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1. INTRODUCTION

Sequential order statistics (SOSs) constitute a general model for ordered statisti-
cal data and provide a natural modeling framework for multi-unit technical sys-
tems, in which the failure of a component may have an impact on the lifetimes
of the surviving components; see, e.g., [18], [19], [14], [25], [2], [13], [16], [7],
[5], [6], [11]. The modeling is based on the assumption that, upon a failure of
some component, the remaining components have a possibly different underlying
lifetime distribution. In the case of an (n − r + 1)-out-of-n system with n com-
ponents, say, let F1, . . . , Fn be the respective distribution functions. Commonly,
a semi-parametric setting with proportional hazard rates is chosen by supposing
that Fj = 1 − (1 − F )αj , 1 ¬ j ¬ n, where F denotes some absolutely continu-
ous distribution function with corresponding density function f and α1, . . . , αn are
positive model parameters. The baseline distribution function F is chosen accord-
ing to a model assumption or to some prior information. If, e.g., F is chosen to be
the standard exponential distribution function, then Fj is an exponential distribu-
tion function with rate parameter αj , 1 ¬ j ¬ n. In the semi-parametric setting, the
joint density function of the first r ¬ n SOSs X?1, . . . , X?r based on F1, . . . , Fn,
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which describe the first r ordered component failure times, is given by

fα(x) = exp
{ r∑
j=1

αjTj(x)− κ(α)
}
h(x)(1.1)

for x ∈ Xr = {(x1, . . . , xr) ∈ Rr : F−1(0+) < x1 < · · · < xr < F−1(1)} with
κ(α) = −

∑r
j=1 log(αj), α = (α1, . . . , αr) ∈ (0,∞)r, and

Tj(x) = (n− j + 1) log

(
F (xj)

F (xj−1)

)
, 1 ¬ j ¬ r,

h(x) =
n!

(n− r)!
r∏
j=1

f(xj)

F (xj)
, x ∈ Xr,

where F−1 denotes the quantile function of F , F = 1 − F , and F (x0) ≡ 1;
see [4]. In applications of SOSs, the model parameters α1, α2, . . . , which describe
successive changes in the system due to component failures, and the baseline dis-
tribution function F will usually be unknown and will have to be estimated based
on the available data. In a non-parametric approach such as in [9], [10], and [23],
the distribution function F can be estimated. However, in lifetime experiments,
the number of observations is commonly fairly small. If prior information (e.g.
from previous experiments) is available with respect to the shape of F , or equiv-
alently the shape of the hazard rate function f/F , the only uncertainty regarding
the true distribution of the lifetimes of the components is captured by the vector α
of unknown model parameters (another option is to consider Fα1 as given and the
parameters α2, . . . , αr to be unknown).

In what follows, we will consider this situation and assume that F is known.
Then the family P = {fα dλr : α ∈ (0,∞)r} exhibits an exponential family
structure, which allows for convenient derivation of useful inferential results. Here
and in the following, λr denotes the Lebesgue measure on the Borel sets of the sam-
ple space Xr and the notation g dν is used for the measure with ν-density function
g. In particular, since the exponential family P is regular and representation (1.1)
is minimal, the vector T = (T1, . . . , Tr) is minimal sufficient and complete for P;
for details, see [4]. Moreover, as far as point estimation of the model parameters
is concerned, maximum likelihood estimators (MLEs) and uniformly minimum
variance unbiased estimators can be easily obtained, and, in a multi-sample setup,
the asymptotic efficiency can be established in a straightforward way; see [4]. Re-
garding statistical tests utilizing the exponential family structure of P , we refer to,
e.g., [3].

In situations with a small amount of data, arising for instance in accelerated
life testing experiments (see, e.g., [7]), it is necessary to impose additional model
assumptions to make simultaneous estimation of α1, . . . , αr feasible. On the other
hand, prior information about the model parameters may be present. In either case,
an injective parametric function ψ : Ξ → (0,∞)r may be incorporated into the
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model, which then induces a subfamily Pψ = {fψ(ξ) dλr : ξ = (ξ1, . . . , ξm) ∈
Ξ ⊆ Rm}, m < r, of the exponential family P . Then, in the (n − r + 1)-out-
of-n model, the parameters α1, . . . , αr are connected with a smaller number of
parameters ξ1, . . . , ξm, say, via ψ, which is therefore referred to as a link function;
see, e.g., [2]. Depending on the choice of ψ, the resulting family Pψ may again
possess a regular exponential family structure (now in the parameters ξ1, . . . , ξm)
or be a genuine curved exponential family. In the latter case, some or most of the
nice properties of P mentioned above may get lost, so that the associated statistical
inference may become more involved. For instance, in a curved exponential family,
in general, completeness of T does no longer hold true, and the existence and
uniqueness of the MLE are not evident at all and have to be examined case-by-case.
Nonetheless, there are results in the literature, e.g., in [12], providing useful tools
for dealing with maximum likelihood estimation in curved exponential families,
which however have not yet been applied to parametric inference with SOSs under
link function assumptions.

The goal of this paper is to demonstrate the feasibility of maximum likelihood
estimation in SOSs for quite a general choice of the link function ψ and with the
given underlying distribution function F . Minimal sufficiency and completeness
of the canonical statistic T will be discussed as well. Previous results in the litera-
ture are included in the proposed general approach as particular examples; see, for
instance, [7], [26].

2. MAXIMUM LIKELIHOOD ESTIMATION UNDER LINK FUNCTION ASSUMPTIONS

In what follows, we assume that a sampleX(1)
? , . . . ,X

(s)
? of independent and iden-

tically distributed random vectors with density function (1.1) each is given. The
density function of the whole sample is then represented by

f
(s)
α (x̃(s)) = exp

{ r∑
j=1

αjT
(s)
j (x̃(s))− sκ(α)

}
h(s)(x̃(s)),(2.1)

x̃(s) = (x(1), . . . ,x(s)) ∈ X sr =
s

×
i=1

Xr,

with

T
(s)
j (x̃(s)) =

s∑
i=1

Tj(x
(i)), 1 ¬ j ¬ r,

h(s)(x̃(s)) =
s∏
i=1

h(x(i)), x̃(s) ∈ X sr .

It is readily seen that the family P(s) = {f (s)
α dλrs : α ∈ (0,∞)r} of joint distri-

butions of X(1)
? , . . . ,X

(s)
? forms an exponential family in α1, . . . , αr and canon-

ical statistics T (s)
1 , . . . , T

(s)
r . The statistics T (s)

1 , . . . , T
(s)
r on X sr are independent,
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−T (s)
j has a gamma distribution with scale parameter 1/αj and shape parameter

s, 1 ¬ j ¬ r, and the family P(s) inherits all regularity properties from P; see
[4]. In the following, let T (s) = (T

(s)
1 , . . . , T

(s)
r ) be the vector of statistics. For

a given link function ψ, the induced subfamily of P(s) will be denoted by P(s)
ψ .

Since we will be exclusively concerned with estimation in P(s)
ψ , we will denote the

associated likelihood function of ξ ∈ Ξ by l(·|x̃(s)) without making any reference
to the function ψ.

Before discussing results for subfamilies P(s)
ψ , which are curved exponential

families, we present an example demonstrating that a link function can induce a
regular exponential family structure. In that case, there is no need to invoke results
for curved exponential families to find properties of MLEs of ξ1, . . . , ξm; this can
be done by standard arguments.

EXAMPLE 2.1. Assume that the parameters α1, . . . , αr are linked via α =
ψ(ξ) with linear link function ψ = (ψ1, . . . , ψr) defined by

ψj(ξ) =
m∑
i=1

ξiyj,i, j = 1, . . . , r,(2.2)

for some m < r, where yj,i, 1 ¬ j ¬ r, 1 ¬ i ¬ m, denote known real numbers,
and ξ1, . . . , ξm are unknown parameters. We further assume that the matrix A =
(yj,i)1¬j¬r,1¬i¬m in this multiple linear regression approach has full rankm. Since
ψ(ξ) = Aξ, this already implies that ψ is one-to-one. Under the link function
assumption (2.2) and by setting f̃ (s)

ξ = f
(s)
ψ(ξ), the density function (2.1) becomes

f̃
(s)
ξ (x̃(s)) = exp

{ m∑
i=1

ξiT̃
(s)
i (x̃(s))− sκ̃(ξ)

}
h(s)(x̃(s)), x̃(s) ∈ X sr ,

with

κ̃(ξ) = −
r∑
j=1

log
( m∑
i=1

ξiyj,i

)
,

ξ ∈ Ξ =
{

(η1, . . . , ηm) ∈ Rm :
m∑
i=1

ηiyj,i > 0, j = 1, . . . , r
}
,

and

T̃
(s)
i (x̃(s)) =

r∑
j=1

yj,iT
(s)
j (x̃(s)), x̃(s) ∈ X sr , i = 1, . . . ,m.

Since Ξ ⊆ Rm is open and the matrixA has full rank, the familyP(s)
ψ forms a regu-

lar exponential family. In particular, the vector of statistics T̃ (s) = (T̃
(s)
1 , . . . , T̃

(s)
m )
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is minimal sufficient and complete for P(s)
ψ . Moreover, the MLE ξ̂(s) of ξ uniquely

exists almost surely and is given as the only solution of the likelihood equations

r∑
j=1

yj,i∑m
l=1 yj,lξl

= −
T̃

(s)
i (x̃(s))

s
, i = 1, . . . ,m,

with respect to ξ = (ξ1, . . . , ξm) ∈ Ξ. Furthermore, the sequence (ξ̂(s))s∈N is
strongly consistent and asymptotically efficient with asymptotic covariance matrix
given by the inverse matrix of Covξ(T̃

(1)); see [4]. Here, using the independence
as well as the distributional properties of the statistics T (1)

1 , . . . , T
(1)
r , we obtain

Varξ(T̃
(1)
k ) =

r∑
j=1

y2
j,k

( m∑
i=1

yj,iξi

)−2
, k = 1, . . . ,m,

Covξ(T̃
(1)
k , T̃

(1)
l ) =

r∑
j=1

yj,kyj,l

( m∑
i=1

yj,iξi

)−2
, k, l = 1, . . . ,m.

REMARK 2.1. (i) As a particular case of Example 2.1 with m = 2 < r and
yj,1 = 1, yj,2 = yj for j = 1, . . . , r, we obtain the linear link function ψ =
(ψ1, . . . , ψr) with

ψj(ξ) = ψ(ξ1, ξ2) = ξ1 + yjξ2, j = 1, . . . , r,

where y1, . . . , yr are known real numbers satisfying yi 6= yj for at least two indices
i, j ∈ {1, . . . , r}, and Ξ = {(η1, η2) ∈ R2 : η1 + yjη2 > 0, j = 1, . . . , r}.
This setup is related to the one studied in [2] and [5], and the results stated in
Example 2.1 hold true in the present situation.

(ii) Let us assume that the model parameters α1, . . . , αr are linked via α =
ψ(ξ) with linear link function ψ = (ψ1, . . . , ψr) defined by

ψj(ξ) = ξ1 + yjξ2 + y2
j ξ3 + · · ·+ ym−1

j ξm, j = 1, . . . , r,

for some m < r, where y1, . . . , yr are known real numbers taking at least m
different values, and ξ1, . . . , ξm are unknown link function parameters. Setting
yj,i = yi−1

j , 1 ¬ j ¬ r, 1 ¬ i ¬ m, the present setup is seen to be another
particular case of Example 2.1, whereA is a rank m Vandermonde matrix, and the
results stated there may be applied. In the particular examplem = 3, r = 4, yj = j
for j = 1, 2, 3, 4, the parameter space (0,∞)4 is restricted via α = Aξ with

A =


1 1 1
1 2 4
1 3 9
1 4 16

 .
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From the above examples it is evident that the family P(s)
ψ is again a regu-

lar exponential family provided the link function takes the form ψ(ξ) = Aξ for
some matrix A of full rank, in which case inference via the maximum likelihood
method is straightforward, and existence and uniqueness of the MLE of ξ is guar-
anteed.

The following result yields sufficient conditions for the MLE to exist uniquely
if ψ is a nonlinear function. The result reveals that existence of the MLE in curved
exponential submodels of SOSs is essentially linked with topological properties of
ψ(Ξ). Moreover, an important condition for the uniqueness of the MLE is that ψ
locally takes the from ψ(ξ) = Aξ with a full rank matrix A. Below, we use the
notation µ = h(s) dλrs; note that the measure µ is equivalent to every distribution
P ∈ P(s). Furthermore, we call a function g : V → W with V ⊆ Rm open,
W ⊆ Rn, m ¬ n, a Ck-immersion, k ∈ N, if g is a Ck-function and the Jacobian
matrix Dg(x) of g at x has full rank for all x ∈ V .

THEOREM 2.1. Let X̃(s)
? = (X

(1)
? , . . . ,X

(s)
? ) have density function (2.1).

Further, let ψ : Ξ → (0,∞)r with Ξ ⊆ Rm, m < r, be one-to-one, and let P(s)
ψ

be the associated subfamily of P(s).

(i) Existence: If ψ(Ξ) is a relatively closed subset of (0,∞)r, i.e., ψ(Ξ) =
(0,∞)r ∩ U for a closed subset U ⊆ Rr, then an MLE in Ξ exists almost
surely.

(ii) Uniqueness: If Ξ is an open subset of Rm, ψ a C2-immersion, and F a
C2-function with positive Lebesgue-density function f , then the MLE is unique
with probability one, i.e.,

D =
{
x̃(s) ∈ X sr : ∃ ξ1, ξ2 ∈ Ξ with ξ1 6= ξ2 and

l(ξ1|x̃(s)) = max
ξ∈Ξ

l(ξ|x̃(s)) = l(ξ2|x̃(s))
}

is Borel-measurable and µ(D) = 0.

Moreover, under the assumptions in (i) and (ii), the MLE can be obtained as a
solution of the likelihood equations

(2.3)
r∑
j=1

(
∂

∂ξi
ψj(ξ)

)
T

(s)
j (x̃(s)) = −s

r∑
j=1

∂/∂ξi ψj(ξ)

ψj(ξ)
, i = 1, . . . ,m.

Proof. (i) Since P(s) is a regular exponential family and T (s) almost surely
lies in (−∞, 0)rs, which is the interior of the convex hull of the support of µT

(s)
,

existence of an MLE directly follows from [12, Theorem 5.7]; see also Definition
3.2 and Assumptions 5.2 therein.
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(ii) For x̃(s) ∈ X sr , i = 1, . . . , s, and j = 2, . . . , r, we have

∂

∂x
(i)
1

T
(s)
1 (x̃(s)) = −n f(x

(i)
1 )

F (x
(i)
1 )

= c1i, say,
∂

∂x
(i)
j

T
(s)
1 (x̃(s)) = 0,(

∂

∂x
(i)
j−1

T
(s)
j (x̃(s)),

∂

∂x
(i)
j

T
(s)
j (x̃(s))

)

= (n− j + 1)

(
f(x

(i)
j−1)

F (x
(i)
j−1)

,−
f(x

(i)
j )

F (x
(i)
j )

)
= (bji, cji), say,

∂

∂x
(i)
l

T
(s)
j (x̃(s)) = 0, l ∈ {1, . . . , r} \ {j − 1, j}.

Thus, the Jacobian matrix DT (s) of T (s) is of the form

DT (s)(x̃(s)) = (L(x(1))| · · · |L(x(s))), x̃(s) ∈ X sr ,

where for 1 ¬ i ¬ s,

L(x(i)) =


c1i 0 0 0
b2i c2i 0 0
0 b3i c3i 0

. . . . . .
0 bri cri

 ∈ Rr×r, x(i) ∈ Xr,

is a lower bidiagonal matrix with determinant

det(L(x(i))) =
r∏
j=1

cji =
r∏
j=1

(
−(n− j + 1)

f(x
(i)
j )

F (x
(i)
j )

)
.

In particular, since f is positive by assumption, det(L(x(i))) 6= 0, x(i) ∈ Xr,
1 ¬ i ¬ s. Hence, T (s) is a submersion, i.e., DT (s)(x̃(s)) induces a surjective
linear mapping for all x̃(s) ∈ X sr . The assertion now follows from [20, Theorems
4.1 and 6.1].

Finally, under the assumptions in (i) and (ii), the MLE is necessarily a solution
of the likelihood equations, which are readily obtained from formula (2.1) with
αj = ψj(ξ), 1 ¬ j ¬ r. �

The following theorems concern the asymptotic properties of MLEs in curved
exponential submodels of SOSs induced by link functions ψ. In order to ensure
strong consistency of the MLEs, the conditions stated in Theorem 2.1 should be
supplemented with the requirement that ψ forms a homeomorphic transformation
of Ξ into ψ(Ξ).
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THEOREM 2.2. Let the assumptions of Theorem 2.1 including those stated
in parts (i) and (ii) be fulfilled, and suppose ψ has a continuous inverse ψ−1 :

ψ(Ξ) → Ξ. Then, for s ∈ N, the MLE ξ̂(s) of ξ ∈ Ξ exists and is unique almost
surely, and the sequence (ξ̂(s))s∈N is strongly consistent.

Proof. Existence and uniqueness of the MLEs follow from Theorem 2.1. Since
ψ(Ξ) is homeomorphic to Ξ, it is locally compact. Hence, strong consistency fol-
lows from [8, Theorem 4.1 and Corollary 3.3]. �

Finally, we present a result establishing the asymptotic normality of the MLE.
Below,D2

g(x) denotes the Hessian matrix of a twice differentiable function g at x,
andMT is the transpose of a matrixM .

THEOREM 2.3. Let Ξ be an open subset of Rm, m < r, and ψ : Ξ→ (0,∞)r

be a C1-immersion. Then any sequence (ξ̂(s))s∈N of strongly consistent MLEs
is asymptotically efficient, i.e.,

√
s (ξ̂(s) − ξ) converges in distribution to an m-

dimensional normal distribution with zero mean and covariance matrix given by
the inverse of the Fisher information matrix I(ξ) = Dψ(ξ)TD2

κ(ψ(ξ))Dψ(ξ) at
ξ ∈ Ξ.

Proof. Under the stated assumptions and by recalling the properties of the en-
closing exponential family P , the conditions in [8, Section 6] are all met. The
assertion then directly follows from Theorem 6.1 therein. �

The next example demonstrates the applicability of the above results for link
function assumptions, where the log-linear link function is a standard choice in the
literature.

EXAMPLE 2.2. In the following examples, the baseline distribution function
F is a C2-function with positive Lebesgue-density function f .

(i) In [7] (see also [26, Section 4.5] for a slightly more general setup), a log-
linear link function of the form

ψ(ξ) = ψ(ξ1, ξ2) = (eξ1+ξ2y1 , . . . , eξ1+ξ2yr), ξ ∈ Ξ = R2,

with positive and strictly ordered known numbers y1, . . . , yr is used and the exis-
tence and uniqueness of the MLE of ξ are shown using standard tools from dif-
ferential calculus. With the use of the preceding results, the proof is even simpler.
Consequently, by Theorem 2.2, for any s ∈ N, there exists an almost surely unique
MLE ξ̂(s) of ξ ∈ Ξ and the sequence (ξ̂(s))s∈N is strongly consistent. According
to formula (2.3), for any s ∈ N, ξ̂(s) can be obtained as a solution to the equations

r∑
j=1

yi−1
j eξ1+yjξ2 T

(s)
j (x̃(s)) = −s

r∑
j=1

yi−1
j , i = 1, 2.
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Moreover, by Theorem 2.3, the sequence of MLEs is asymptotically efficient with
asymptotic covariance matrix at ξ ∈ Ξ given by

I−1(ξ) =

(
r

∑r
i=1 yi∑r

i=1 yi
∑r

i=1 y
2
i

)−1

=
1

r
∑r

i=1 y
2
i − (

∑r
i=1 yi)

2

( ∑r
i=1 y

2
i −

∑r
i=1 yi

−
∑r

i=1 yi r

)
,

which is seen to be free of ξ.
(ii) In [17], SOSs with power trend conditional hazard rates (PTCHR) are in-

troduced (see also [1], [15]), which amounts to assuming αj = ξj , j = 1, . . . , r,
for some parameter ξ > 0. In this situation, the link function takes the form
ψ(ξ) = (ψ1(ξ), . . . , ψr(ξ)) = (ξ, ξ2, . . . , ξr), ξ ∈ Ξ = (0,∞). Hence, by The-
orem 2.2, for any s ∈ N, there exists an almost surely unique MLE ξ̂(s) of ξ ∈ Ξ
and the sequence (ξ̂(s))s∈N is strongly consistent. According to formula (2.3), for
any s ∈ N, the MLE can be obtained as a solution to the polynomial equation

r∑
j=1

jξjT
(s)
j (x̃(s)) +

sr(r + 1)

2
= 0

with respect to ξ ∈ Ξ. Moreover, by Theorem 2.3, the sequence of MLEs is asymp-
totically efficient with asymptotic variance given by

I−1(ξ) =
6ξ2

r(r + 1)(2r + 1)
, ξ ∈ Ξ.

(iii) If the distribution function F is the standard exponential one, then Fi corre-
sponds to an exponential distribution with hazard rate αi and expected value 1/αi,
i = 1, . . . , r; see Section 1. Hence, instead of connecting α1, . . . , αr as in Example
2.1, a linear link function for their reciprocals may also be reasonable. Consider the
link function

ψ(ξ) = ψ(ξ1, ξ2) = ((ξ1 + ξ2y1)−1, . . . , (ξ1 + ξ2yr)
−1), (ξ1, ξ2) ∈ Ξ,

with Ξ = {(η1, η2) ∈ R2 : η1 + yjη2 > 0, j = 1, . . . , r}, where y1, . . . , yr are
known real numbers taking at least m different values. Again, the assumptions of
Theorem 2.2 are satisfied, and we conclude that, for any s ∈ N, there exists an
almost surely unique MLE ξ̂(s) of ξ ∈ Ξ and the sequence (ξ̂(s))s∈N is strongly
consistent. According to formula (2.3), for any s ∈ N, ξ̂(s) can be obtained as a
solution to the equations

r∑
j=1

yi−1
j

(ξ1 + yjξ2)2
T

(s)
j (x̃(s)) = −s

r∑
j=1

yi−1
j

ξ1 + yjξ2
, i = 1, 2.
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Moreover, by Theorem 2.3, the sequence of MLEs is asymptotically efficient with
asymptotic covariance matrix at ξ ∈ Ξ given by

I−1(ξ) =

∑r
i=1

1
(ξ1+ξ2yi)2

∑r
i=1

yi
(ξ1+ξ2yi)2∑r

i=1
yi

(ξ1+ξ2yi)2

∑r
i=1

y2i
(ξ1+ξ2yi)2

−1

.

3. MINIMAL SUFFICIENCY AND COMPLETENESS

Verifying minimal sufficiency of the canonical statistic T (s) of a curved exponen-
tial family P(s)

ψ relies on standard results for general exponential families; see,
e.g., [21, Corollary 6.16]). In particular, for minimal sufficiency to hold true,ψ(Ξ)
should not be contained in any (r − 1)-dimensional affine subspace of Rr. In the
following example we demonstrate how one would proceed in the setup of Ex-
ample 2.2(i).

EXAMPLE 3.1. Assume the link function is as in Example 2.2(i). Moreover,
let c0, c1, . . . , cr ∈ R with

c1e
ξ1+y1ξ2 + c2e

ξ1+y2ξ2 + · · ·+ cre
ξ1+yrξ2 = c0(3.1)

for all ξ ∈ Ξ. To verify that ψ(Ξ) is not contained in an (r − 1)-dimensional
affine subspace of Rr, we show that formula (3.1) already implies that c0 = c1 =
· · · = cr = 0. First, differentiating equation (3.1) with respect to ξ1 shows that
necessarily c0 = 0. Moreover, differentiating equation (3.1) r−1 times with respect
to ξ2 and setting ξ1 = ξ2 = 0, we find that (c1, . . . , cr)

T is a solution to the
equationAx = 0, x ∈ Rr, where

A =


1 . . . 1
y1 . . . yr
...

...
yr−1

1 . . . yr−1
r

 .(3.2)

Since AT is a Vandermonde matrix and y1, . . . , yr are pairwise distinct by as-
sumption, we have det(A) 6= 0. Consequently, c1 = · · · = cr = 0, and hence
ψ(Ξ) is not contained in any (r − 1)-dimensional affine subspace of Rr. Hence,
the canonical statistic T (s) is minimal sufficient for P(s)

ψ .

In general, the canonical statistic of a curved exponential family is not com-
plete, though examples to the contrary exist; see [22]. If the statistic is indeed not
complete, a formal proof of this fact may be required. A sufficient condition for
non-completeness is presented in [24, Theorem 1.6.23], which is used in the fol-
lowing example.
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EXAMPLE 3.2. Assume the link function is as in Example 2.2(ii). Then
the multivariate polynomial Π(x1, . . . , xr) = x1 · · ·xr − x

r(r+1)/2
1 satisfies

Π(ψ1(ξ), . . . , ψr(ξ)) = 0, ξ ∈ Ξ. Consequently, by [24, Theorem 1.6.23], the
statistic T (s) is not complete for P(s)

ψ . Further, T (s) is not boundedly complete ei-
ther, which follows from the fact that, for each ξ ∈ Ξ, the density function of T (s),

(t1, . . . , tr) 7→ exp

{
r∑
j=1

ξjtj +
sr(r + 1) log(ξ)

2

}
, (t1, . . . , tr) ∈ (−∞, 0)r,

is bounded from below on any r-dimensional rectangular region; see [24, Theorem
1.6.23].

The next example demonstrates that the criterion in [24, Theorem 1.6.23] may
be of limited applicability.

EXAMPLE 3.3. Assume the link function is as in Example 2.2(i) with
r = 3 and choose (y1, y2, y3) = (

√
2,
√

3,
√

5). Moreover, let Π(x1, x2, x3) =∑
l1,l2,l3

al1,l2,l3x
l1
1 x

l2
2 x

l3
3 be a multivariate polynomial satisfying Π(ψ1, ψ2, ψ3)

≡ 0, i.e., ∑
l1,l2,l3

al1,l2,l3 exp{ξ1(l1 + l2 + l3) + ξ2(y1l1 + y2l2 + y3l3)} = 0(3.3)

for all (ξ1, ξ2) ∈ Ξ. Since
√

2,
√

3,
√

5 considered as elements of the splitting field
Q[
√

2,
√

3,
√

5] are linearly independent over Q, we have y1l1 + y2l2 + y3l3 6=
y1 l̃1 + y2 l̃2 + y3 l̃3 for (l1, l2, l3) 6= (l̃1, l̃2, l̃3). Let now q be the number of non-
zero coefficients of Π. Differentiating equation (3.3) q − 1 times with respect to
ξ2 and subsequently setting ξ1 = ξ2 = 0, we obtain a system of linear equations
whose matrix of coefficients takes the form (3.2) with pairwise distinct coefficients
in the second row. Arguing in the same way as in Example 3.1, we conclude that
all coefficients of Π are zero. Hence, [24, Theorem 1.6.23] cannot be applied here.

4. CONCLUSION

Upon observing that link function assumptions on model parameters of sequen-
tial order statistics induce a curved exponential family structure, inference on the
underlying parameters in a multi-sample situation is considered. For a rich class
of link functions, the curved exponential family structure is utilized to obtain ex-
istence and uniqueness results for the maximum likelihood estimators of the link
function parameters along with useful asymptotic properties such as strong con-
sistency and asymptotic efficiency. Former results from the literature concerning
particular link functions are included in this setup. Finally, minimal sufficiency
and completeness of the corresponding canonical statistics are discussed.

Acknowledgments. The authors are grateful to the referees for their careful read-
ing and constructive comments, which led to an improved presentation.
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