

)
dy

­ Iy0 − 2λα−1/α
∞∫
y0

(x+ y)−1/α dy

= Iy0 − 2λ
(α(x+ y0))

1−1/α

1− α
> −∞. �

Therefore we can calculate any moment of S(x). In particular, we have the
following result. Obviously it could also be deduced from Lemma 2.1.

Lemma 2.4. With the above notation we have, for α ∈ (0, 1),

E(S(x)) =
(αx)1−1/α

1− α
and Var(S(x)) =

(αx)1−2/α

2− α
.

Proof. Fix x > 0. Notice that f(0, x) = 0 and write ∂f
∂λ = f ′, ∂2f

∂λ2
= f ′′.

A simple calculation yields

E(S(x)) = −f ′|λ=0 =
∞∫
0

α−1/α(x+ y)−1/α dy =
(αx)1−1/α

1− α
.

Moreover,

−f ′′|λ=0 =
∞∫
0

α−2/α(x+ y)−2/α dy =
(αx)1−2/α

2− α
and

E(S(x)2) = −f ′′|λ=0 + (f ′)2|λ=0,

so Var(S(x)) = E(S(x)2)− (E(S(x)))2 = −f ′′|λ=0. �

Now, we describe tools which we use to analyse tails by means of character-
istic functions. For any random variable Z we denote by ϕZ(t) its characteristic
function. First, we recall an elementary but useful result which we apply in the
symmetric case for all α ∈ (0, 1).
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Lemma 2.5 ([5, Lemma 5.1]). For any random variable Z on R we have

P(|Z| > y) ¬ y

2

2/y∫
−2/y

(1− ϕZ(t)) dt.

Next, we introduce the idea of truncating the characteristic function which will
be applied for α ∈ (1, 2). Let us start by considering a totally asymmetric random
variable X with characteristic function

(2.3) E exp(itX) = exp

(∞∫
0

(eitx − 1− itx)
dx

xα+1

)
.

Unlike the asymmetric case when α ∈ (0, 1), the support of the distribution of a
random variable X with characteristic function (2.3) is the whole real line. Thus,
we need upper and lower estimates for both right and left tails. The method is to
split X into the sum X = X1 +X1 such that

ϕX1(t) = exp

( 1∫
0

(eitx − 1− itx)
dx

xα+1

)
,(2.4)

ϕX1(t) = exp

(∞∫
1

(eitx − 1− itx)
dx

xα+1

)
.(2.5)

It is easy to calculate that

∞∫
1

(eitx − 1− itx)
dx

xα+1
=
∞∫
1

(eitx − 1)
dx

xα+1
− it

α− 1

and thus the characteristic function of X1 can be expressed as

ϕX1(t) = exp

(
1

α
(ϕY (t)− 1)− it

α− 1

)
,

where the random variable Y has density α
xα+11(1,∞)(x). This means that

X1 + 1
α−1 has a compound Poisson distribution, i.e.

X1 +
1

α− 1
=

N∑
k=1

Yk,

where N ∼ Poisson(1/α) while Yk’s are independent random variables all dis-
tributed as Y and independent of N .

Similarly, for the symmetric α-stable random variable X with α ∈ (1, 2) with
characteristic function

(2.6) ϕX(t) = exp

( ∞∫
−∞

(eitx − 1)
dx

|x|α+1

)
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we use the split X = X̃1 + X̃1, where

ϕX̃1
(t) = exp

( 1∫
−1

(eitx − 1)
dx

|x|α+1

)
,(2.7)

ϕX̃1(t) = exp

( ∫
R\[−1,1]

(eitx − 1)
dx

|x|α+1

)
.(2.8)

Analogously to the asymmetric case we observe ϕX̃1(t) = exp
(
2
α(ϕỸ (t) − 1)

)
,

where the random variable Ỹ has density α
2|x|α+11R\[−1,1](x). So, again X̃1 is com-

pound Poisson given by X̃1 =
∑Ñ

k=1 Ỹk, where Ñ ∼ Poisson(2/α) and Ỹk’s are
independent, all distributed as Ỹ and independent of Ñ .

3. RESULTS FOR α ∈ (0, 1)

3.1. Totally asymmetric case. We now present results for a totally asymmet-
ric α-stable random variable X with characteristic function E exp(itX) =

exp
(∫∞

0
(eitx − 1) 1

xα+1 dx
)

and with series representation X d
=
∑∞

i=1(ατi)
−1/α.

THEOREM 3.1. Let α ∈ (0, 1) and y ­ 1. For a totally asymmetric α-stable
random variable X we have the tail estimate

(3.1) P
(
X ­ 1

1− α
+ 3y

)
¬ 2

αyα
.

Moreover, for y ­ 1 and θ ∈ (0, 1) we have

(3.2) P
(
X ­ θ

1− α
+ y

)
­ 2

3
(1− θ)2 1

1 + αyα
.

Proof. From Lemma 2.4 it follows that

ES
(

1

αyα

)
=

y1−α

1− α
and Var

(
S

(
1

αyα

))
=

y2−α

2− α
.
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Now,

P
(
X ­ 1

1− α
+ 3y

)
=
∞∫
0

e−xP
(

(αx)−1/α + S(x) > 3y +
1

1− α

)
dx

¬
1/(αyα)∫

0

e−x dx+
∞∫

1/(αyα)

e−xP
(
S(x) ­ 3y − (αx)−1/α +

1

1− α

)
dx

¬ 1− e−1/(αyα) +
∞∫

1/(αyα)

e−xP
(
S(x) ­ 2y +

1

1− α

)
dx

¬ 1

(αyα)
+ P

(
S

(
1

αyα

)
­ 2y +

1

1− α

) ∞∫
1/(αyα)

e−x dx

¬ 1

(αyα)
+ P

(
S

(
1

αyα

)
­ y + ES

(
1

αyα

)) ∞∫
1/(αyα)

e−x dx

¬ 1

αyα
+

Var
(
S
(

1
αyα

))
y2

e
− 1
αyα =

1

αyα
+

1

(2− α)yα
e
− 1
αyα ¬ 2

αyα
,

where in the third inequality we have used the elementary inequality 1− e−u ¬ u.
Also, if x > 1/(αyα), then (αx)−1/α < y. Next, we have used the fact that for
y ­ 1 we have y + y1−α

1−α ¬ 2y + 1
1−α and then we have applied Chebyshev’s

inequality.
We now turn to the lower bound. We use the decomposition X d

=
(

1
ατ1

)1/α
+

S(τ1). Note that if x ¬ 1/(αyα) then (αx)−1/α ­ y and hence

P
(

(ατ1)
−1/α + S(τ1) ­ y +

θ

1− α

)
­

1/(αyα)∫
0

e−xP
(
S(x) ­ θ

1− α

)
dx.

Moreover, since y ­ 1 and x ¬ 1/(αyα) we have S(x) ­ S(1/α), so by the
Paley–Zygmund inequality and Lemma 2.4 we obtain

1/(αyα)∫
0

e−xP
(
S(x) ­ θ

1− α

)
dx ­

1/(αyα)∫
0

e−xP
(
S

(
1

α

)
­ θ

1− α

)
dx

=
1/(αyα)∫

0

e−xP
(
S

(
1

α

)
­ θES

(
1

α

))
dx ­

1/(αyα)∫
0

e−x(1− θ)2 1

1 + (1−α)2
2−α

dx

­ 2

3
(1− θ)2

(
1− exp

(
− 1

αyα

))
,

where in the last line we have used 1

1+
(1−α)2
2−α

­ 2
3 . The conclusion follows from

the inequality 1− e−1/u > 1
1+u for u > 0. �
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3.2. Symmetric case. The lower bound for the symmetric case coincides for α ∈
(0, 1) and α ∈ (1, 2). However, as explained in the last section, a further analysis
is provided to reveal the Gaussian nature of tails in the latter case.

THEOREM 3.2. Let X be a symmetric α-stable random variable. Let y > 0.
For α ∈ (0, 1),

(3.3) P(X ­ y) ¬ 4

αyα
,

and for α ∈ (0, 1) ∪ (1, 2),

(3.4) P(X ­ y) ­ 1

2

1

2 + αyα
.

Proof. In order to apply Lemma 2.5 we need a lower estimate for the charac-
teristic function. To this end notice that

ϕX(t) = exp

( ∞∫
−∞

(eitx − 1)
dx

|x|α+1

)
= exp

(
2
∞∫
0

(cos(tx)− 1)
dx

xα+1

)
= exp

(
−2|t|α

∞∫
0

(1− cos z)
dz

zα+1

)
­ exp

(
−|t|α · 2−α 8

α(2− α)

)
,

where in the last inequality we have used

∞∫
0

(1− cos z)
dz

zα+1
¬

2∫
0

z2

2

dz

zα+1
+
∞∫
2

2
dz

zα+1
= 2−α · 4

α(2− α)
.

Denote Cα = 8
α(2−α) . Then

P(|X| > y) ¬ y

2

2/y∫
−2/y

(
1− exp

(
−
(
|t|
2

)α 8

α(2− α)

))
dt

= 2y
1/y∫
0

(1− exp(−Cαsα)) ds

¬ 2Cα
1 + α

1

yα
¬ 1

αyα
16

(1 + α)(2− α)
¬ 8

αyα
,

where in the second inequality we have used 1 − e−u ¬ u and in the last the fact
that α < 1.

For the lower bound we again condition on the first arrival time and use (τ̃i)i­1
defined in (2.1). By symmetry we have
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P(X ­ y) = P
(
ε1

(
α

2
τ1

)−1/α
+

(
α

2

)−1/α ∞∑
i=1

εi(τ̃i+τ1)
−1/α ­ y

)
­ P

(
ε1

(
α

2
τ1

)−1/α
­ y and

(
α

2

)−1/α ∞∑
i=1

εi(τ̃i+τ1)
−1/α ­ 0

)
=

1

2
P
(
ε1

(
α

2
τ1

)−1/α
­ y
)

=
1

4

2/(αyα)∫
0

e−x dx ­ 1

2

1

2+αyα
,

where we have used the inequality 1−e−1/u > 1
1+u for u > 0. �

4. RESULTS FOR α ∈ (1, 2)

4.1. Totally asymmetric case. We now consider a random variable X with charac-
teristic function (2.3) and we use the split X = X1 +X1, where the characteristic
functions of X1 and X1 are given by (2.4) and (2.5).

Lemma 4.1. For y ­ 1 one has the lower bound

(4.1) P
(
X1 ­ y − 1

α− 1

)
­ e−1/α 1

α

1

yα
­ 1

2
√
e

1

yα

and the upper bound

(4.2) P
(
X1 ­ y − 1

α− 1

)
¬
(
e−1/α

∞∑
k=1

kα+1

αkk!

)
1

yα
¬ 2

yα
.

Proof. We notice that

P
(
X1 ­ y − 1

α− 1

)
­ P(N = 1)P(Y1 ­ y) = e−1/α

1

α

1

yα

and e−1/α/α ­ 1/(2
√
e), since, by simple calculus, the function α 7→ e−1/α/α is

decreasing on the interval [1, 2]. On the other hand, whenever
∑N

n=1 Yn ­ t and
N = k then at least for one i = 1, . . . , k we have Yi ­ y/k, which occurs with
probability no greater than

∑k
i=1 P(Yi ­ y/k); thus

P
(
X1 ­ t− 1

α− 1

)
¬
∞∑
k=1

P(N = k)

(
k∑
i=1

P(Yi ­ y/k)

)
¬ e−1/α

∞∑
k=1

1

αkk!
k

(
y

k

)−α
=

(
e−1/α

∞∑
k=1

kα+1

αkk!

)
1

yα
¬ 2

yα
,
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where we have used the fact that for each k the function e−1/α k
α+1

αkk!
is decreasing

in α, so we plug in α = 1 and notice that
∑∞

k=1
k2

k! = 2e. �

Now we proceed to analyse X1, which is a more delicate task.

Lemma 4.2. For 0 ¬ y ¬ 1
2−α one has

P(X1 ­ y) ¬ e
1
4 e−

1
2
(2−α)y2 ,

and for 0 ¬ y ¬ 2
2−α ,

P(X1 ¬ −y) ¬ e4/3e−
1
2
(2−α)y2 .

Proof. We calculate

E exp(tX1) = exp

( 1∫
0

(etx − 1− tx)
dx

xα+1

)
= exp

(
1

2

t2

2− α
+

1∫
0

(
etx − 1− tx− 1

2
t2x2

)
dx

xα+1

)
.

We estimate the integrand using the following observation. Since tx ­ 0, we have

etx − 1− tx− 1

2
t2x2 =

1

3!
t3x3

∞∑
k=0

3!

(k + 3)!
tkxk =

1

3!
t3x3

∞∑
k=0

3!k!

(k + 3)!

1

k!
tkxk

¬ 1

6
t3x3

(
3

4
+

1

4

∞∑
k=0

1

k!
tkxk

)
=

1

6
t3x3

(
3

4
+

1

4
etx
)
.

For t ­ 0 we estimate

E exp(tX1) ¬ exp

(
1

2

t2

2− α
+

(
1

8
t3 +

1

24
t3et

) 1∫
0

x3
dx

xα+1

)
(4.3)

= exp

(
1

2

t2

2− α
+

1

3− α

(
1

8
t3 +

1

24
t3et

))
.

Now, for 0 ¬ y ¬ 1
2−α , taking ty = (2 − α)y we get ty ¬ 1. By Chebyshev’s

inequality and (4.3) we get

P(X1 ­ y) ¬ E exp(tyX1)e
−tyy ¬ exp

(
−1

2
(2− α)y2 +

1

8
+

1

24
e

)
¬ e1/4e−1/2(2−α)y2 .



Tails of α-stable distributions 333

Similarly, since for tx ¬ 0 we have |etx − 1 − tx − 1
2 t

2x2| ¬ 1
3! |t

3x3|, for t ¬ 0
we get

E exp(tX1) ¬ exp

(
1

2

t2

2− α
+
|t3|
6

1∫
0

x3
dx

xα+1

)
(4.4)

= exp

(
1

2

t2

2− α
+

1

6

|t3|
3− α

)
.

Again, for 0 ¬ y ¬ 2
2−α , taking ty = −(2 − α)y, by Chebyshev’s inequality we

get

P(X1 ¬ −y) ¬ E exp(−tyX1)e
tyy ¬ exp

(
−1

2
(2− α)y2 +

8

6

)
. �

For lower bounds we use the Paley–Zygmund inequality.

Lemma 4.3. For α ∈ (7/4, 2) and y ∈
[

2√
2−α ,

1
2−α

]
one has

(4.5) P
(
X1 ­

1

4
y

)
­ 10−2e−(2−α)y

2
,

while for α ∈ (1, 2) and y ∈
[

2√
2−α ,

2
2−α

]
one has

(4.6) P
(
X1 ¬ −

1

24
y

)
­ e · 10−3e−(2−α)y

2
.

Proof. Since for tx ­ 0 we have etx − 1− tx− 1
2 t

2x2 ­ 0, for t ­ 0 we get

E exp(tX1) ­ exp

(
1

2

t2

2− α

)
.(4.7)

Next, notice that for y ­ 2√
2−α we have 1

y ¬
2−α
4 y so

1

2
y − 1

2− α
1

y
­ 1

2
y − 1

2− α
2− α

4
y =

1

4
y,

and for ty = (2− α)y and λ = 1
e by (4.7) we have

1

ty
ln(λE exp(tyX1)) ­

1

ty
ln

(
λ exp

(
1

2

t2y
2− α

))
=

1

2

ty
2− α

+
lnλ

ty
=

1

2
y − 1

2− α
1

y
­ 1

4
y.
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This together with the Paley–Zygmund inequality, (4.7) and (4.3) (notice that
ty ¬ 1 for y ¬ 1

2−α ) yields (4.5):

P
(
X1 ­

1

4
y

)
­ P

(
X1 ­

1

ty
ln(λE exp(tyX1))

)
= P(exp(tyX1) ­ λE exp(tyX1))

­
(

1− 1

e

)2 (E exp(tyX1))
2

E exp(2tyX1)

­
(

1− 1

e

)2 exp
( t2y
2−α

)
exp
( 2t2y
2−α + t3y + 1

3 t
3
ye

2ty
)

­
(

1− 1

e

)2

e−(1+
1
3
e2)e−(2−α)y

2 ­ 10−2e−(2−α)y
2
.

For negative tails we use the estimate etx − 1− tx− 1
2 t

2x2 ­ 1
3! t

3x3 for tx ¬ 0,
which for t ¬ 0 yields

(4.8) E exp(tX1) ­ exp

(
1

2

t2

2− α
− 1

6
|t3|
)
.

Next, notice that for 2√
2−α ¬ y ¬

2
2−α we have 1

y ¬
2−α
4 y and (2− α)2y2 ¬ 4 ¬

2y, so

1

2
y − 1

2− α
1

2y
− 1

6
(2− α)2y2 ­ 1

2
y − 1

2− α
2− α

8
y − 1

3
y =

1

24
y.

From this for ty = −(2− α)y and λ = 1/
√
e, by (4.8) we have

1

|ty|
ln(λE exp(tyX1)) ­

1

|ty|
ln

(
λ exp

(
1

2

t2y
2− α

− 1

6
|t3y|
))

=
1

2

|ty|
2− α

+
lnλ

|ty|
− 1

6
|t2y|

=
1

2
y − 1

2− α
1

2y
− 1

6
(2− α)2y2 ­ 1

24
y.
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This together with the Paley–Zygmund inequality yields

P
(
X1 ¬ −

1

24
y

)
­ P

(
X1 ¬

1

ty
ln(λE exp(tyX1))

)
= P(exp(tyX1) ­ λE exp(tyX1))

­
(

1− 1√
e

)2 (E exp(tyX1))
2

E exp(2tyX1)

­
(

1− 1√
e

)2 exp
( t2y
2−α −

8
3

)
exp
( 2t2y
2−α + 8

6

)
= e2 ln(

√
e−1)−5e−(2−α)y

2 ­ e · 10−3e−(2−α)y
2
. �

To complete the picture we estimate P(X1 ¬ −y) in the case y ­ 2
2−α .

Lemma 4.4. For y ­ 2
2−α one has

P(X1 ¬ −y) ¬ exp(−
(
1
2

(
y + 1

α−1
))α/(α−1)(

1
2−α + 1

α−1
)1/(α−1) )

and

P
(
X1 ¬ −

(
1

e
− 1

4

)
y

)
­
(

1− 1√
e

)2

exp

(
−

(√
4− 2

e

(
y + 1

α−1
))α/(α−1)(

1
2−α + 1

α−1
)1/(α−1) )

.

Proof. For t < −1 we first split

1∫
0

(etx − 1− tx)
dx

xα+1
=

1/|t|∫
0

(etx − 1− tx)
dx

xα+1
+

1∫
1/|t|

(etx − 1− tx)
dx

xα+1
.

For t < −1 and 0 ¬ x ¬ 1/|t| we calculate etx − 1− tx ¬ 1
2 t

2x2 ¬ t2x2 and get

1/|t|∫
0

(etx − 1− tx)
dx

xα+1
¬

1/|t|∫
0

t2x2
dx

xα+1
=

1

2− α
|t|α.

Next, for x > 1/|t| we bound etx − 1− tx ¬ −tx = |t|x and get

1∫
1/|t|

(etx − 1− tx)
dx

xα+1
¬ |t|

1∫
1/|t|

x
dx

xα+1
=

1

α− 1
(|t|α − |t|).

Finally, we arrive at

1∫
0

(etx − 1− tx)
dx

xα+1
¬
(

1

2− α
+

1

α− 1

)
|t|α − 1

α− 1
|t|,
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which yields, for t < −1,

(4.9) E exp(tX1) ¬ exp

((
1

2− α
+

1

α− 1

)
|t|α − 1

α− 1
|t|
)
.

Let y ­ 2
2−α and ty < −1 be such that

(4.10) α

(
1

2− α
+

1

α− 1

)
|ty|α−1 = y +

1

α− 1
.

We estimate

P(X1 < −y) ¬ E exp(−tyX)etyy

¬ exp

((
1

2− α
+

1

α− 1

)
|ty|α −

1

α− 1
|ty| − y|ty|

)
= exp

(
−(α− 1)

(
1

2− α
+

1

α− 1

)
|ty|α

)
= exp

(
−
((
y + 1

α−1
)
(α− 1)(α−1)/α/α

)α/(α−1)(
1

2−α + 1
α−1

)1/(α−1) )

¬ exp

(
−
(
1
2

(
y + 1

α−1
))α/(α−1)(

1
2−α + 1

α−1
)1/(α−1) ),

where we have used infα∈(1,2)
(α−1)(α−1)/α

α = 1
2 . On the other hand, for t < −1

and 0 ¬ x ¬ 1/|t| we have etx − 1− tx ­ 1
e t

2x2 and we get

1/|t|∫
0

(etx − 1− tx)
dx

xα+1
­

1/|t|∫
0

t2x2

e

dx

xα+1
=

1

e

1

2− α
|t|α.

Similarly, for x > 1/|t| we bound etx − 1− tx ­ −1
e tx = 1

e |t|x. So,

1∫
1/|t|

(etx − 1− tx)
dx

xα+1
­ 1

e
|t|

1∫
1/|t|

x
dx

xα+1
=

1

e

1

α− 1
(|t|α − |t|).

Finally, we arrive at the estimate

(4.11) E exp(tX1) ­ exp

(
1

e

(
1

2− α
+

1

α− 1

)
|t|α − 1

e

1

α− 1
|t|
)
,

which for t̃y < −1 satisfying

(4.12)
(

1

2− α
+

1

α− 1

)
|t̃y|α−1 =

1

α− 1
+ y,
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which is equivalent to(
1

2− α
+

1

α− 1

)
|t̃y|α −

1

α− 1
|t̃y| = |t̃y|y,

and for λ = 1√
e

yields

(4.13)
1

|t̃y|
ln(λE exp(t̃yX))

­ 1

|t̃y|

(
ln(λ) +

1

e

(
1

2− α
+

1

α− 1

)
|t̃y|α −

1

e

1

α− 1
|t̃y|
)

=
1

|t̃y|

(
ln(λ) +

1

e
|t̃y|y

)
=

1

e
y − 1

2|t̃y|
.

To estimate 1/|t̃y| notice that from (4.12) for y ­ 2
2−α ­ 2 we have

|t̃y| ­ |t̃y|α−1 =
1

α−1 + y
1

2−α + 1
α−1
­ 1 ­ 2

y
,

which together with (4.13) yields

1

|t̃y|
ln(λE exp(t̃yX)) ­ 1

e
y − 1

2|t̃y|
­
(

1

e
− 1

4

)
y.

Finally, using the estimate just obtained, the Paley–Zygmund inequality, (4.9) and
(4.11) we arrive at

P
(
X1 ¬ −

(
1

e
− 1

4

)
y

)
­ P

(
X1 ¬ −

1

|t̃y|
ln(λE exp(t̃yX1))

)
= P

(
exp(t̃yX) ­ λE exp(t̃yX1)

)
­
(

1− 1√
e

)2 (E exp(t̃yX1))
2

exp(2t̃yX1)

­
(

1− 1√
e

)2 exp
(
2
e

(
1

2−α + 1
α−1

)
|t̃y|α − 2

e
1

α−1 |t̃y|
)

exp
((

1
2−α + 1

α−1
)
|2t̃y|α − 1

α−1 |2t̃y|
)

­
(

1− 1√
e

)2

exp

(
−
(

4− 2

e

)(
1

2− α
+

1

α− 1

)
|t̃y|α

)
=

(
1− 1√

e

)2

exp

(
−
(
4− 2

e

)(
y + 1

α−1
)α/(α−1)(

1
2−α + 1

α−1
)1/(α−1) )

­
(

1− 1√
e

)2

exp

(
−

(√
4− 2

e

(
y + 1

α−1
))α/(α−1)(

1
2−α + 1

α−1
)1/(α−1) )

. �

As an easy consequence of Lemmas 4.1–4.3 we have the following theorem.
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THEOREM 4.5. Let X be a strictly asymmetric α-stable random variable with
characteristic function (2.3). For any α ∈ (7/4, 2) and y ∈

[
2√
2−α ,

1
2−α

]
one has

P
(
X ­ 2y − 1

α− 1

)
¬ 2

e

1

yα
+ e1/4e−1/2(2−α)y

2
,(4.14)

P
(
X ­ 1

4
y − 1

α− 1

)
­ 1

400
√
e

(
30

1

yα
+ e−(2−α)y

2

)
;(4.15)

while for α ∈ (1, 2) and y ­ 1
2−α one has

P
(
X ­ 2y − 1

α− 1

)
¬ 8

yα
,(4.16)

P
(
X ­ y − 1

α− 1

)
­ 16 · 10−3

1

yα
.(4.17)

REMARK 4.6. Notice that from (4.15) it follows that for α close to 2 (in fact
for α > 7/4) and y = 2√

2−α the probability P
(
X ­ 1

4y −
1

α−1
)

is of order O(1).

We seemingly lack estimates for α ∈ (1, 7/4) but in this case 1
2−α = O(1) and

from (4.17) it follows that for α ∈ (1, 7/4) the probability P
(
X ­ y − 1

α−1
)

is of
order O(1) even for y = 1

2−α .

Proof of Theorem 4.5. To prove (4.14) we estimate

P
(
X ­ 2y − 1

α− 1

)
¬ P

(
X1 ­ y − 1

α− 1

)
+ P(X1 ­ y)

and then use (4.2) and the upper bound for P(X1 ­ y) from Lemma 4.2.
To prove (4.15) we write, for y ∈

[
2√
2−α ,

1
2−α

]
,

P
(
X ­ 1

4
y − 1

α− 1

)
­ P

(
X1 ­ 5

4
y − 1

α− 1

)
P(X1 ­ −y)

and then use (4.1) and Lemma 4.2 to obtain

P
(
X ­ 1

4
y − 1

α− 1

)
­ P

(
X1 ­ 5

4
y − 1

α− 1

)
P(X1 ­ −y)(4.18)

­ 1

2
√
e

4α

5αyα
(
1− e4/3e−

1
2
(2−α)y2)

­ 1

2
√
e

16

25yα
(
1− e4/3e−

1
2
(2−α) 4

2−α
)

­ 0.3

2
√
e

1

yα
.
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Next, for y ∈
[

2√
2−α ,

1
2−α

]
we also have

P
(
X ­ 1

4
y − 1

α− 1

)
­ P

(
X1 ­ 1− 1

α− 1

)
P
(
X1 ­

1

4
y

)
,

which together with (4.1) and (4.5) gives

(4.19) P
(
X ­ 1

4
y − 1

α− 1

)
­ 1

2
√
e

10−2e−(2−α)y
2
.

Summing (4.18) and (4.19) we get (4.15).
To prove (4.16), we differentiate (2.4) and get

EX1 = 0, EX2
1 =

1∫
0

x2
dx

xα+1
=

1

2− α

and

EX4
1 = 3(EX2

1 )2 +
1∫
0

x4
dx

xα+1
=

3

(2− α)2
+

1

4− α
.

From this we easily get for any y > 0 the estimate

(4.20) P(X1 ­ y) ¬ P(|X1| ­ y) ¬ EX4
1

y4
=

3

(2− α)2y4
+

1

(4− α)y4
,

and since for y ­ 1
2−α ,

(4.21)
1

(4− α)y4
¬ 1

(2− α)2y4
¬ 1

y2
¬ 1

yα
,

using also (4.2) we obtain (4.16):

P
(
X ­ 2y − 1

α− 1

)
¬ P(X1 ­ y) + P

(
X1 ­ y − 1

α− 1

)
¬ 3

yα
+

1

yα
+

5√
e

1

yα
¬ 8

yα
.

To prove (4.17), for y ­ 1
2−α we write

P
(
X ­ y − 1

α− 1

)
­ P

(
X1 ­ 3y − 1

α− 1

)
P(X1 ­ −2y)

and then use (4.1) and Lemma 4.2 to obtain

P
(
X ­ y− 1

α−1

)
­ P

(
X1 ­ 3y− 1

α−1

)
P(X1 ­ −2y)

­ 1

2
√
e

1

3αyα
P
(
X1 ­ −

2

2−α

)
­ 1

2
√
e

1

9yα
(
1−e4/3e−1/2(2−α)

4
(2−α)2

)
­ 16 ·10−3

1

yα
. �
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REMARK 4.7. For δ ∈ (0, 1/e) the equation δ · y = ln y has exactly two
solutions 1 < y1 < e < y2, and the larger one satisfies

1

δ
ln

(
1

δ

)
< y2 <

2

δ
ln

(
1

δ

)
.

From this we see that for α ≈ 2, the term containing 1
yα in (4.14) and (4.15) starts

to dominate the term containing exp(−κ(2− α)y2), κ ∈ {1/2, 1}, already for

y = O

(√
1

2− α
ln

(
1

2− α

))
.

Finally, to complete the picture, we analyse the decay of left tails of X .

THEOREM 4.8. Let X be a strictly asymmetric α-stable random variable,
α ∈ (1, 2), with characteristic function (2.3). For any y ∈

[
2√
2−α ,

2
(2−α)

]
one

has

P
(
X ¬ −y − 1

α− 1

)
¬ e4/3e−1/2(2−α)y2 ,(4.22)

P
(
X ¬ − 1

24
y − 1

α− 1

)
­ 10−3e−(2−α)y

2
;(4.23)

while for y ­ 2
2−α one has

P
(
X ¬ −y − 1

α− 1

)
¬ exp

(
−
(
1
2

(
y + 1

α−1
))α/(α−1)(

1
2−α + 1

α−1
)1/(α−1) )(4.24)

and

(4.25) P
(
X ¬ −

(
1

e
− 1

4

)
y − 1

α− 1

)

­ e−1 exp

(
−

(√
4− 2

e

(
y + 1

α−1
))α/(α−1)(

1
2−α + 1

α−1
)1/(α−1) )

.

Proof. Estimate (4.22) follows from Lemma 4.2 and the fact that X1 ­ −1
α−1 .

Estimate (4.23) follows from Lemma 4.3 and the fact that P
(
X1 = −1

α−1
)

=

e−1/α ­ 1/e.
Similarly, estimate (4.24) follows from Lemma 4.4 and the fact that

X1 ­ −1

α− 1
,
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while (4.25) follows from the estimate

P
(
X1 =

−1

α− 1

)
= e−1/α ­ 1

e

and Lemma 4.4. �

4.2. Symmetric case. In this section we provide tail estimates for symmetric α-
stable random variables in the case when α ∈ (1, 2). We follow two different
approaches and as a consequence we obtain two types of bounds. The first method
was already presented in Theorem 3.2. Estimates obtained in this way hold on the
whole real line, but do not capture an important property one might expect for α
close to 2, namely the Gaussian behavior of the tail which has already been pre-
sented in the asymmetric case. For this reason we also give a reasoning analogous
to that in the previous section, i.e. we estimate X̃1 and X̃1 with characteristic func-
tions (2.7) and (2.8) respectively. To simplify the notation we denote X̃1 byX1 and
X̃1 by X1.

Lemma 4.9. Let y ­ 1. Then

P(X1 ­ y) ­ 1

e

1

yα
,(4.26)

P(X1 ­ y) ¬ 1

yα
1

2

∞∑
k=1

e−2/α(2/α)kkα+1

k!
¬ 10

3

1

yα
.(4.27)

Proof. Recall that X1 =
∑N

k=1 Yk, where P(N = k) = e−2/α(2/α)k

k! and each
Yk has density α

2|x|α+11R\[−1,1](x). Arguing in the same manner as in Lemma 4.1
we obtain

P(X1 ­ y) ­ P(N = 1)P(Y1 ­ y) =
2

α
e−2/α

1

yα
­ 1

e

1

yα
,

since 2
αe
−2/α is increasing for α ∈ (1, 2). For the upper bound we have

P(X1 > y) ¬
∞∑
k=1

P(N = k)P
(
Y >

y

k

)
¬
∞∑
k=1

e−2/α(2/α)k

k!

k

2

(
y

k

)−α
=

1

yα
1

2

∞∑
k=1

e−2/α(2/α)kkα+1

k!
¬ 10

3

1

yα
,

where we estimate the function e−2/α(2/α)kkα+1

k! for k = 1, 2, 3 by its value at
α = 2 and for k = 4, 5, . . . by the value at α = 1. �

For both upper and lower bounds of tails of X1 we need an estimate for its
Laplace transform.
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Lemma 4.10. Let X1 be a random variable with characteristic function (2.8).
Then for t ∈ R,

E(exp(tX1)) ¬ exp

(
1

24
t4
(

14

15
+

1

15
cosh(t)

))
exp

(
1

2− α
t2
)
,(4.28)

E(exp(tX1)) ­ exp

(
1

2− α
t2
)
.(4.29)

Proof. We simply calculate

E(exp(tX1)) = exp

( 1∫
−1

(etx − 1− tx)
dx

|x|α+1

)
= exp

(
2

1∫
0

(cosh(tx)− 1)
dx

xα+1

)
= exp

(
2

1∫
0

∞∑
k=1

(t2x2)k

(2k)!

dx

xα+1

)
= exp

( 1∫
0

t2x2
dx

xα+1
+ 2

1∫
0

∞∑
k=2

(t2x2)k

(2k)!

dx

xα+1

)
= exp

(
t2

2− α
+

2

4!

1∫
0

t4x4
∞∑
k=0

4!(2k)!(x2t2)k

(2k + 4)!(2k)!

dx

xα+1

)
¬ exp

(
t2

2− α
+

2

4!

1∫
0

t4x4
(

14

15
+

1

15
cosh(tx)

)
dx

xα+1

)
¬ exp

(
t2

2− α
+

2

4!
t4
(

14

15
+

1

15
cosh(t)

)
1

4− α

)
¬ exp

(
1

24
t4
(

14

15
+

1

15
cosh(t)

))
exp

(
1

2− α
t2
)
.

The lower bound is obvious from the fourth line above. �

Lemma 4.11. For 0 ¬ y ¬ 2
2−α ,

(4.30) P(X1 ­ y) ¬ e2/45e−1/4(2−α)y2 ,

and for y ∈
[

2√
2−α ,

2
2−α

]
,

(4.31) P
(
X1 ­

√
2

4
y

)
­ 1

137
e−(2−α)y

2
.

Proof. Denote C(t) = 1
24 t

4
(
14
15 + 1

15 cosh(t)
)
. By Chebyshev’s inequality and

(4.28) we get

P(X1 > y) ¬ E(tX1)

exp(ty)
¬ exp(C(t)) exp

(
t2

2− α
− ty

)
.
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Choose t = 2−α
2 y, so t ¬ 1. Then, since cosh(1) ¬ 2, we have C(t) ¬ 2

45 and we
conclude that P(X1 ­ y) ¬ e

2
45 e−

1
4
(2−α)y2 .

To prove the lower bound we use the Paley–Zygmund inequality in the follow-
ing way. Let λ ∈ (0, 1). Then

P(exp(tX1) ­ λE exp(tX1)) ­ (1− λ)2
(E(tX1))

2

E(2tX1)

­ (1− λ)2
exp
(

2t2

2−α
)

exp(C(2t)) exp
(

4t2

2−α
)

= (1− λ)2 exp(−C(2t)) exp

(
− 2t2

2− α

)
.

Choose t = y(2−α)√
2

, so t ¬
√

2 and C(2t) ¬ C(2
√

2). Moreover, since y ­ 2√
2−α ,

we have, for λ = 1/e,

1

t
ln(λE exp(tX1)) ­

1

t
ln

(
λ exp

(
t2

2− α

))
=

y√
2
−

√
2

(2− α)y
­
√

2

4
y,

so finally

P
(
X1 ­

√
2

4
y

)
­ P(exp(tX1) ­ λE exp(tX1))

­ (1− e−1)2e−C(2
√
2)e−(2−α)y

2 ­ 1

137
e−(2−α)y

2
. �

We summarize the above results in the following.

THEOREM 4.12. Let X be a symmetric α-stable random variable, α ∈ (1, 2),
with characteristic function (2.6). For any y ∈

[
2√
2−α ,

2
2−α

]
one has

P(X ­ 2y) ¬ 10

3

1

yα
+ e2/45e−1/4(2−α)y

2
,(4.32)

P
(
X ­

√
2

4
y

)
­ 1

4e

1

yα
+

1

548
e−(2−α)y

2
;(4.33)

while for y ­ 2
2−α one has

P(X ­ 2y) ¬ 16

3

1

yα
,(4.34)

P(X ­ y) ­ 1

2

1

2 + αyα
.(4.35)



344 W. M. Bednorz, R. M. Łochowski and R. Martynek

Proof. We argue as in the proof of Theorem 4.5. For the upper bound we simply
apply (4.27) and (4.30) to get

P(X ­ 2y) ¬ P(X1 ­ y) + P(X1 ­ y) ¬ 10

3

1

yα
+ e2/45e−1/4(2−α)y

2
.

For the lower bound we use (4.26), (4.31) and symmetry of X1 and X1 to get

P
(
X ­

√
2

4
y

)
­ P(X ­ y) ­ P(X1 ­ y)P(X1 ­ 0) ­ 1

e

1

yα
1

2

and on the other hand

P
(
X ­

√
2

4
y

)
­ P

(
X1 ­

√
2

4
y

)
P(X1 ­ 0) ­ 1

137
e−(2−α)y

2 1

2
.

Summing the above inequalities yields (4.33).
To prove (4.34) we again proceed as in the proof of Theorem 4.5, namely we

differentiate (2.7) and get

EX1 = 0, EX2
1 = 2

1∫
0

x2
dx

xα+1
=

2

2− α

and

EX4
1 = 3(EX2

1 )2 + 2
1∫
0

x4
dx

xα+1
=

12

(2− α)2
+

2

4− α
.

By the same argument as for (4.20) and since y ­ 2
2−α we get

(4.36) P(X1 ­ y) =
1

2
P(|X1| ­ y)

¬ EX4
1

2y4
=

1

2

(
12

(2− α)2y4
+

2

(4− α)y4

)
¬ 2

yα
.

Combining this with (4.27) yields (4.34):

P(X ­ 2y) ¬ P(X1 ­ y) + P(X1 ­ y) ¬ 2

yα
+

10

3

1

yα
¬ 16

3

1

yα
.

The estimate (4.35) was presented in the proof of Theorem 3.2. �

REMARK 4.13. Both remarks following Theorem 4.5 apply also in this
case. For y = 2√

2−α the tail probability is of order O(1), and for y of or-

der O
(√

1
2−α ln 1

2−α
)

the term 1
yα (Pareto-like behavior) starts to dominate the

exp(−κ(2− α)y2), κ ∈ {1/2, 1}, term (Gaussian tail).
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