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Abstract. We study the weighted maximal L1-inequality for martingale
transforms, under the assumption that the underlying weight satisfies Muck-
enhoupt’s conditionA∞ and that the filtration is regular. The resulting linear
dependence of the constant on the A∞ characteristic of the weight is opti-
mal. The proof exploits certain special functions enjoying appropriate size
conditions and concavity.
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1. INTRODUCTION

Let (Ω,F ,P) be a probability space filtered by (Fn)n­0, a nondecreasing sequence
of sub-σ-algebras of F . We additionally assume that this filtration is θ-regular for
some θ ∈ (0, 1/2], that is, F0 = {∅,Ω} and every atom A of each Fn splits
into a finite number A1, . . . , Ak of atoms of Fn+1 satisfying P(Aj) ­ θP(A),
j = 1, . . . , k. Regular filtrations are natural extensions of dyadic filtrations widely
used in harmonic analysis: for a fixed dimension d, the dyadic filtration of the space
([0, 1]d,B([0, 1]d), | · |) is 2−d-regular in the above sense.

Next, suppose that f = (fn)n­0 and g = (gn)n­0 are adapted, uniformly
integrable martingales. We will identify the martingales f and g with the pointwise
limits f∞, g∞, which exist due to the uniform integrability. Define the associated
difference sequences df = (dfn)n­0 and dg = (dgn)n­0 by

df0 = f0, dfn = fn − fn−1, n = 1, 2, . . . ,

and similarly for dg. The maximal function of f is given by |f |∗ = supk­0 |fk|,
and the truncated maximal function is |f |∗n = sup0¬k¬n |fk|, n = 0, 1, . . . . The
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martingale g is a transform of f if there is a predictable sequence ε = (εn)n­0
such that dgn = εndfn for every n; here by predictability we mean that for each n,
the random variable εn is measurable with respect to F(n−1)∨0. Moreover if the
sequence ε is deterministic and its terms take values in {−1, 1}, then g is said to
be a ±1-transform of f .

Inequalities for martingale transforms play an important role in probability the-
ory and have deep applications in harmonic analysis. There is a huge literature
on the subject: we mention here Burkholder’s papers [5], [6], [7], the monograph
[20] and the papers [26], [27] for an overview of probabilistic results; for analytic
applications, consult e.g. [1], [2], [10], [25]. In this paper, we will be particularly
interested in maximal inequalities. In [7], Burkholder introduced a general method
of proving such estimates in the context of martingale transforms and exploited it
to establish the following result.

THEOREM 1.1. If f, g are martingales satisfying dgn = εndfn, n = 0, 1, . . . ,
for some predictable sequence ε = (εn)n­0 with values in [−1, 1], then

(1.1) ‖g‖L1 ¬ η
∣∣|f |∗∣∣

L1 ,

where η = 2.536 . . . is the unique solution of the equation η − 3 = − exp
(1−η

2

)
.

The constant is the best possible.

See also [17], [19] and [18] for related results and generalizations. In this pa-
per we will be interested in the weighted versions of the above statement. In what
follows, the word “weight” will refer to a positive, integrable random variable usu-
ally denoted by w. Given 1 < p < ∞, we say that w satisfies Muckenhoupt’s
condition Ap (or belongs to the Ap class) if

[w]Ap := sup

(
1

P(A)

∫
A

w dP
)(

1

P(A)

∫
A

w−1/(p−1) dP
)p−1

<∞,

where the supremum is taken over all n and all atoms A of Fn. There are versions
of this definition for p ∈ {1,∞}; we will recall the case p = ∞ only, as we will
not work with A1 here. A weight w belongs to the class A∞ if

[w]A∞ := sup

(
1

P(A)

∫
A

w dP
)

exp

(
− 1

P(A)

∫
A

log(w) dP
)
<∞,

the supremum taken over the same class of A as above. Two comments are in
order. First, note that in the dyadic context (i.e., when the probability space equals
([0, 1]d,B([0, 1]d), |·|) and the filtration is dyadic), the above definitions lead to the
classical dyadic Ap weights. The second observation is that the above definitions
can be easily rephrased in the language of conditional expectations: [w]Ap is the
least number c such that for all n ­ 0,

E(w | Fn)(E(w1/(1−p) | Fn))p−1 ¬ c
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almost surely, while [w]A∞ is the smallest c for which

E(w | Fn) exp(E(− log(w) | Fn)) ¬ c

almost surely, n = 0, 1, . . . . It follows directly from Hölder’s inequality that
[w]Ap ­ 1 and that the Ap classes grow as p increases. Furthermore, it is well-
known (cf. [11]) that A∞ =

⋃
1<p<∞Ap.

The main theme of this paper is to study the following weighted extension
of (1.1):

(1.2)
∥∥|g|∗∥∥

L1(w)
¬ Cθ,w

∥∥|f |∗∥∥
L1(w)

.

Note that the maximal function appears on both sides of the estimate. We will show
that if w belongs to the class A∞, then (1.2) holds for all martingales f and their
transforms. In addition, we will study the following aspect of the weighted bound.
There is an interesting question on the sharp dependence of the constant C on the
characteristic [w]A∞ . More precisely: what is the least exponent κ for which there
exists a constant C̃θ depending only on the regularity of the filtration such that∥∥|g|∗∥∥

L1(w)
¬ C̃θ[w]κA∞

∥∥|f |∗∥∥
L1(w)

for all f , g, w as above? Such “extraction” problems have gained a lot of interest in
the literature and have been studied for various classes of operators and estimates:
see e.g. [4], [13], [14], [15], [28].

The main result of this paper gives the full answer to the above question.

THEOREM 1.2. Fix θ ∈ (0, 1/2]. Let f , g be martingales adapted to a θ-
regular filtration such that g is a transform of f by means of a predictable sequence
with values in [−1, 1]. Then for any A∞ weight w we have

(1.3)
∥∥|g|∗∥∥

L1(w)
¬ 769θ−2[w]A∞

∥∥|f |∗∥∥
L1(w)

.

The dependence on the A∞ characteristic of the weight is optimal in the sense that
for any κ < 1 and any K > 0, there is a weight w, a real-valued martingale f and
a predictable sequence ε with values in {−1, 1} such that∥∥|g|∗∥∥

L1(w)
> K[w]κA∞

∥∥|f |∗∥∥
L1(w)

.

A weaker result for Haar multipliers and Ap weights was obtained in [23]. It
was shown there that∥∥∥ max

0¬n¬N

∣∣∣ n∑
k=0

εkakhk

∣∣∣∥∥∥
L1(w)

¬ Cp[w]Ap

∥∥∥ max
0¬n¬N

∣∣∣ n∑
k=0

akhk

∣∣∣∥∥∥
L1(w)

,(1.4)

where 1 < p < ∞, w is a dyadic Ap weight, N is a nonnegative integer, a0, a1,
. . . , aN are real numbers, ε0, ε1, . . . , εN is a sequence of signs and (hk)

∞
k=0 is the
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Haar system on [0, 1). Moreover, it was proved in [23] that the linear dependence
on the characteristic is optimal. Observe that (1.3) generalizes this result in two
directions. Firstly, we consider the more general case of θ-regular filtrations. Sec-
ondly, since [w]A∞ ¬ [w]Ap , the estimate (1.3) is stronger; hence the optimality
of the linear dependence in (1.3) follows at once from the analogous sharpness in
(1.4) and all we need is to prove of (1.3).

Let us now make an important comment on the θ-regularity of the underlying
filtration. The multiplicative constant in (1.3) depends on θ and goes to infinity
as θ tends to 0. We will prove that this dependence is necessary, even if we con-
sider the weaker estimate for Ap weights for any given p > 1. Here is the precise
formulation.

THEOREM 1.3. Let p > 1 and let K be an arbitrary positive constant. Then
there is a positive integer d, a martingale f on a d-dimensional dyadic probability
space, an Ap weight w satisfying [w]Ap ¬ 2 and a predictable sequence v with
values in {−1, 1} such that the associated martingale transform g satisfies

‖g‖L1(w) > K
∥∥|f |∗∥∥

L1(w)
.

There is a well-known method of proving maximal inequalities for martingales
and their martingale transforms. This method, invented by Burkholder in [7] and
modified by the second author in [19], [20], allows one to deduce an estimate from
the existence of a certain special function, enjoying appropriate majorization and
concavity. This method is extended in Section 2 to cover the setting of Ap weights,
and successfully applied in Section 3 in the proof of (1.3). Section 5 is devoted to
Theorem 1.3, which is proved again with the use of the Bellman function method.

2. ON THE METHOD OF PROOF

We will now describe a general technique which can be used to study weighted
estimates for martingales.

We start with the following helpful interpretation of A∞ weights. Suppose
that w is such a weight; we will often identify it with the associated martingale
(wn)n­0 = (E(w | Fn))n­0. Let σ = (σn)n­0 be the dual martingale given by
σn = E(log(w) | Fn)n­0 (the integrability of logw follows at once from the con-
dition w ∈ A∞). By Jensen’s inequality we have wn exp(−σn) ­ 1 almost surely
for all n ­ 0, and the condition A∞ implies wn exp(−σn) ¬ [w]A∞ with prob-
ability 1. In other words, an A∞ weight of characteristic less than or equal to c
gives rise to a two-dimensional uniformly integrable martingale (w, σ) taking val-
ues in the hyperbolic domain {(u, v) ∈ (0,∞) × R : 1 ¬ ue−v ¬ c}. Actually,
the implication can be reversed: any uniformly integrable martingale pair (w, σ)
taking values in the above set and terminating at its lower boundary (i.e., satisfying
w∞e

−σ∞ = 1) induces an A∞ weight: just take the first coordinate w. A similar
statement is true for Ap weights, 1 < p < ∞: the only change is that now the
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dual martingale σ is generated by w1/(1−p) and the domain should be modified to
{(u, v) ∈ (0,∞)2 : 1 ¬ uvp−1 ¬ c}.

Now, suppose that M : R2 × [0,∞) × (0,∞) → R is a given continuous
function and we want to show that

(2.1) EM(fn, gn, |f |∗n, wn) ¬ 0, n ­ 0,

for all f , g,w, where f, g are martingales such that g is the transform of f via a cer-
tain sequence with values in [−1, 1], and w is anA∞ weight satisfying [w]A∞ ¬ c.
We additionally assume that all these processes are adapted to a θ-regular filtra-
tion on some probability space. The key to handle this problem is to consider the
class B(M) of all functions B defined on the five-dimensional set

D = {(x, y, z, u, v) ∈ R2 × (0,∞)2 × R : |x| ¬ z, 1 ¬ ue−v ¬ c}

and enjoying the following three properties:

0◦ (Initial condition) We have B(x, y, |x|, u, v) ¬ 0 if |y| ¬ |x|, |x| > 0 and
1 ¬ ue−v ¬ c.

1◦ (Majorization property) We have

B(x, y, z, u, v) ­M(x, y, z, u) for (x, y, z, u, v) ∈ D.

2◦ (Concavity-type property) For any (x, y, z, u, v) ∈ D, any ε ∈ [−1, 1], any
positive integer k ¬ 1/θ and any sequences (αj)

k
j=1, (hj)

k
j=1, (rj)

k
j=1, (sj)

k
j=1

satisfying

αj ∈ [θ, 1),
k∑
j=1

αj = 1,

k∑
j=1

αjhj =
k∑
j=1

αjrj =
k∑
j=1

αjsj = 0,

(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj) ∈ D,

we have

B(x, y, z, u, v) ­
∑
αjB(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj).

The relation between functions satisfying the above special properties and the
validity of (2.1) is described in the statement below.

THEOREM 2.1. If the class B(M) is nonempty, then (2.1) holds.
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Proof. By a standard limiting argument (using continuity of M and the fact
that the variables fn, gn, . . . take only a finite number of values), we may and do
assume that |f0| > 0 almost surely; then the process zn = (fn, gn, |f |∗n, wn, σn)
takes values inD. The key fact is that the process (B(zn))n­0 is a supermartingale,
which is an immediate consequence of the concavity-type condition 2◦:

E[B(fn, gn, |f |∗n, wn, σn) | Fn−1]
= E[B(fn−1 + dfn, gn−1 + dgn, |f |∗n−1 ∨ |fn + dfn|,

wn−1 + dwn, σn−1 + dσn) | Fn−1]
¬ B(fn−1, gn−1, |f |∗n−1, wn−1, σn−1).

Therefore, if we apply the majorization 1◦ and then the initial condition 0◦, we get

EM(fn, gn, |f |∗n, wn) ¬ EB(fn, gn, |f |∗n, wn, σn) ¬ EB(f0, g0, |f |∗0, w0, σ0)

¬ 0,

which is the desired inequality (2.1). �

It is a beautiful fact that the above implication can be reversed.

THEOREM 2.2. If (2.1) holds true ( for all f , g and all weights w with [w]A∞
¬ c), then the class B(M) is nonempty.

Proof. Define B : D → R by the abstract formula

B(x, y, z, u, v) = supEM(fn, gn, |f |∗n ∨ z, wn).

Here the supremum is taken over all n, all A∞ weights w satisfying [w]∞ ¬ c,
w0 = u, E logw = v and all martingale pairs (f, g) satisfying (f0, g0) = (x, y)
and dgk = εkdfk, k ­ 1, for some predictable sequence (εk)k­1 with values
in [−1, 1]. Here the probability space as well as the θ-regular filtration are also
assumed to vary. We will show that the function B satisfies conditions 0◦–2◦. The
initial condition 0◦ follows immediately from (2.1). The majorization condition is
also easy: it suffices to compute the expression in the definition of B for n = 0.
The most difficult issue is the concavity-type condition 2◦. We will use the so-
called “splicing” argument. Fix the parameters x, y, z, u, v, k, . . . as in 2◦ and,
for each j = 1, . . . , k, pick arbitrary martingales (f j , gj , wj) as in the definition
of B(x + hj , y + εhj , |x + hj | ∨ z, u + rj , v + sj). We may assume that these
martingales are given on k pairwise disjoint probability spaces (Ωj ,F j ,Pj). Now
we “glue” these spaces and the martingale triples into one space and one triple
using the parameters (αj)

k
j=1. Namely, let Ω = Ω1∪· · ·∪Ωk,F = σ(F1, . . . ,Fk)

and define a probability measure P onF by requiring that P(
⋃
Aj) =

∑
αjP(Aj)
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for any Aj ∈ F j , j = 1, . . . , k. Next, define (f, g, w) by (f0, g0, w0) = (x, y, w)
and

(fn(ω), gn(ω), wn(ω)) = (f jn−1(ω), gjn−1(ω), wjn−1(ω))

if ω ∈ Ωj . Finally, let (Fn)n­0 be the natural filtration of (f, g, w).
Directly from the above definition, we see that

E((f1, g1, w1) | F0) = E(f1, g1, w1) =
∑
αj(x+hj , y+εhj , u+rj) = (x, y, u).

Furthermore, since (f j , gj , wj) are martingales, so is (f, g, w). In addition,

E log(w) =
∑
αjEj log(wj) =

∑
αj(vj + sj) = v,

where Ej is the expectation with respect to Pj . Our next observation is that w is
an A∞ weight with [w]A∞ ¬ c. Indeed, w0e

−σ0 = ue−v ¬ c, and for n ­ 1 the
pointwise estimate wne−σn ¬ c follows from [wj ]A∞ ¬ c. Consequently, by the
very definition of B,

B(x, y, z, u, v) ­ EM(fn, gn, |fn| ∨ z, wn)

=
∑
αjEjM(f jn−1, g

j
n−1, |f

j
n−1| ∨ z, w

j
n−1),

so taking the supremum over all n and all triples (f j , gj , wj) as above, we obtain

B(x, y, z, u, v) ­
∑
αjB(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj).

This is precisely the desired condition 2◦. �

Three comments are in order.

REMARK 2.1. The above method works for Ap weights as well: the only
change concerns the definition of the domain D, in which the double estimate
1 ¬ ue−v ¬ c should be changed to 1 ¬ uvp−1 ¬ c.

REMARK 2.2. Suppose that we are interested in the estimate (2.1) in the d-di-
mensional dyadic context. Then the above approach can be modified easily: we
consider the function B given by the abstract formula as above,

B(x, y, z, u, v) = supEM(fn, gn, |f |∗n ∨ z, wn).

Here the supremum is taken over all martingales as in the above proof, the essential
difference is that the probability space is fixed to be ([0, 1]d,B([0, 1]d), | · |) and the
filtration is assumed to be dyadic. Thanks to the fractal, self-similar structure of the
dyadic filtration, the above splicing argument is valid, and the function B satisfies
0◦, 1◦ and a weaker version of 2◦, with all αj’s equal to 2−d. A similar modification
can be applied for Ap weights (see the previous remark). This observation will be
crucial in the last subsection where we show that (1.3) cannot hold universally, i.e.,
with a constant independent of θ.
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REMARK 2.3. The technique is quite flexible and general. For instance, it can
be used to study weighted nonmaximal estimates, simply by working with the func-
tions M and B depending only on x, y, w and v. Another possible modification is
that if we want to show (2.1) for processes as previously, but satisfying the addi-
tional property ‖f‖∞ ¬ 1, the domain of M and B has to be changed: it is enough
to considerM andB defined on {(x, y, z, u, v) ∈ [−1, 1]×R×(0, 1]×(0,∞)×R :
|x| ¬ z, 1 ¬ ue−v ¬ c}.

The remainder of this section contains some informal reasoning which leads to
the special function corresponding to (1.3); the reader might skip it and proceed to
Section 3. We have decided to insert this material, since we believe that the steps
leading to the discovery of the function may become useful in the study of other
related estimates.

As we will see later, the main difficulty lies in proving the estimate

‖gn‖L1(w) ¬ C[w]A∞
∥∥|f |∗n∥∥L1(w)

, n ­ 0,

which is slightly weaker than (1.3), since it does not involve the maximal func-
tion of g on the left. This inequality is of the form (2.1) with M(x, y, z, u, v) =
|y|u − Cczu, where c = [w]A∞ , and hence all we need is an appropriate spe-
cial function B. At first glance, it is not clear at all how to search for this object.
To gain some intuition and indication, let us review several results from the well-
understood unweighted case.

We start with the nonmaximal L∞ → L2 inequality (as we will see in a mo-
ment, it will be of key importance): if f , g are martingales such that ‖f‖∞ ¬ 1
and dgn = vndfn, n = 0, 1, . . . , for some predictable sequence (vn)n­0 taking
values in [−1, 1], then ‖g‖2 ¬ 1. This trivial result can be proved with the use of
Burkholder’s method (see [5]), and the corresponding function u : [−1, 1]×R→ R
is

u(x, y) = y2 − x2.

Next, we turn to maximal estimates in the unweighted setting. As shown in [19],
the special function U : {(x, y, z) : |x| ¬ z} → R corresponding to the continuous
analogue of (1.1) is given by

(2.2) U(x, y, z) =
y2 − x2 − z

z
= z

(
u

(
x

z
,
y

z

)
− 1

)
.

As we see, this special function uses two components: the multiplicative constant z
which controls the maximal function of f , and the special function on the strip
which handles the L∞ → L2 estimate.

A natural idea is to try to follow this path in the weighted setting. Suppose that
w is an A∞ weight. The main problem is to find an appropriate weighted analogue
of the function u above; indeed, having found such an object (say ū, a function of
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x, y, u and v), it seems plausible to put

B(x, y, z, u, v) = z

(
ū

(
x

z
,
y

z
, u, v

)
− Lu

)
,

for some constant L to be found. The function ū should encode the L∞(W ) →
L2(W ) inequality, or rather an L∞(W ) → Lq(W ) estimate for some q, for mar-
tingale transforms. Fortunately, some indications towards its discovery can be ex-
tracted from [22]. In that paper, similar inequalities in the presence of Ap weights
were studied. Roughly speaking, to obtain L∞(W ) → Lq(W ) estimates in this
context, the procedure is as follows. Take a special function Ur associated with a
nonmaximal and unweighted Lr → Lr bound (this problem is well-understood,
see Burkholder [5]) and then put

ū(x, y, u, v) = (Ur(x, y) + κ)β(uvp−1 − a)αv1−p

for some parameters α, β, κ and a. In the present paper we want to take p = ∞,
so some change is needed. It turns out that the right choice for ū is

ū(x, y, u, v) = (Ur(x, y) + κ)β(ue−v − a)αev.

To see the reason for our modification “vp−1 → e−v”, compare the geometric
interpretations of Ap and A∞ weights presented at the beginning of this section.

3. BURKHOLDER’S FUNCTION OF FIVE VARIABLES

In order to prove the inequality (1.3), we will first prove the weaker estimate

‖gn‖L1(w) ¬ C[w]A∞
∥∥|f |∗n∥∥L1(w)

, n = 0, 1, . . . .(3.1)

From the previous section it is sufficient to find a function B : D → R which
satisfies conditions 0◦–2◦ with M(x, y, z, u, v) = |y|u − Cczu. As we will see,
this special object will be built from several simpler “blocks”. For brevity, set

β = θ(8c(1−θ))−1, α = 1−(2c)−1, a = 3/4, p = 1/β, A = 4/θ−1.

Observe that p = 8c(1/θ − 1) ­ 8. Let

Dc = {(u, v) ∈ (0,∞)× R : 1 ¬ ue−v ¬ c}.

For (r, u, v) ∈ (0,∞)×Dc, set

F (r, u, v) = rβ(ue−v − a)αev.

Furthermore, for any x, y ∈ R, define

U(x, y) =

{
p(1−1/p)p−1(|y|−(p−1)|x|)(|x|+ |y|)p−1 if |y| ­ (p−1)|x|,
|y|p−(p−1)p|x|p if |y| < (p−1)|x|.



98 M. Brzozowski and A. Osękowski

This is the celebrated special function invented by Burkholder [5] to establish
sharp Lp bounds for martingale transforms. Burkholder proved that U enjoys the
following.

LEMMA 3.1. The function U has the following properties:

(i) (Initial condition) U(x, y) ¬ 0 if |y| ¬ |x|.

(ii) (Majorization property) U(x, y) ­ |y|p − (p− 1)p|x|p.

(iii) (Concavity-type property) For any (x, y) ∈ R2, any ε ∈ [−1, 1], any positive
integer k and any sequences (αj)

k
j=1, (hj)

k
j=1 satisfying

αj ∈ [0, 1),
k∑
j=1

αj = 1,
k∑
j=1

αjhj = 0,

we have
U(x, y) ­

∑
αjU(x+ hj , y + εhj).

We are ready to construct Burkholder’s function B described in the previous
section. Let B : D → R be given by

B(x, y, z, u, v) =

[
F

(
U

(
x

z
,
y

z

)
+ 2(p− 1)pAp, u, v

)
− 3Apu

]
z

= F (U(x, y) + 2(p− 1)pApzp, u, v)− 3Apuz.

Here the second equality follows from the homogeneity U(λx, λy) = |λ|pU(x, y)
and the relation β = 1/p.

3.1. The analysis of U and F . In this subsection we will prove some properties of
the auxiliary functions U and F .

In what follows, we will also need the fact stated below.

LEMMA 3.2. For any ε ∈ [−1, 1], t ­ 0 and η ∈ R,

(U(1, η)+2(p−1)pAp)β−1(U(1, η)+2(p−1)pAp+βUy(1, η)(ε−η)) ¬ 3Ap.

Proof. Recall that β = 1/p. If |η| < p − 1, we use the second formula in the
definition of U and calculate that

Uy(1, η) = p sgn(η)|η|p−1.

Hence

(3.2) U(1, η)+βUy(1, η)(ε−η) = ε|η|p−1 sgn(η)−(p−1)p

¬ (p−1)p−1−(p−1)p ¬ 0 ¬ p(1+ |η|)p−1.
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Next, consider the case |η| ­ p− 1. We use the first formula in the definition of U
and calculate that

Uy(1, η) = p(1− 1/p)p−1 sgn(η)(1 + |η|)p−2(p|η|+ p(2− p)|x|).

Hence

U(1, η) + βUy(1, η)(ε− η) = p(1− 1/p)p−1(1 + |η|)p−2

× [(|η| − (p− 1))(1 + |η|) + sgn(η)βp(|η|+ 2− p)(ε− η)].

The expression in square brackets is equal to

εη − 1 + (ε sgn(η) + 1)(2− p).

Thus if |η| ­ p− 1 then

(3.3) U(1, η) + βUy(1, η)(ε− η)

= p(1− 1/p)p−1(1 + |η|)p−2(εη − 1 + (ε sgn(η) + 1)(2− p))
¬ p(1− 1/p)p−1(1 + |η|)p−1 ¬ p(1 + |η|)p−1.

In the first inequality above we have used the rough estimates εη−1 ¬ 1 + |η| and
(ε sgn(η) + 1)(2− p) ¬ 0. We have shown in (3.2) and (3.3) that for every η ∈ R,

(3.4) U(1, η) + βUy(1, η)(ε− η) ¬ p(1 + |η|)p−1.

Hence, from Lemma 3.1(ii) (recall that the exponent β− 1 = 1/p− 1 is negative),
it is sufficient to establish that

(3.5) (ηp − (p− 1)p + 2(p− 1)pAp)β−1(2(p− 1)pAp + p(1 + η)p−1) ¬ 3Ap

for every η ­ 0. The derivative of the expression on the left with respect to η is
equal to

p(ηp + (2Ap − 1)(p− 1)p)β−2[ηp−1(β − 1)2(p− 1)pAp+

ηp−1p(β − 1)(1 + η)p−1 + (p− 1)(1 + η)p−2(ηp − (p− 1)p + 2(p− 1)pAp)].

From the identity p(β − 1) = 1− p, we find that the expression in square brackets
is equal to

2(β− 1)(p− 1)pApηp−1 + (1 + η)p−2((1− p)ηp−1 + (2Ap− 1)(p− 1)p(p− 1)).

Now we can omit the negative summand (1 + η)p−2((1 − p)ηp−1 − (p − 1)p+1)
and estimate this expression from above by

2Ap(p− 1)p((β − 1)ηp−1 + (1 + η)p−2(p− 1)).
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This is nonpositive for η ­ 4(p− 2). Indeed,

(1 + η)p−2(p− 1) = ηp−2p(1− β)(1 + 1/η)p−2 ¬ ηp−2p(1− β)e1/4

¬ ηp−2(1− β)p
4(p− 2)

p
¬ (1− β)ηp−1.

Here we have used the assumption η ­ 4(p − 2) and the bound p ­ 8. We have
proved that the expression on the left-hand side of (3.5) is decreasing for η ­
4(p− 2). Hence to establish (3.5) it is sufficient to prove this for η ∈ [0, 4(p− 2)).
We estimate the left-hand side of this inequality from above by(

(2Ap − 1)(p− 1)p
)β−1(

2(p− 1)pAp + p(4p− 7)p−1
)

= A(2−A−p)β−1
(

2(p− 1) + p

(
4p− 7

Ap−A

)p−1
A−1

)
¬ A(2− 4−p)β−1(2(p− 1) + pA−1) ¬ 3Ap.

Here we have used the identity p(β−1) = 1−p, the boundA ­ 4 and the estimate
2− 4−p ­ 1. �

Concerning F , we start with the following fact.

LEMMA 3.3. For any (r, u, v) ∈ (0,∞)3 with 1 ¬ ue−v ¬ c, we have

(3.6) 1
4ur

β ¬ F (r, u, v) ¬ urβ.

Proof. Recall that α = 1− (2c)−1 and a = 3/4. We have to show the estimate

1

4
¬ (ue−v − a)α

ue−v
¬ 1.

Let t = ue−v. Observe that the function [1, c] 3 t 7→ (t− a)α/t is increasing:(
(t− a)α

t

)′
=

(t− a)α−1((α− 1)t+ a)

t2
­ 0.

Thus the assertion follows from 1/4 ¬ (1− a)α and (c− a)α/c ¬ 1. �

LEMMA 3.4. The function F is θ-concave: for any x, x1, . . . , xn∈(0,∞)×Dc

and any sequence (aj)
n
j=1 satisfying

αj ∈ [θ, 1),
n∑
j=1

αj = 1,
∑
αjxj = x,

we have
F (x) ­

∑
αjF (xj).
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Proof. By the homogeneity of F we may assume that v = 0. In other words, it
is sufficient to prove

(3.7) rβ(u− a)α ­
∑
αjr

β
j (uje

−vj − a)αevj ,

where
∑
αj(rj , uj , vj) = (r, u, 0) and (r, u, 0), (r1, u1, v1), . . . (rn, un, vn) ∈

(0,∞) ×Dc. Because α + β + β < 1, the function (0,∞) × (1,∞) × (0,∞) 3
(k, s, t) 7→ kβ(s− a)αtβ is concave. Hence

∑
(rje

−vj )β(uje
−vj − a)α(evj )β

evjαj
P
¬
(
r

P

)β( u
P
− a
)α(Q

P

)β
,

where P =
∑
αje

vj and Q =
∑
αje

2vj . Thus to prove (3.7) it is sufficient to
establish the inequality

(3.8) P 1−β
(
u

P
− a
)α(Q

P

)β
¬ (u− a)α.

We will need the following estimate:

Q ¬ 1

θ
P 2 − 1− θ

θ
.

This follows from the assumption αj ∈ [θ, 1) by applying the convexity of ex

twice:

P 2 − θQ =
∑
j

αje
vj
(

(αj − θ)evj +
∑
k 6=j

αke
vk
)
­
∑
j

αje
vj (1− θ)e−vjθ/(1−θ)

­ 1− θ.

Hence to prove (3.8) it is sufficient to establish that

P

(
u

P
− a
)α(1

θ
− 1− θ

θP 2

)β
¬ (u− a)α.

We know that u ∈ [1, c] and P ∈ [1, u] (here the lower bound is just convexity
of ex and the upper bound follows from uje

−vj ­ 1 for each j). Let s = 1/P . It is
enough to show that

s−1(us− a)α(1− (1− θ)s2)β ¬ θβ(u− a)α

for any u ∈ [1, c] and s ∈ [1/u, 1]. Observe that for s = 1 both sides are equal.
Hence it is sufficient to show that s 7→ s−1(us − a)α(1 − (1 − θ)s2)β is nonde-
creasing. By differentiating we obtain the condition

((α− 1)us+ a)(1− (1− θ)s2)− 2β(1− θ)s2(us− a) ­ 0.
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Since s ¬ 1, the expression on the left is greater than

((α− 1)us+ a)θ − 2β(1− θ)(us− a)

=

(
α−1−2β

1− θ
θ

)
θus+

(
1+2β

1− θ
θ

)
θa ­

(
α−1−2β

1− θ
θ

)
θc+θa = 0.

Here in the last step we have just plugged in the values a = 3/4, α = 1−1/2c and
β = θ(8c(1− θ)−1. �

REMARK 3.1. It can be shown that the regularity assumption αj ­ θ is neces-
sary here. In other words, the function F does not satisfy the concavity condition
if we do not assume any lower bound on αj .

3.2. Burkholder’s functionB of five variables. We are ready for the main step: we
will check that the function B satisfies conditions 0◦, 1◦ and 2◦.

LEMMA 3.5. The function B satisfies the initial condition 0◦.

Proof. Recall condition 0◦: for every (x, y, |x|, u, v) ∈ D such that |y| ¬ |x|
and 1 ¬ ue−v ¬ c we have

B(x, y, |x|, u, v) ¬ 0.

From the definition of B this is equivalent to

(3.9)
[
F

(
U

(
x

|x|
,
y

|x|

)
+ 2(p− 1)pAp, u, v

)
− 3Apu

]
|x| ¬ 0.

From Lemma 3.3 we have
(ue−v − a)α

ue−v
¬ 1.

Recall that pβ = 1. From Lemma 3.1(i), if |y| ¬ |x|, then U(x/|x|, y/|x|) ¬ 0
and hence(

U

(
x

|x|
,
y

|x|

)
+ 2(p− 1)pAp

)β (ue−v − a)α

ue−v
¬ 2A(p− 1) ¬ 3Ap,

which is precisely the required estimate (3.9). �

LEMMA 3.6. The function B satisfies the majorization condition

B(x, y, z, u, v) ­ 1
4(|y|u− 12Apzu).
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Proof. From Lemma 3.1(ii), the estimate |x|/z ¬ 1 ¬ A and the identity
pβ = 1 we have(
U

(
x

z
,
y

z

)
+2(p−1)pAp

)β
­
((
|y|
z

)p
−(p−1)p

(
|x|
z

)p
+2(p−1)pAp

)β
­ |y|

z

and, as we have proved in Lemma 3.3, also

(3.10)
(ue−v − a)α

ue−v
­ 1

4
.

Consequently,

B(x, y, z, u, v) ­ 1
4 |y|u− 3Apuz = 1

4(|y|u− 12Apzu). �

It remains to check the most difficult condition 2◦. Recall that we need to
show that the function B satisfies the following concavity-type condition: for any
(x, y, z, u, v) ∈ D, any ε ∈ [−1, 1], any positive integer k ¬ 1/θ and any se-
quences (αj)

k
j=1, (hj)

k
j=1, (rj)

k
j=1, (sj)

k
j=1 satisfying

αj ∈ [θ, 1),
k∑
j=1

αj = 1,

k∑
j=1

αjhj =
k∑
j=1

αjrj =
k∑
j=1

αjsj = 0,

(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj) ∈ D,

we have

(3.11) B(x, y, z, u, v) ­
∑
αjB(x+ hj , y+ εhj , |x+ hj | ∨ z, u+ rj , v+ sj).

We have already established that the auxiliary functions U and F have appro-
priate concavity properties (Lemmas 3.1 and 3.4). From this it is almost immediate
to deduce that

B(x, y, z, u, v) ­
∑
αjB(x+ hj , y + kj , z, u+ rj , v + sj)

for points satisfying the additional condition |x+hj | ¬ z. The main difficulty is to
prove (3.11) when |x+hj | > z for some j. To solve this problem we will consider
the extension of B onto the domain

D̄ = {(x, y, z, u, v) ∈ R2 × (0,∞)× (0,∞)× R : |x| ¬ Az, 1 ¬ ue−v ¬ c}.
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The function B̄ : D̄ → R will be given by the same formula:

B̄(x, y, z, u, v) =

[
F

(
U

(
x

z
,
y

z

)
+ 2Ap(p− 1)p, u, v

)
− 3Apu

]
z.

In the next theorem we will prove the concavity and monotonicity properties of B̄.

THEOREM 3.1. The function B̄ has the following properties:

(1) (Concavity-type property) For any (x, y, z, u, v) ∈ D̄, any ε ∈ [−1, 1], any
positive integer k ¬ 1/θ and sequences (αj)

k
j=1, (hj)

k
j=1, (rj)

k
j=1, (sj)

k
j=1

satisfying

αj ∈ [θ, 1),
k∑
j=1

αj = 1,

k∑
j=1

αjhj =
k∑
j=1

αjrj =
k∑
j=1

αjsj = 0,

(x+ hj , y + εhj , z, u+ rj , v + sj) ∈ D̄,

we have

(3.12) B̄(x, y, z, u, v) ­
∑
αjB̄(x+ hj , y + εhj , z, u+ rj , v + sj).

(2) (Vertical monotonicity) B̄z(x, y, z, u, v) ¬ 0 for every (x, y, z, u, v) ∈ D̄.

(3) (Diagonal monotonicity) Let (x1, y1, |x1|, u, v), (x2, y2, |x2|, u, v) ∈ D. If
|x2| < |x1| and |y2 − y1| ¬ |x2 − x1|, then

B(x1, y1, |x1|, u, v) ¬ B(x2, y2, |x2|, u, v).

Proof. (1) follows immediately from Lemmas 3.1 and 3.4 and the monotonicity
of F with respect to the variable r:

F

(
U

(
x

z
,
y

z

)
+ 2Ap(p− 1)p, u, v

)
­ F

(∑
αjU

(
x+ hj
z

,
y + εhj

z

)
+ 2Ap(p− 1)p, u+

∑
αjrj , v +

∑
αjsj

)
­
∑
αjF

(
U

(
x+ hj
z

,
y + εhj

z

)
+ 2Ap(p− 1)p, u+ rj , v + sj

)
,

which is equivalent to the desired inequality.
It remains to show the monotonicity properties. We start with (2). By symmetry,

we may assume that x ­ 0. Because β = 1/p, the condition B̄z(x, y, z, u, v) ¬ 0
is equivalent to(

U

(
x

z
,
y

z

)
+ 2Ap(p− 1)p

)β−1
2Ap(p− 1)p

(ue−v − a)α

ue−v
¬ 3Ap.
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From Lemmas 3.1(ii) and 3.3 the left hand side is smaller than((
|y|
|z|

)p
− (p− 1)p

(
|x|
|z|

)p
+ 2Ap(p− 1)p

)β−1
2Ap(p− 1)p ¬ 2Ap.

This gives the assertion.
To handle (3), we first apply symmetry and homogeneity to assume that x1 > 0

and x2 = 1. Consider the function φ : [0,∞)→ R given by

φ(t) = B(1 + t, y + εt, 1 + t, u, v),

where ε ∈ [−1, 1] and (u, v) ∈ Dc are fixed. It is sufficient to show that φ′(t) ¬ 0.
This is equivalent to proving that the expression

(U(1, η) + 2(p− 1)pAp)β−1

× (U(1, η) + 2(p− 1)pAp + βUy(1, η)(ε− η))
(ue−v − a)α

ue−v
u− 3Apu,

where η = (y + εt)/(1 + t), is nonpositive. This follows from Lemmas 3.2 and
3.3. �

We are ready to prove that the functionB satisfies the concavity-type condition.

THEOREM 3.2. The function B satisfies the following concavity-type condi-
tion: for any (x, y, z, w, v) ∈ D, any ε ∈ [−1, 1], any positive integer k ¬ 1/θ and
sequences (αj)

k
j=1, (hj)

k
j=1, (rj)

k
j=1, (sj)

k
j=1 satisfying

αj ∈ [θ, 1),
k∑
j=1

αj = 1,

k∑
j=1

αjhj =
k∑
j=1

αjrj =
k∑
j=1

αjsj = 0,

(x+ hj , y + εhj , |x+ hj | ∨ z, u+ rj , v + sj) ∈ D,

we have

(3.13) B(x, y, z, u, v) ­
∑
αjB(x+ hj , y+ εhj , |x+ hj | ∨ z, u+ rj , v+ sj).

Proof. The function B satisfies the following homogeneity condition:

B(λx, λy, λz, u, v) = λB(x, y, z, u, v)

for every λ > 0. Hence, we can divide both sides of (3.13) by z to obtain the
equivalent condition:

B(x/z, y/z, 1, u, v)

­
∑
αjB(x/z + hj/z, y/z + εhj/z, |x/z + hj/z| ∨ 1, u+ rj , v + sj).

Thus, to prove the general case, it is sufficient to prove the statement for z = 1.
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For convenience let xj = x+ hj , yj = y + εhj , uj = u+ rj and vj = v + sj
and sort the points in increasing order: x1 ¬ · · · ¬ xk. We will divide the proof
into two steps.

STEP 1. Let us consider two special cases: when x1 ­ −1 and when xk ¬ 1.
By symmetry it is enough to handle the first one; the second is analogous. From
x1 ­ −1 and the lower bound on probabilities we can deduce that xn cannot be
large. More precisely,

xk =
(
x−

k−1∑
j=1

αjxj

)
/αk ¬ (x+ 1− αk)/αk = (x+ 1)/αk − 1

¬ 2/θ − 1 ¬ A.

Hence (xj , yj , 1, uj , vj) ∈ D̄ and from Theorem 3.1(2) we obtain

B̄(xj , yj , |xj | ∨ 1, uj , vj) ¬ B̄(xj , yj , 1, uj , vj).

Combining this with Theorem 3.1(1), we get∑
αjB(xj , yj , |xj | ∨ 1, uj , vj) ¬

∑
αjB̄(xj , yj , 1, uj , vj)

¬ B̄(x, y, 1, u, v) = B(x, y, 1, u, v).

STEP 2. We now reduce the general case to the one considered before. Assume
that x1 < −1 and xk > 1. The idea is to replace x1, y1, xk, yk by x̂1, ŷ1, x̂k, ŷk in
such a way that:

(a) We “pull” the points closer to the center: x̂1 ∈ (x1,−1] and x̂k ∈ [1, xk).

(b) We have ŷ1 − y1 = ε(x̂1 − x1) and ŷk − yk = ε(x̂k − xk).

(c) The average is preserved: α1x1 + αkxk = α1x̂1 + αkx̂k.

Then in the light of Theorem 3.1(3),

B(x1, y1, |x1|, u1, v1) ¬ B(x̂1, ŷ1, |x̂1|, u1, v1),
B(xk, yk, |xk|, uk, vk) ¬ B(x̂k, ŷk, |x̂k|, uk, vk).

Hence the replacement does not change the left hand side of (3.13) and does not
decrease the right hand side, making the inequality stronger. Moreover we will also
ensure that

(d) We “pull” the points as close as possible: x̂1 = −1 or x̂k = 1.
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Now we repeat the replacement procedure until all the first coordinates x1, . . . , xk
are contained either in [−1,∞) or in (−∞, 1], which is the case solved in Step 1.
Condition (d) ensures that this algorithm will stop after at most n−1 replacements.
It remains to find the points x̂1, ŷ1, x̂k, ŷk satisfying (a)–(d). This will be done
explicitly. Let us consider two cases. If

α1x1 + αkxk ­ αk − α1,

then we put x̂1 = −1, x̂k = (α1x1 + αkxk + α1)/αk, ŷ1 = ε(x̂1 − x1) + y1 and
ŷk = ε(x̂k − xk) + yk. Conditions (a)–(d) are easy to check. The case

α1x1 + αkxk < αk − α1

is analogous: we put x̂k = 1, x̂1 = (α1x1 +αkxk−αk)/α1, ŷ1 = ε(x̂1−x1)+y1
and ŷk = ε(x̂k − xk) + yk. Again it is easy to check the required conditions. This
completes the proof. �

We have shown that B satisfies conditions 0◦−2◦. By the method of Section 2,
this yields the estimate (3.1) with C = 12Apc−1 ¬ 384θ−2.

4. PROOF OF THE MAIN INEQUALITY

To prove the main inequality (1.3) we will construct a function of six variables. Let

D = {(x, y, z, r, u, v) ∈ R2 × (0,∞)× R× (0,∞)× R :

|x| ¬ z, y ¬ r, 1 ¬ ue−v ¬ c}.

The additional variable r is associated with the one-sided maximal function defined
as g∗n = supn­0 gn. We define Burkholder’s function B : D→ R by

B(x, y, z, r, u, v) =

[
F

(
U

(
x

z
,
r − y
z

)
+ 2Ap(p− 1)p, u, v

)
− 12cu

]
z

= B(x, r − y, z, u, v).

This new function satisfies the following properties:

0◦ (Initial condition) B(x, y, |x|, y, u, v) ¬ 0 if 1 ¬ ue−v ¬ c.

1◦ (Majorization property) For any (x, y, z, r, u, v) ∈ D we have

B(x, y, z, r, u, v) ­ 1
4((r − y)u− 12Apzu).
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2◦ (Concavity-type property) For any (x, y, z, r, u, v) ∈ D, any ε ∈ [−1, 1], any
positive integer k ¬ 1/θ and sequences (αj)

k
j=1, (hj)

k
j=1, (rj)

k
j=1, (sj)

k
j=1 sat-

isfying

αj ∈ [θ, 1),
k∑
j=1

αj = 1,

k∑
j=1

αjhj =
k∑
j=1

αjrj =
k∑
j=1

αjsj = 0,

(x+ hj , y + εhj , |x+ hj | ∨ z, (y + εhj) ∨ r, u+ rj , v + sj) ∈ D,

we have

B(x, y, z, r, u, v)

­
∑
αjB(x+ hj , y + εhj , |x+ hj | ∨ z, (y + εhj) ∨ r, u+ rj , v + sj).

Conditions 0◦ and 1◦ are immediate consequences of the analogous proper-
ties of B. Now consider the concavity-type condition. It is easy to check that
Burkholder’s function U satisfies U(x, y) ­ U(x, 0) for every (x, y) ∈ R2. Hence

B(x, y, z, u, v) ­ B(x, 0, z, u, v)

for every (x, y, z, u, v) ∈ D. From the above estimate and (3.13) we have∑
αjB

(
x+ hj , y + εhj , |x+ hj | ∨ z, (y + εhj) ∨ r, u+ rj , v + sj

)
=
∑
αjB

(
x+ hj , (r − y − εhj) ∨ 0, |x+ hj | ∨ z, u+ rj , v + sj

)
¬
∑
αjB(x+ hj , r − y − εhj , |x+ hj | ∨ z, u+ rj , v + sj)

¬ B(x, r − y, z, u, v) = B(x, y, z, r, u, v).

Now we repeat, word-for-word, the reasoning of Section 2: the only change is
that the process (zn)n­0 is six-dimensional and involves the one-sided maximal
function of g: zn = (fn, gn, |f |∗n, g∗n, wn, σn). Hence, we obtain

E(g∗n − gn)wn ¬ 12Ap[w]A∞E|f |∗nwn ¬ 384θ−2[w]A∞E|f |∗nwn

and, by symmetry, E((−g)∗n + gn)wn ¬ 384θ−2[w]A∞E|f |∗nwn. Add these two
bounds to get

(4.1) E(g∗n + (−g)∗n)wn ¬ 768θ−2[w]A∞E|f |∗nwn.

Now observe that if g started from 0, we would have the pointwise inequality
|g|∗n ¬ g∗n + (−g)∗n and (4.1) would give

E|g|∗nwn ¬ 768θ−2[w]A∞E|f |∗nwn,
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as desired (see the limiting argument below). To prove (1.3) in full generality, note
that if (gn)n­0 is a ±1-transform of f , then the martingale g̃ = (gn − g0)n­0 also
has this property and additionally starts from 0. Hence by the above estimate,

E|g|∗nwn ¬ E(|g̃|∗n + |g0|)wn ¬ 768θ−2[w]A∞E|f |∗nwn + E|f0|wn
¬ 769θ−2[w]A∞E|f |∗nwn.

Since wn = E(w | Fn), this gives E|g|∗nw ¬ 769θ−2[w]A∞E|f |∗nw and the claim
follows by letting n → ∞ and applying Lebesgue’s monotone convergence theo-
rem.

5. NECESSITY OF THE θ-REGULARITY CONDITION

The purpose of this section is to establish Theorem 1.3, and from now on we work
with dyadic filtrations only. We could prove the theorem by constructing appro-
priate examples, but these seem to have quite involved, fractal-type structure and
their analysis is a little complicated. Our approach will rest on Remark 2.2, which
enables us to avoid most of these technical issues. Roughly speaking, the argument
is as follows. First we assume that, on the contrary, the inequality does hold univer-
sally, i.e., with a constant independent of the dimension. Then the Bellman method
yields the existence of an abstract function satisfying the appropriate size and con-
cavity requirements. Finally, we exploit these properties in the right order to obtain
a contradiction (to the assumption that the constant involved is dimension-free).

So, suppose that there is 1 < p <∞ and a constantK depending only on p such
that for any dimension d, any martingales f and g adapted to the d-dimensional
dyadic filtration on [0, 1)d such that dgn = vndgn for a predictable sequence of
signs vn, and any Ap weight w on [0, 1)d with [w]Ap ¬ 2, we have

‖g‖L1(w) ¬ K
∥∥|f |∗∥∥

L1(w)
.(5.1)

Fix d and let B be the associated Bellman function, given by

B(x, y, z, u, v) = supE{|gn|w −K(|fn|∗ ∨ z)w}.

Here the probability space is ([0, 1]d,B([0, 1]d), | · |), the filtration is dyadic and the
above supremum is taken over:

• all adapted martingale pairs (f, g) satisfying (f0, g0) = (x, y) and dgk = vkdfk
for all k ­ 1, for some deterministic sequence v1, v2, . . . of signs;

• all dyadic Ap weights w satisfying [w]Ap ¬ 2, Ew = u and Ew1/(1−p) = v.

This Bellman function enjoys the appropriate initial, majorization and concavity
conditions, proved in Section 2. We will also need the following additional prop-
erties which follow from the special form of the function M .
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THEOREM 5.1.

(i) We have

(5.2) B(x, y, z, u, v) = B(|x|, |y|, |x| ∨ z, u, v).

(ii) For any λ 6= 0 and any µ > 0 we have

(5.3) B(λx, λy, |λ|z, µu, µ−1/(p−1)v) = |λ|µB(x, y, z, u, v).

(iii) We have

(5.4) B(x, y, z, u, v) ­ B(x, 0, z, u, v).

Proof. The symmetry B(x, y, z, u, v) = B(|x|, |y|, z, u, v) follows directly
from the definition. Indeed, if f , g, w are arbitrary martingales as in the defini-
tion of B(x, y, z, u, v), then −f, g, w satisfy all the requirements needed in the
definition of B(−x, y, z, u, v), so

B(−x, y, z, u, v) ­ E{|−gn|w−K(|fn|∗∨z)w} = E{|−gn|w−K(|fn|∗∨z)w}.

Taking the supremum over all f, g, w we get B(−x, y, z, u, v) ­ B(x, y, z, u, v),
and the passage from x to −x shows that we actually have equality here. The
identity B(x, y, z, u, v) = B(x,−y, z, u, v) is shown in the same manner, and the
equality B(|x|, |y|, z, u, v) = B(|x|, |y|, |x| ∨ z, u, v) follows from the fact that

E{|gn|w −K(|fn|∗ ∨ z)w} = E{|gn|w −K(|fn|∗ ∨ |f0| ∨ z)w}.

The proof of the homogeneity property (ii) is analogous: pick arbitrary martingales
f, g, w as in the definition of B(x, y, z, u, v). Then λf has average λx, λg has
average λy, while µw is an Ap weight with characteristic bounded by 2 satisfying
Eµw = µu and E(µw)−1/(p−1) = µ−1/(p−1)v. Consequently,

B(λx, λy, |λ|z, µu, µ−1/(p−1)v) ­ E{|λgn|(µw)−K(|λfn|∗ ∨ |λz|)(µw)}
= |λ|µE{|gn|w −K(|fn|∗ ∨ z)w}.

Hence, taking the supremum over all f, g, w as above, we get

B(λx, λy, |λ|z, µu, µ−1/(p−1)v) ­ |λ|µB(x, y, z, u, v).(5.5)

To get the reverse bound, apply the above estimate to (λx, λy, |λ|z, µu, µ−1/(p−1)v)
in place of (x, y, z, u, v) and the numbers λ−1, µ−1 in place of λ, µ.

Finally, to check (iii), we will prove that the function y 7→ B(x, y, z, u, v) is
convex; together with its symmetry (which is guaranteed by (i)), we will get the
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claim. Pick α ∈ (0, 1), y1, y2 ∈ R and set y = α1y1 + (1 − α1)y2. If f, g, w
are martingales as in the definition of B(x, y, z, u, v), then the convexity of the
function t 7→ |t| yields

E{|gn|w −K(|fn|∗ ∨ z)w} ¬ α1E{|y1 − y + gn|w −K(|fn|∗ ∨ z)w}
+ α2E{|y2 − y + gn|w −K(|fn|∗ ∨ z)w}
¬ α1B(x, y1, z, u, v) + α2B(x, y2, z, u, v).

Taking the supremum over all f, g, w, n gives the desired convexity. �

We will exploit the concavity of B in appropriate directions; to this end, we
need the following auxiliary geometrical fact, taken from [24]. We provide an easy
proof for the sake of completeness.

LEMMA 5.1. Suppose that N is a huge positive integer, u = 1 and v =
21/(p−1). Then there are R, T ∈ R2 such that R = (Rx, Ry) lies on the curve
xyp−1 = 2, T = (Tx, Ty) lies on the curve xyp−1 = 1, Rx ¬ Tx and

(5.6) (1− (1− 2−d)N )R+ (1− 2−d)NT = (u, v).

Furthermore,

(5.7) (1− (1− 2−d)N )2dRx < 1/2

provided d is sufficiently large.

Proof. The existence of R, T follows from a very simple continuity argument.
Pick any point R = (Rx, Ry) on the curve xyp−1 = 2 such that Rx ¬ u and let
T be defined by (5.6) (then of course Rx ¬ u ¬ Tx). Note that T is a continuous
function of R. Furthermore, if Ry is huge, then Ty is negative, so T lies below the
curve xyp−1 = 1. On the other hand, when Ry = v, then R = T = (u, v), so T
lies above the curve xyp−1 = 1. Thus, by the Darboux property, there must be a
point R for which the desired configuration is satisfied.

To show (5.7), we exploit (5.6). Recall that u = 1. We have

1 = (1− (1− 2−d)N )Rx + (1− 2−d)NTx,

and since Rx < 1 < Tx,

21/(p−1) = (1− (1− 2−d)N )

(
2

Rx

)1/(p−1)
+ (1− 2−d)NT−1/(p−1)x

< (1− (1− 2−d)N )

(
2

Rx

)1/(p−1)
+ (1− 2−d)N ,
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which implies

Rx <

(
1− (1− 2−d)N

1− (1− 2−d)N/21/(p−1)

)p−1
.

Thus if d → ∞, then Rx → 0; on the other hand (1 − (1 − 2−d)N )2d ¬ N for
each d. This proves the assertion. �

Let u, v,R and T be as in (ii) above. In what follows, we will also exploit the
points T0, T1, . . . , TN given by T0 = (u, v) and the recursive equation

(5.8) Tk = 2−dR+ (1− 2−d)Tk+1.

By straightforward induction, we see that (u, v)=(1−2−d)kTk+(1−(1−2−d)k)R
for each k and hence in particular TN = T .

Proof of Theorem 1.3. If x ∈ R, y ∈ R, z ­ 0 and P = (u, v) ∈ D, we will
sometimes writeB(x, y, z;P ) = B(x, y, z, u, v). Let x̄ = 1/(2d+1−1). As shown
in Section 2 (see Remark 2.2), the function B satisfies the initial condition 0◦: for
every |y| ¬ |x| we have B(x, y, |x|, u, v) ¬ 0. This condition combined with
Theorem 5.1(iii) gives

0 ­ B(1, 1, 1, 1, 21/(p−1)) ­ B(1, 0, 1, 1, 21/(p−1)).(5.9)

Next, the concavity property combined with (5.8) yields, for each k,

B(x̄, 2kx̄, x̄;Tk)

­ 2−dB(1, (2k + 1)x̄− 1, x̄;R) + (1− 2−d)B(−x̄, 2(k + 1)x̄, x̄;Tk+1).

By Theorem 5.1(i), this expression is equal to

2−dB(1, (2k + 1)x̄− 1, 1;R) + (1− 2−d)B(x̄, 2x̄(k + 1), x̄;Tk+1),

which by (ii) and (iii) is no smaller than

2−dRxB(1, 0, 1, 1, 21/(p−1)) + (1− 2−d)B(x̄, 2x̄(k + 1), x̄;Tk+1).

Hence, by induction,

x̄B(1, 0, 1, 1, 21/(p−1)) = B(x̄, 0, x̄;T0)

­ (1− 2−d)NB(x̄, 2x̄N, x̄;TN )

+
N−1∑
k=0

(1− 2−d)k2−dRxB(1, 0, 1, 1, 21/(p−1))

= (1− 2−d)NTxx̄B(1, 2N, 1, 1, 1)

+ (1− (1− 2−d)N )RxB(1, 0, 1, 1, 21/(p−1)).
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Now we assume that d is large; if we apply (5.9) and (5.7), we obtain

B(1, 2N, 1, 1, 1) ¬ x̄− (1− (1− 2−d)N )Rx
(1− 2−d)NTxx̄

B(1, 0, 1, 1, 21/(p−1)) ¬ 0.(5.10)

As shown in Section 2 (see Remark 2.2), the function B satisfies the majorization
condition 1◦: B(x, y, z, u, v) ­ |y|u − Kzu, where K is a finite constant in our
key assumption (5.1). Hence, the left-hand side of (5.10) is greater than 2N −K.
This implies 2N −K ¬ 0, a contradiction, since N was arbitrary. �
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