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Abstract. This paper studies a time-changed stochastic control problem,
where the underlying stochastic process is a Lévy noise time-changed
by an inverse subordinator. We establish a maximum principle for the
time-changed stochastic control problem. We also prove the existence and
uniqueness of the corresponding time-changed backward stochastic differ-
ential equation involved in the stochastic control problem. Some examples
are provided for illustration.
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1. INTRODUCTION

Uncertainty is inherent in the real world and changes over time, putting people’s
decisions at risk. A decision maker wants to select the best choice among all pos-
sible ones. Stochastic control theory serves as a tool for such dynamic optimization
problems. The world has witnessed many applications of stochastic control theory
in various fields such as biology [16], economics [3], and finance [15].

A well known approach to stochastic control problems is based on the maxi-
mum principle. This method for the Itô diffusion case was first studied by Kushner
[8] and Bismut [2] and further developed by Bensoussan [1], Peng [14], and oth-
ers. The jump diffusion case was formulated by Framstad, Øksendal and Sulem [4].
The idea of the maximum principle approach is to define a Hamiltonian function
and derive the adjoint equations, which involve a backward stochastic differential
equation. Under some sufficient conditions, the optimal control is a solution of a
coupled system of forward and backward stochastic differential equations.

Time-changed stochastic differential equations and related fractional Fokker–
Plank equations have become an indispensable tool in applied scientific areas. An
example is dX(t) = dB(Et) where X(0) = 0 and {Et, t ­ 0} is the inverse
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Figure 1. Log price of the Kalev stock [5]

of an α-stable subordinator [10]. The subdiffusion B(Et) is governed by the time-
fractional diffusion equation ∂αt q(x, t) = ∂2xq(x, t). Some time-changed stochastic
differential equations are used to describe real world phenomena. For example,
quantitative financial analysts exploit the Black–Scholes framework in derivative
pricing, in which the stock price is modeled by Brownian motion. However, some
stocks are not actively traded and their prices stay constant for some time periods.
Such phenomena can be modeled by time-changed Brownian motion but not by the
standard Brownian motion (see Figure 1). Fruitful studies in this area are available
[5], [9], [11], [13].

As time-changed stochastic processes have been adopted in more and more ar-
eas, the traditional stochastic control problem framework needs updates to fit the
time-changed cases. For example, a mutual fund manager, whose investment port-
folios consist of stocks whose prices follow time-changed Brownian motions as
shown in Figure 1, will find the time-changed stochastic control a better tool to
manage the portfolio than the traditional stochastic control. A biologist, who in-
vestigates how outside interferences affect the movements of insects, may find the
time-changed stochastic control problem better describing the experiment since
some insects sometimes move and sometimes stay still. Because time-changed
stochastic processes better describe many phenomena and people seek the optimal
choice based on them, we believe it is necessary to study stochastic control prob-
lems based on time-changed stochastic processes, which will build up a framework
to solve potential optimization problems.

In this paper, we investigate time-changed stochastic control problems using the
maximum principle method. Specifically, we consider the following time-changed
stochastic process [7], [12]:

(1.1) dX(t) = b(t, Et, X(t−), u(t)) dEt + σ(t, Et, X(t−), u(t)) dBEt

+
∫
|y|<c

γ(t, Et, X(t−), u(t), y) Ñ(dEt, dy),
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with X(0) = x0 6= 0 and the corresponding performance function

(1.2) J(u) = E
[T∫
0

g(t, Et, X(t), u(t)) dEt + h(X(T ))
]
, u ∈ A,

where u(t) = u(t, w) ∈ U ⊂ R is the control and A denotes the set of admissible
controls. The compensated Poisson random measure Ñ is defined as Ñ(dt, dy) =
N(dt, dy)− ν(dy) dt where ν is a Lévy measure such that

∫
R−{0}(|y|

2 ∧ 1) ν(dy)

<∞, and Et is the inverse of a subordinator D(t) with Laplace exponent φ(λ) =∫∞
0

(1−e−λx) ν(dx). In equation (1.1), dEt describes the drift of the time-changed
stochastic process, BEt is the Brownian motion with time changes incorporated,
and the Ñ(dEt, dy) captures the jumps in addition to the Brownian motion. We
establish a maximum principle for the stochastic control problem of finding u∗ ∈ A
such that

(1.3) J(u∗) = sup
u∈A

J(u).

In (1.2), the performance function can be the utility function, energy consumption
function that we care about. For example, the performance function in Example 4.1
is the utility function exp(−δt)u(t)2, where u(t) is the consumption rate. Given
the wealth level described by the time-changed process X(t), we seek the optimal
consumption rate u∗(t), as indicated in (1.3), that maximizes the overall utility
performance J(u) = E[

∫ τ
0

exp(−δt)u(t)2 dt].
Then we extend our result to a more general time-changed stochastic process

involving a time drift dt term:

dX(t) = µ(t, Et, X(t−), u(t)) dt+ b(t, Et, X(t−), u(t)) dEt

+ σ(t, Et, X(t−), u(t)) dBEt +
∫
|y|<c

γ(t, Et, X(t−), u(t), y) Ñ(dEt, dy)

with X(0) = x0 6= 0, and the corresponding performance function

J(u)

= E
[T∫
0

f(t, Et, X(t), u(t)) dt+
T∫
0

g(t, Et, X(t), u(t)) dEt+h(X(T ))
]
, u ∈ A.

The current stochastic problem framework is built upon the combination of a back-
ward stochastic differential equation and Hamiltonian equations [1], [2], [14]. This
paper extends the existing literature in two aspects. First, to our best knowledge,
we are the first to study the backward stochastic differential equation with inverse
subordinator as the time change, which paves the way to further time-changed
stochastic control problems. Second, we develop a maximum principle that pro-
vides a framework for solving time-changed stochastic control problems. We also
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provide examples to illustrate the importance of different components in determin-
ing the optimal solution.

As for the remaining parts of this paper, some necessary concepts and prelimi-
nary results will be given in Section 2. In Sections 3 and 4, we develop a maximum
principle for the time-changed stochastic control problems mentioned above and
provide some examples for illustration.

2. PRELIMINARIES

Let (Ω,F , (Ft), P ) be a filtered probability space satisfying the usual hypothe-
ses of completeness and right continuity. Assume that an independent Ft-adapted
Poisson random measure N is defined on R+ × (R − {0}) with compensator
Ñ and intensity measure ν, where ν is a Lévy measure such that Ñ(dt, dy) =
N(dt, dy)− ν(dy) dt and

∫
R−{0}(|y|

2 ∧ 1) ν(dy) <∞.
Let {D(t), t ­ 0} be a right continuous with left limits (RCLL) subordinator

starting from 0 with Laplace transform

(2.1) Ee−λD(t) = e−tφ(λ),

where the Laplace exponent φ(λ) is
∫∞
0

(1− e−λx) ν(dx), and define its inverse

(2.2) Et := inf {τ > 0 : D(τ) > t}.

LEMMA 2.1 ([7, Lemma 8]). Let {Et, t ­ 0} be the inverse of a subordinator
{D(t), t ­ 0} with Laplace exponent φ and infinite Lévy measure. Then E[eλEt ]
< ∞ for all λ ∈ R and t ­ 0. In particular, for each t > 0, the moments of Et of
all orders exist and are given by

(2.3) E[Ent ] = L−1s
[

n!

sφn(s)

]
(t), n ∈ N,

where L−1s [g(s)] denotes the inverse Laplace transform of a function g(s).

Consider the following time-changed stochastic differential equation:

(2.4) dX(t) = b(t, Et, X(t−), u(t)) dEt + σ(t, Et, X(t−), u(t)) dBEt

+
∫
|y|<c

γ(t, Et, X(t−), u(t), y) Ñ(dEt, dy)

with X(0) = x0 6= 0, where b, σ, γ are real-valued functions satisfying Assump-
tions 2.1 and 2.2 below, so that there exists a unique Gt-adapted process X(t)
satisfying time-changed SDE (1.1) (see [6, Lemma 4.1]). The filtration {Gt}t­0 is
defined as

(2.5) Gt =
⋂
u>t

{[Fy : 0 ¬ y ¬ u] ∨ σ[Ey : y ­ 0]}.
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ASSUMPTION 2.1 (Lipschitz condition). There exists a positive constant K
such that

(2.6) |b(t1, t2, x, u)− b(t1, t2, y, u)|2 + |σ(t1, t2, x, u)− σ(t1, t2, y, u)|2

+
∫
|z|<c
|γ(t1, t2, x, u, z)− γ(t1, t2, y, u, z)|2 ν(dz) ¬ K|x− y|2

for all t1, t2 ∈ R+ and x, y ∈ R.

ASSUMPTION 2.2. If X(t) is an RCLL and Gt-adapted process, then

(2.7) b(t, Et, X(t), u(t)), σ(t, Et, X(t), u(t)), γ(t, Et, X(t), u(t), y) ∈ L(Gt),

where L(Gt) denotes the class of left continuous with right limits (LCRL) and Gt-
adapted processes.

The process u(t) = u(t, w) ∈ U ⊂ R is the control. Assume that u is adapted
and RCLL, and that the corresponding equation (1.1) has a unique strong solution
X(u)(t), t ∈ [0, T ]. Such controls are called admissible. The set of admissible
controls is denoted by A.

LEMMA 2.2 (Itô formula for time-changed Lévy noise, [12, Lemma 3.1]). Let
D(t) be an RCLL subordinator and Et its inverse process as in (2.2). Let X be the
process defined as follows:

(2.8) X(t) = x0 +
t∫
0

µ(t, Et, X(t−)) dt+
t∫
0

b(t, Et, X(t−)) dEt

+
t∫
0

σ(t, Et, X(t−)) dBEt +
t∫
0

∫
|y|<c

γ(t, Et, X(t−), y) Ñ(dEt, dy),

where µ, b, σ, γ are measurable functions such that all integrals are defined. Here
c is the maximum allowable jump size. Then, for all F ∈ C1,1,2(R+×R+×R,R),
with probability 1,

(2.9) F (t, Et, X(t))− F (0, 0, x0)

=
t∫
0

L1F (s, Es, X(s−)) ds+
t∫
0

L2F (s, Es, X(s−)) dEs

+
t∫
0

∫
|y|<c

[
F (s, Es, X(s−)+γ(s, Es, X(s−), y))−F (s, Es, X(s−))

]
Ñ(dEs, dy)

+
t∫
0

Fx(s, Es, X(s−))σ(s, Es, X(s−)) dBEs ,

where



198 E. Nane and Y. Ni

L1F (t1, t2, x) = Ft1(t1, t2, x) + Fx(t1, t2, x)µ(t1, t2, x),

L2F (t1, t2, x) = Ft2(t1, t2, x) + Fx(t1, t2, x)b(t1, t2, x)

+ 1
2Fxx(t1, t2, x)σ(t1, t2, x)2

+
∫
|y|<c

[
F (t1, t2, x+ γ(t1, t2, x, y))− F (t1, t2, x)

− Fx(t1, t2, x)γ(t1, t2, x, y)
]
ν(dy).

LEMMA 2.3 (Existence and uniqueness for BSDE). Consider the following
time-changed backward stochastic differential equation:

(2.10) dX(t) = −µ(t, Et, X(t−), u(t)) dEt + u(t) dBEt

+
∫

R\{0}
h(t, z) Ñ(dEt, dz),

with X(T ) = X , where µ ∈ L2(R+,R+,R,R) and h ∈ L2(R+,R). If there
exists a positive constant Lµ > 0 such that |µ(t1, t2, x1, u1)− µ(t1, t2, x2, u2)| ¬
Lµ(|x1−x2|+|u1−u2|), then there exists a unique solution (X(t), u(t)) of (2.10).

Proof. To prove uniqueness, suppose (X1(t), u1(t)) and (X2(t), u2(t)) are two
solutions to (2.10) in L2(Ω× R+)× L2(Ω× R+). By the Itô formula,

(2.11) |X1(T )−X2(T )|2 − |X1(t)−X2(t)|2 =
T∫
t

|u1(s)− u2(s)|2 dEs

+
T∫
t

2(X1(s)−X2(s))
[
−
(
µ(s, Es, X1(s), u1(s))− µ(s, Es, X2(s), u2(s))

)
dEs

+ (u1(s)− u2(s)) dBEs

]
Thus,

(2.12) |X1(t)−X2(t)|2 +
T∫
t

|u1(s)− u2(s)|2 dEs

+
T∫
t

2(X1(s)−X2(s))
(
u1(s)− u2(s)

)
dBEs

=
T∫
t

2(X1(s)−X2(s))
(
µ(s, Es, X1(s), u1(s))− µ(s, Es, X2(s), u2(s))

)
dEs

¬
T∫
t

2Lµ|X1(s)−X2(s)|
(
|X1(s)−X2(s)|+ |u1 − u2|

)
dEs

¬
T∫
t

2Lµ

[
|X1(s)−X2(s)|2+

Lµ
2
|X1(s)−X2(s)|2+

1

2Lµ
|u1(s)−u2(s)|2

]
dEs

= (2Lµ + L2
µ)

T∫
t

|X1(s)−X2(s)|2 dEs +
T∫
t

|u1(s)− u2(s)|2 dEs.
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Take expectations on both sides to get

(2.13) E[|X1(t)−X2(t)|2] ¬ (2Lµ + L2
µ)E
[T∫
t

|X1(s)−X2(s)|2 dEs
]
.

Note that we apply the martingale property to derive inequality (2.13) and give
some details below.

T∫
t

(X1(s)−X2(s))(u1(s)− u2(s)) dBEs

=
∞∫
0

1{t¬s¬T}(X1(s)−X2(s))
(
u1(s)−u2(s)

)
dBEs

=
∞∫
0

1{t¬D(s−)¬T}
(
X1(D(s−))−X2(D(s−))

)(
u1(D(s−))−u2(D(s−))

)
dBs,

since (X1(t), u1(t)) and (X2(t), u2(t)) are in L2(Ω× R+),

E
∞∫
0

∣∣1{t¬D(s−)¬T}
(
X1(D(s−))−X2(D(s−))

)(
u1(D(s−))− u2(D(s−))

)∣∣2ds
¬ E

∞∫
0

∣∣(X1(D(s−))−X2(D(s−)))
(
u1(D(s−))− u2(D(s−))

)∣∣2ds <∞,
we have

E
T∫
t

(X1(s)−X2(s))(u1(s)− u2(s)) dBEs

= E
∞∫
0

1{t¬D(s−)¬T}
(
X1(D(s−))−X2(D(s−))

)(
u1(D(s−))−u2(D(s−))

)
dBs

= 0.

Next we apply time-changed Gronwall’s method of [17, Lemma 3.1]. Define
F (t) =

∫ T
t
|X1(s)−X2(s)|2 dEs. Then F (T ) = 0 and

−d(F (t) exp(kEt)) = − exp(kEt) dF (t)− k exp(kEt)F (t) dEt

= exp(kEt)
(
|X1(t)−X2(t)|2 − k

T∫
t

|X1(s)−X2(s)|2 dEs
)
dEt,

thus

−F (T ) exp(kET ) + F (t) exp(kEt)

=
T∫
t

[
exp(kEs)

(
|X1(s)−X2(s)|2 − k

T∫
s

|X1(u)−X2(u)|2 dEu
)]
dEs.
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Taking expectations and letting k = 2Lµ + L2
µ implies that

E[F (t) exp(kEt)]

= E
[T∫
t

exp(kEs)
(
|X1(s)−X2(s)|2 − k

T∫
s

|X1(u)−X2(u)|2 dEu
)
dEs

]
= E

[
E
[T∫
t

exp(kEs)
(
|X1(s)−X2(s)|2

− k
T∫
s

|X1(u)−X2(u)|2 dEu
)
dEs

] ∣∣∣ {σ(Es, s ∈ (t, T ))}
]

= E
[T∫
t

exp(kEs)E
(
|X1(s)−X2(s)|2

− k
T∫
s

|X1(u)−X2(u)|2 dEu
)
dEs

∣∣∣ {σ(Es, s ∈ (t, T ))}
]

¬ 0.

It follows that

(2.14) E[F (t)] ¬ E[F (t) exp(kEt)] ¬ 0,

so X1(s) = X2(s) a.s. for all s ∈ (t, T ). By (2.11), since X1(s) = X2(s) for a.e.
s ∈ (t, T ), we have

∫ T
t
|u1(s) − u2(s)|2 dEs = 0, thus u1(s) = u2(s) for a.e.

s ∈ (t, T ). The uniqueness is proved.
To prove the existence, let u0(t) = 0, and {(Xn(t), un(t)) : 0 ¬ t ¬ T}n­1 be

a sequence defined recursively by

Xn−1(t)−Xn(t) = −
[T∫
t

µ(s, Es, Xn−1(s), un−1(s)) dEs −
T∫
t

un−1(s) dBEs

−
T∫
t

∫
R\{0}

h(s, z) Ñ(dEs, dz)
]
.

Then 

dXn(t) = −µ(t, Et, Xn−1(t), un−1(t)) dEt + un−1(t) dBEt

+
∫

R\{0}
h(t, z) Ñ(dEt, dz),

dXn+1(t) = −µ(t, Et, Xn(t), un(t)) dEt + un(t) dBEt

+
∫

R\{0}
h(t, z) Ñ(dEt, dz),

Xn(T ) = Xn+1(T ) = X.
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By the Itô formula of Lemma 2.2, there exists k > 0 such that

|Xn+1(t)−Xn(t)|2 +
T∫
t

(un(s)− un−1(s))2 dEs

+ 2
T∫
t

(Xn+1(s)−Xn(s))(un(s)− un−1(s)) dBEs

= 2
T∫
t

(Xn+1(s)−Xn(s))

· (µ(s, Es, Xn(s), un(s))− µ(s, Es, Xn−1(s), un−1(s))) dEs

¬ 2Lµ
T∫
t

|Xn+1(s)−Xn(s)|(|Xn(s)−Xn−1(s)|+ |un(s)− un−1(s)|) dEs

¬ k
[T∫
t

|Xn+1(s)−Xn(s)|2 dEs +
T∫
t

|Xn(s)−Xn−1(s)|2 dEs
]

+
1

2

T∫
t

|un(s)− un−1(s)|2 dEs.

Taking expectations on both sides implies

(2.15) E|Xn+1(t)−Xn(t)|2 +
1

2
E
T∫
t

|un(s)− un−1(s)|2 dEs

¬ kE
[T∫
t

|Xn+1(s)−Xn(s)|2 dEs +
T∫
t

|Xn(s)−Xn−1(s)|2 dEs
]
.

Define Fn(t) =
∫ T
t
|Xn(s)−Xn−1(s)|2 dEs for all n ­ 1. Then Fn(T ) = 0 and

−d
(
Fn+1(t) exp(kEt)

)
= − exp(kEt) dFn+1(t)− k exp(kEt)Fn+1(t) dEt

= exp(kEt)
[
|Xn+1(t)−Xn(t)|2 − k

T∫
t

|Xn+1(s)−Xn(s)|2 dEs
]
dEt.

By a similar argument to that for uniqueness and using (2.15),

E[Fn+1(t) exp(kEt)] = E
[T∫
t

exp(kEs)
[
|Xn+1(s)−Xn(s)|2

− k
T∫
s

|Xn+1(l)−Xn(l)|2 dEl
]
dEs

]
= E

[
E
[T∫
t

exp(kEs)
[
|Xn+1(s)−Xn(s)|2

− k
T∫
s

|Xn+1(l)−Xn(l)|2 dEl
]
dEs

] ∣∣∣ {σ(Es, s ∈ (t, T ))}
]
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= E
[T∫
t

exp(kEs)E
[
|Xn+1(s)−Xn(s)|2

− k
T∫
s

|Xn+1(l)−Xn(l)|2 dEl
]
dEs

∣∣∣ {σ(Es, s ∈ (t, T ))}
]

¬ E
[T∫
t

exp(kEs)kE
[T∫
s

|Xn(l)−Xn−1(l)|2 dEl
]
dEs

∣∣∣ {σ(Es, s ∈ (t, T ))}
]

= E
[T∫
t

k exp(kEs)E[Fn(s)] dEs

∣∣∣ {σ(Es, s ∈ (t, T ))}
]

= E
[T∫
t

k exp(kEs)Fn(s) dEs

]
,

and letting t = 0 we get

EFn+1(0) ¬ E
T∫
0

kekEsFn(s) dEs ¬ E
[
(ekET )n

F1(0)

n!

]
→ 0

as n → ∞. Thus, {Xn} is a Cauchy sequence in L2(Ω× R+). Taking (2.15) into
consideration, {un} is also a Cauchy sequence in L2(Ω×R+). Thus, the existence
of solution to (2.10) is proved. �

3. TIME-CHANGED STOCHASTIC CONTROL PROBLEM

In this section, we solve a time-changed stochastic control problem through the
maximum principle approach. An example is provided to illustrate how our method
works in a particular case.

We consider a performance criterion J = J(u) of the form

(3.1) J(u) = E
[T∫
0

g(t, Et, X(t), u(t)) dEt + h(X(T ))
]
, u ∈ A,

where g : [0, T ]×R+ ×R×U → R is continuous, h : R→ R is C1, T <∞ is a
fixed deterministic time and

E
[T∫
0

g(t, Et, X(t), u(t)) dEt + h(X(T ))
]
<∞, ∀u ∈ A.

The stochastic control problem is to find an optimal control u∗ ∈ A such that

(3.2) J(u∗) = sup
u∈A

J(u).

Since Et is right continuous and nondecreasing, dEt
dt exists for t ­ 0 a.e.
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Define the Hamiltonian H : [0, T ]× R+ × R× U × R× R×R by

(3.3) H(t1, t2, x, u, p, q, r) = g(t1, t2, x, u) + pb(t1, t2, x, u) + qσ(t1, t2, x, u)

+
∫
R
γ(t1, t2, x, u, z)r(t2, z) ν(dz),

or

H(t, Et, X(t), u(t), p(t), q(t), r(t, z))

= g(t, Et, X(t), u(t)) + p(t)b(t, Et, X(t), u(t))

+ q(t)σ(t, Et, X(t), u(t)) +
∫
R
γ(t, Et, X(t), u(t), z)r(Et, z) ν(dz),

where R is the set of functions r : R+ × R → R such that the integral in (3.3)
exists.

Define the adjoint equation for the unknown processes p(t) ∈ R, q(t) ∈ R,
and r(t, z) ∈ R to be the backward stochastic differential equation

(3.4)

dp(t) = −Hx(t, Et, X(t), u(t), p(t), q(t), r(t, ·)) dEt
+ q(t) dBEt +

∫
R
r(Et, z) Ñ(dEt, dz), t < T,

p(T ) = hx(X(T )).

THEOREM 3.1 (Time-changed maximum principle). Let û ∈ A with cor-
responding solution X̂ = X(û) of (1.1) and suppose there exists a solution
(p̂(t), q̂(t), r̂(t, z)) of the corresponding adjoint equation (3.4) satisfying

E
[T∫
0

(X̂(t)−X(u)(t))2
(
q̂(t)2 +

∫
R
r̂(Et, z)

2 ν(dz)
)
dEt

]
<∞

and

E
[T∫
0

p̂(t)2
(
σ(t, Et, X

(u)(t), u(t))2 +
∫
R
γ(t, Et, X

(u)(t), u(t), z)2 ν(dz)
)
dEt

]
<∞,

for u ∈ A. Moreover, suppose that

H(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·)) = sup
v∈U

H(t, Et, X̂(t), v, p̂(t), q̂(t), r̂(t, ·))

for all t, h(x) in (3.1) is a concave function of x, and

Ĥ(x) := max
v∈U

H(t1, t2, x, v, p̂(t), q̂(t), r̂(t, ·))

exists and is a concave function of x for all t ∈ [0, T ]. Then û is an optimal control
of the stochastic control problem (3.2).



204 E. Nane and Y. Ni

Proof. Let u ∈ A be an admissible control with the corresponding state process
X(t) = X(u)(t). We would like to show that

(3.5) J(û)− J(u) = E
[T∫
0

[g(t, Et, X̂(t), û(t))− g(t, Et, X(t), u(t))] dt

+ h(X̂(T ))− h(X(T ))
]
­ 0.

Since g is concave, using the Itô formula (2.9) we obtain

E[h(X̂(T ))− h(X(T ))]

­ E[hx(X̂(T ))(X̂(T )−X(T ))] = E[(X̂(T )−X(T ))P̂ (T )]

= E
[T∫
0

(X̂(t)−X(t)) dp̂(t)+
T∫
0

p̂(t) d(X̂(t)−X(t))+
T∫
0

dp̂(t) d(X̂(t)−X(t))
]

= E
[T∫
0

(X̂(t)−X(t)) dp̂(t)+
T∫
0

p̂(t) d(X̂(t)−X(t))

+
T∫
0

q̂(t)
(
σ(t, Et, X̂(t), û(t))−σ(t, Et, X(t), u(t))

)
dEt

+
T∫
0

∫
R
r̂(t, z)

(
γ(t, Et, X̂(t), û(t))−γ(t, Et, X(t), u(t))

)
ν(dz) dEt

]
.

We have

E
[T∫
0

p̂(t) d(X̂(t)−X(t))
]

= E
[T∫
0

p̂(t)
(
b(t, Et, X̂(t), u(t))− b(t, Et, X(t), u(t))

)
dEt

]
.

Thus,

(3.6) J(û)− J(u)

= E
[T∫
0

(X̂(t)−X(t)) dp̂(t) +
T∫
0

(
g(t, Et, X̂(t), û(t))− g(t, Et, X(t), u(t))

)
dEt

+
T∫
0

p̂(t)
(
b(t, Et, X̂(t), û(t))− b(t, Et, X(t), u(t))

)
dEt

+
T∫
0

q̂(t)
(
σ(t, Et, X̂(t), û(t))−σ(t, Et, X(t), u(t))

)
dEt

+
T∫
0

∫
R
r̂(t, z)

(
γ(t, Et, X̂(t), û(t))− γ(t, Et, X(t), u(t))

)
ν(dz) dEt

]
.
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In addition,

(3.7)
H(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t))−H(t, Et, X(t), u(t), p̂(t), q̂(t), r̂(t))

=
(
g(t, Et, X̂(t), û(t))− g(t, Et, X(t), u(t))

)
+ p̂(t)

(
b(t, Et, X̂(t), û(t))− b(t, Et, X(t), u(t))

)
+ q̂(t)

(
σ(t, Et, X̂(t), û(t))− σ(t, Et, X(t), u(t))

)
+
∫
R
r̂(t, z)

(
γ(t, Et, X̂(t), û(t))− γ(t, Et, X(t), u(t))

)
ν(dz),

and by (3.4) we have

(3.8) (X̂(t)−X(t))dp̂(t) = X̂(t)dp̂(t)−X(t)dp̂(t)

= X̂(t)
[
−Hx(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·)) dEt

+ q̂(t) dBEt +
∫
R
r̂(t, z) Ñ(dEt, dz)

]
−X(t)

[
−Hx(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·)) dEt

+ q̂(t) dBEt +
∫
R
r̂(t, z) Ñ(dEt, dz)

]
= −(X̂(t)−X(t))Hx(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·)) dEt

+ (X̂(t)−X(t))
(
q̂(t) dBEt +

∫
R
r̂(t, z) Ñ(dEt, dz)

)
.

Then, since H is concave in x, inserting (3.7) and (3.8) into (3.6) and following
the proof in [4], we get

J(û)− J(u) = E
[T∫
0

−(X̂(t)−X(t))Hx(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·)) dEt

+
T∫
0

[
H(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·))

−H(t, Et, X(t), u(t), p̂(t), q̂(t), r̂(t, ·))
]
dEt

­ 0. �

REMARK 3.1. The maximum principle suggests that the optimal control can
be solved using the Hamiltonian framework, which is a boundary value problem
and a maximum condition of a function called the Hamiltonian. The advantage
of the maximum principle is that maximizing the Hamiltonian is easier and more
feasible than directly solving the original stochastic control problem. This leads to
closed form solutions for certain classes of optimal control problems.
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EXAMPLE 3.1 (The time-changed stochastic linear regulator problem). The
linear regulator problem aims to reduce the amount of work or energy consumed
by the control system to optimize the controller. In this example, we consider the
following time-changed stochastic linear regulator problem:

Φ(x0) = inf
u∈A

E
[T∫
0

X(t)2 + u(t)2

2
dEt + λX(T )2

]
,

where

dX(t) = u(t) dEt + σ dBEt +
∫
R
z Ñ(dEt, dz), X(0) = x0.

Consider the Hamiltonian

H(t1, t2, x, u, p, q, r) =
x2 + u2

2
+ pu+ σq +

∫
R
γz ν(dz).

The adjoint equations are

(3.9)

dp(t) = −X(t) dEt + q(t) dBEt +
∫
R
r(Et, z) Ñ(dEt, dz),

p(T ) = 2λX(T ).

The first and second order condition implies that the Hamiltonian H(t1, t2, x, u,
p, q, r) achieves its minimum at u∗(t) = −p(t).

To find an explicit solution of u∗(t), suppose p(t) = h(Et)X(t), where h :
R+ → R+. Then u∗(t) = −h(Et)X(t) and

(3.10) dp(t) = h(Et)dX(t) + h′(Et)X(t) dEt

= h(Et)
(
u(t) dEt + σ dBEt +

∫
R
z Ñ(dEt, dz)

)
+ h′(Et)X(t) dEt

= X(t)(−h(Et)
2 + h′(Et)) dEt + h(Et)σ dBEt + h(Et)

∫
R
z Ñ(dEt, dz).

Comparing (3.9) and (3.10) yields−h(Et)
2 +h′(Et) = −1 and h(ET ) = 2λ. The

general solution to this ordinary differential equation gives

(3.11) h(Et) = −2λ− 1 + (2λ+ 1)e2(Et−ET )

2λ− 1− (2λ+ 1)e2(Et−ET )
.

Thus, we have an explicit formula for the optimal control, u∗(t) = −h(Et)X(t).
Similarly, q(t) = h(Et)σ and r(Et, z) = h(Et)z. A simulation of the optimal
control u∗(t) with λ = −1/2, σ = 1, x0 = −.01, standard normal distribution ν,
and inverse stable subordinator E(t) having α = .9 is displayed in Figure 2.
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Figure 2. Simulation of u∗(t) for Example 1, α = 0.9

Figure 3. Simulation of u∗(t) for Example 1, α = .7

Figure 4. Simulation of u∗(t) for Example 1, α = .5

Keeping all other parts the same as in Figure 2, we also simulate the optimal
control u∗(t) for α = .7 and α = .5 in Figures 3 and 4, respectively. Overall,
replacing t byEt would only insert some constant periods into the original process.
As α gets closer to 1, the constant periods vanish gradually.

REMARK 3.2. To demonstrate the above example in an intuitive way, we sim-
plify the specification by letting λ = 1/2, σ = 1, and z = 0. The example problem
becomes seeking the optimal control of the energy consumption system:

(3.12) Φ(x0) = inf
u∈A

E
[T∫
0

X(t)2 + u(t)2

2
dEt +

X(T )2

2

]
,
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where

(3.13) dX(t) = u(t) dEt + dBEt , X(0) = x0.

In this case, h(Et) = 1 and u∗(t) = −X(t). Thus, the optimal control is du∗(t) =
−u∗(t) dEt − dBEt , which means that the optimal control keeps the energy con-
sumption constant over time.

4. A MORE GENERAL TIME-CHANGED STOCHASTIC CONTROL PROBLEM

Now we extend the time-changed SDE (1.1) to a more general case by adding a
time drift term:

dX(t) = µ(t, Et, X(t−), u(t)) dt+ b(t, Et, X(t−), u(t)) dEt

+ σ(t, Et, X(t−), u(t)) dBEt +
∫
|y|<c

γ(t, Et, X(t−), u(t), y) Ñ(dEt, dy)

with X(0) = x0 6= 0, where µ, b, σ, γ are real-valued functions satisfying As-
sumptions 2.1 and 2.2.

Suppose the performance function is given by

(4.1) J(u) = E
[T∫
0

f(t, Et, X(t), u(t)) dt

+
T∫
0

g(t, Et, X(t), u(t)) dEt + h(X(T ))
]
, u ∈ A,

where the functions f, g : [0, T ]× R+ × R× U → R are continuous, h : R→ R
is C1, T <∞ is a fixed deterministic time and

E
[T∫
0

f(t, Et, X(t), u(t)) dt

+
T∫
0

g(t, Et, X(t), u(t)) dEt + h(X(T ))
]
<∞, ∀u ∈ A.

The stochastic control problem is to find an optimal control u∗ ∈ A such that

(4.2) J(u∗) = sup
u∈A

J(u).

REMARK 4.1. The performance functions (3.1) and (4.1) are slightly different
in terms of their integral kernels. This difference results in different Hamiltonians
and adjoint equations.
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Define the Hamiltonian H : [0, T ]× R+ × R× U × R× R×R → R by

H(t1, t2, x, u, p, q, r) =
(
pµ(t1, t2, x, u) + f(t1, t2, x, u)

)
+
(
pb(t1, t2, x, u) + qσ(t1, t2, x, u) + g(t1, t2, x, u)

)dt2
dt1

+
∫
R
γ(t1, t2, x, u, z)r(t, z) ν(dz)

dt2
dt
,

or

H(t, Et, X(t), u(t), p(t), q(t), r(t, z))

=
(
p(t)µ(t, Et, X(t), u(t)) + f(t, Et, X(t), u(t))

)
+
(
p(t)b(t,X(t), u(t)) + q(t)σ(t, Et, X(t), u(t)) + g(t, Et, X(t), u(t))

)dEt
dt

+
∫
R
γ(t, Et, X(t), u(t), z)r(t, z) ν(dz)

dEt
dt

.

Define the adjoint equation to be

dp(t) = −Hx(t, Et, X(t), u(t), p(t), q(t), r(t, ·)) dt
+ q(t) dBEt +

∫
R
r(t, z) Ñ(dEt, dz), t < T,

p(T ) = hx(X(T )).

THEOREM 4.1 (Time-changed maximum principle). Let û ∈ A with corre-
sponding solution X̂=X(û) and suppose there exists a solution (p̂(t), q̂(t), r̂(t, z))
of the corresponding adjoint equation (3.4) satisfying

(4.3) E
[T∫
0

(X̂(t)−X(u)(t))2
(
q̂(t)2 +

∫
R
r̂(t, z)2 ν(dz)

)
dEt

]
<∞

and for all u ∈ A,

E
[T∫
0

p̂(t)2
(
σ(t, Et, X

(u)(t), u(t))2

+
∫
R
γ(t, Et, X

(u)(t), u(t), z)2 ν(dz)
)
dEt

]
<∞.

Moreover, suppose that

H(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·)) = sup
v∈U

H(t, Et, X̂(t), v, p̂(t), q̂(t), r̂(t, ·))
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for all t > 0, h(x) in (4.1) is a concave function of x, and

(4.4) Ĥ(x) := max
v∈U

H(t1, t2, x, v, p̂(t), q̂(t), r̂(t, ·))

exists and is a concave function of x for all t ∈ [0, T ]. Then û is an optimal control
of the stochastic control problem (4.2).

Proof. Let u ∈ A be an admissible control with the corresponding state process
X(t) = X(u)(t). We would like to show that

J(û)− J(u) = E
[T∫
0

[f(t, Et, X̂(t), û(t))− f(t, Et, X(t), u(t))] dt

+
T∫
0

[g(t, Et, X̂(t), û(t))− g(t, Et, X(t), u(t))] dEt+h(X̂(T ))−h(X(T ))
]
­ 0.

Since h is concave, using the Itô formula (2.9) we get

E[h(X̂(T ))− g(X(T ))] ­ E[hx(X̂(T ))(X̂(T )−X(T ))]

= E[(X̂(T )−X(T ))p̂(T )]

= E
[T∫
0

(X̂(t)−X(t)) dp̂(t) +
T∫
0

p̂(t) d(X̂(t)−X(t)) +
T∫
0

dp̂(t) d(X̂(t)−X(t))
]

= E
[T∫
0

(X̂(t)−X(t)) dp̂(t) +
T∫
0

p̂(t) d(X̂(t)−X(t))

+
T∫
0

q̂(t)
(
σ(t, Et, X̂(t), û(t))−σ(t, Et, X(t), u(t))

)
q̂(t) dEt

+
T∫
0

∫
R
r̂(t, z)

(
γ(t, Et, X̂(t), û(t))−γ(t, Et, X(t), u(t))

)
ν(dz) dEt

]
.

We have

E
[T∫
0

p̂(t) d(X̂(t)−X(t))
]

= E
[T∫
0

p̂(t)
((
µ(t, Et, X̂(t), û(t))− µ(t, Et, X(t), u(t))

)
dt

+
(
b(t, Et, X̂(t), û(t))− b(t, Et, X(t), u(t))

)
dEt

)]
.
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Thus,

J(û)− J(u)

= E
[T∫
0

(X̂(t)−X(t)) dp̂(t) +
T∫
0

[f(t, Et, X̂(t), û(t))− f(t, Et, X(t), u(t))] dt

+
T∫
0

[g(t, Et, X̂(t), û(t))− g(t, Et, X(t), u(t))] dEt

+
T∫
0

p̂(t)
[(
µ(t, Et, X̂(t), û(t))− µ(t, Et, X(t), u(t))

)
dt

+
(
b(t, Et, X̂(t), û(t))− b(t, Et, X(t), u(t))

)
dEt

]
+

T∫
0

q̂(t)
(
σ(t, Et, X̂(t), û(t))− σ(t, Et, X(t), u(t))

)
dEt

+
T∫
0

∫
R
r̂(t, z)(γ(t, Et, X̂(t), û(t))− γ(t, Et, X(t), u(t))) ν(dz) dEt

]
.

In addition,(
H(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t))−H(t, Et, X(t), u(t), p̂(t), q̂(t), r̂(t))

)
dt

=
[
p̂(t)µ(t, Et, X̂(t), û(t))− p̂(t)µ(t, Et, X(t), u(t)) + f(t, Et, X̂(t), û(t))

− f(t, Et, X(t), u(t))
]
dt

+
(
g(t, Et, X̂(t), û(t))− g(t, Et, X(t), u(t))

)
dEt

+
(
p̂(t)b(t, Et, X̂(t), û(t)) + q̂(t)σ(t, Et, X̂(t), û(t))

)
dEt

−
(
p̂(t)b(t, Et, X(t), u(t)) + q̂(t)σ(t, Et, X(t), u(t))

)
dEt

+
∫
R
r̂(t, z)

(
γ(t, Et, X̂(t), û(t))− γ(t, Et, X(t), u(t))

)
ν(dz) dEt,

and

(X̂(t)−X(t))dp̂(t) = X̂(t) dp̂(t)−X(t)dp̂(t)

= X̂(t)
[
−Hx(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·))dt+ q̂(t) dBEt

+
∫
R
r(t, z) Ñ(dEt, dz)

]
−X(t)

[
−Hx(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·)) dt+ q̂(t) dBEt

+
∫
R
r(t, z) Ñ(dEt, dz)

]
= −(X̂(t)−X(t))Hx(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·)) dt

+ (X̂(t)−X(t))
(
q̂(t) dBEt +

∫
R
r̂(t, z) Ñ(dEt, dz)

)
.
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Then, by concavity of H and following the proof in [4],

J(û)− J(u)

= E
[T∫
0

−(X̂(t)−X(t))Hx(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·)) dt

+
T∫
0

[
H(t, Et, X̂(t), û(t), p̂(t), q̂(t), r̂(t, ·))

−H(t, Et, X(t), u(t), p̂(t), q̂(t), r̂(t, ·))
]
dt
]

­ 0. �

EXAMPLE 4.1 (Income and consumption optimization). Consider the stochas-
tic control problem

Φ(x0) = sup
u∈A

E
[ τ∫
0

exp(−δt)u(t)2 dt
]
,

where
τ = inf {t > 0 : X(t) ¬ 0}

and

dX(t) = −u(t)dt+X(t)
(
b dEt + σ dBEt + θ

∫
R
zÑ(dz, dEt)

)
,

X(0) = x0 > 0,

where δ > 0, σ, and θ are constants and b = −(σ2 + θ2
∫
R z

2 ν(dz))/2.
We can interpret u(t) as the consumption rate, X(t) as the corresponding

wealth, and τ as the bankruptcy time. Then Φ represents the maximal expected
total quadratic utility of the consumption up to bankruptcy time.

Define the Hamiltonian H by

H(t) = −p(t)u(t) + exp(−δt)u(t)2

+X(t)
(
p(t)b+ q(t)σ +

∫
R
θzr(t, z) ν(dz)

) dEt
dt

,

and the adjoint equation

(4.5) dp(t) = −
(
p(t)b+ q(t)σ +

∫
R
θzr(t, z) ν(dz)

)
dEt

+ q(t) dBEt +
∫
R
r(t, z) Ñ(dEt, dz), t < τ,

p(T ) = 0.
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Let ∂H
∂u = (−p(t) + 2u(t) exp(−δt)) = 0. Then u∗(t) = p(t)

2 exp(δt). Suppose
that p(t) = h(t)X(t). Then u∗(t) = h(t)X(t)

2 exp(δt), thus

dp(t) = X(t)h′(t) dt+ h(t) dX(t)(4.6)
= X(t)h′(t) dt+ (−u(t)h(t)) dt

+ h(t)X(t)
(
b dEt + σ dBEt + θ

∫
R
z Ñ(dz, dEt)

)
= X(t)

(
h′(t)− h(t)

2
exp(δt)

)
dt

+ h(t)X(t)
(
b dEt + σ dBEt + θ

∫
R
z Ñ(dz, dEt)

)
.

Comparing (4.5) and (4.6), we derive that h′(t) = h(t)
2 eδt, or equivalently

h(t) = exp
(

1
2δe

δt
)
, thus

u∗(t) = exp

(
1

2δ
eδt + δt

)
X(t)

2
.

Moreover,
h(t)X(t)σ = q(t),

h(t)X(t)θz = r(t, z).

Some algebra implies that

q(t) = 2 exp(−δt)u(t)σ,

r(t, z) = 2 exp(−δt)u(t)θz.

A simulation of the optimal control u∗(t) with δ = −.001, σ = 1, θ = 1,
x0 = 1, standard normal distribution ν, and inverse stable subordinator E(t) hav-
ing α = .9 is displayed in Figure 5.

Figure 5. Simulation of u∗(t) for Example 2

Because of the existence of the dt term in the underlying process X(t), the
simulated process u∗(t) has no periods of constant value. Compared with dEt
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terms, the dt term plays the dominating role in the evolution of the corresponding
wealth X(t); see [11] for a detailed discussion. More specifically, the increasing
trend bX(t)dEt is dominated by the consumption rate −u(t)dt. Consequently, the
optional consumption rate declines as the wealth shrinks in the long run.
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