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Abstract. This paper obtains a necessary and sufficient condition for a weak
law of large numbers for weighted averages of positive-valued independent
random variables whose distributions belong to a class which includes the
Fα-scheme of record theory. Additional general conditions are found under
which the weak law extends to a strong law with the same norming. Ex-
amples show these conditions can be fulfilled, and that if they are not, then
the weighted averages exhibit multiple growth rates.
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1. INTRODUCTION

Generalising Theorem 3.1 of Nakata [7], Adler and Pakes [2] obtain a weak law
of large numbers (WLLN) for averages Wn = b−1n

∑n
j=1 Yj , where the norming

constants bn diverge to infinity and the Yj are positive-valued, independent and
with possibly different distributions, as follows. Denote the survivor function of Yj
by F j(x) = 1 − Fj(x) and assume there are positive constants aj and a survivor
function F (x) such that the following integrated tail equivalence condition holds:
There is a positive integer j′ such that

(1.1)
x∫
0

F j(y) dy ∼ aj
x∫
0

F (y) dy (x→∞),

uniformly with respect to j ­ j′. We explain this more fully in the next section.
The specification used in Nakata [7] is equivalent to assuming that aj ∈ (0, 1] and
setting

(1.2) F j(x) = aj/(1 + x) if x > 0,
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i.e., a Pareto distribution possibly with a point mass component at the origin.
Adler and Pakes [2] show under the additional assumptions that if the distribu-

tion function F is relatively stable (Bingham et al. [4, p. 372]), written

(1.3) F ∈ RS,

and if the constants in (1.1) satisfy

∞∑
j=1

aj =∞,

then there exist norming constants bn such that Wn
p−→ 1. The second condition is

necessary: If
∑

j aj < ∞, then the random series
∑

j Yj is almost surely conver-
gent.

Nakata [8] extends his earlier result in another direction by considering aver-
ages of weighted sums, Wn(ω) := b−1n

∑n
j=1 ωjYj where (ωj) is a set of positive

weights. He shows that if (1.2) holds then the conditions

(1.4) lim
n→∞

b−1n
n∑
j=1

ajωj = 0

and

(1.5) lim
n→∞

b−1n
n∑
j=1

ajωj log(1 + bn/ωj) = A ∈ (0,∞)

imply that
Wn(ω)

p−→ A.

Our objective in this paper is to merge the generalisation of Adler and Pakes [2]
with that of Nakata [8] to give a weak law (Theorem 2.1) under the conditions (1.1)
and (1.3). This will result in a weakening of the requirement (1.4) and an extension
of (1.5) to a necessary and sufficient condition, (2.5) below. In the case of constant
weights, this condition simplifies to outcome (2.6) in Adler and Pakes [2] which,
given their assumptions, is necessary and sufficient for their weak law.

Our condition (2.5) appears resistant to simplification without more structure.
In Corollary 2.1 we give conditions under which (2.5) is equivalent to the sim-
pler condition (2.9), implying the ‘explicit’ form (2.10) for the norming sequence
directly constructed from ` and the sums An =

∑n
j=1 ajωj . This achieves what

amounts to a formal generalisation of the weak law in Adler and Pakes [2]. The
simplicity of (2.10) invites a search for more general conditions under which (2.5)
and (2.10) are consistent.

Theorem 2.2 asserts the weak law with the norming (2.10) under an additional
condition, (2.12) below, which limits the rate at which the weights ωn tend to 0 (or
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to∞) in relation to the rate at which An → ∞. Theorem 2.3 gives two technical
conditions ((2.23) and (2.24)) implying (2.5) and (2.10).

What can be said if the limit (2.12) is positive or infinite? This is explored in
the context of Examples 2.1 and 2.2 in which ωn → 0 and there are three cases,
numbered 1 to 3, according as the limit (2.12) is zero (as stated there), infinite, or
positive and finite. The weak law holds in all cases, but for Cases 2 and 3, the form
of the norming constants differs from (2.10).

Is there a strong law corresponding to Theorem 2.1? Nakata [8] answers ‘yes’
for his Pareto summands (his Theorem 1.4). In our notation, he assumes that the
sequences (an), (ωn) and (bn) satisfy the condition

(1.6)
∞∑
n=1

anωn
bn

<∞

(his (15)). Then the strong law is valid if a modified form of (1.5) holds, i.e., if

(1.7) lim
n→∞

b−1n
n∑
j=1

ajωj log(1 + bj/ωj) = A ∈ (0,∞),

then Wn(ω)
a.s.−−→ A.

In §3 we prove a more general strong law (Theorem 3.1) in which the condi-
tion (1.1) is replaced by the local version (3.1). The strong law rests on the exis-
tence of truncation constants Cn → ∞ which satisfy the conditions (3.2) to (3.4).
A canonical choice is Ĉn = bn/ωn, where (bn) is a putative norming sequence.
The condition (3.4), denoted by K(C), with Cn = Ĉn (i.e., K(Ĉ)) is our gen-
eralisation of (1.7) and it is dual to the weak law condition (2.5). The condition
(3.3) is redundant in this case. Corollary 3.1 is an assertion about possible values
of lim infn→∞Wn(ω) if only (3.2) and (3.4) hold. This arises if it is desired to
choose truncations such that Cn/Ĉn → 0, a situation pertinent to Examples 2.1
and 2.2.

In §4 we give some conditions which ensure (3.2) and (3.4). The essence of
Lemma 4.2 is that if Cn/Ĉn → 0, but not too quickly, then K(Ĉ) implies K(C).
Theorem 4.1 gives conditions which entail more tractable versions of (3.2), and a
partial converse implying lim supn→∞Wn(ω) =∞ almost surely.

Theorem 4.2 asserts that the weak law of Theorem 2.2 does not extend to a
strong law. This applies to Case 1 of Examples 2.1 and 2.2. Cases 2 and 3 of these
examples are re-examined as Examples 4.1 and 4.2. The weak law extends as a
strong law in Case 2 except, perhaps, at the boundary separating Cases 2 and 3.
Here the strong law may hold, or may not, depending on subsidiary conditions.

2. THE WEAK LAW

Our weak law is based on the following result which is a direct translation into our
formulation of Khinchin’s weak law for triangular arrays [6, Theorem 2, p. 140].
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THEOREM K. The necessary and sufficient conditions to have Wn(ω)
p−→ 1

and {ωjYj/bn : 1 ¬ j ¬ n, n = 1, 2, . . . } comprising an infinitesimal array are
that, for every ξ > 0,

(2.1) lim
n→∞

n∑
j=1

P (Yj > ξbn/ωj) = 0

and

(2.2) lim
n→∞

b−1n
n∑
j=1

E(Yj ;Yj ¬ ξbn/ωj) = 1.

Denote the integrated tail functions of Fj and F by Ij and I , respectively, e.g.,
I(x) =

∫ x
0
F (y) dy. Thus the precise form of the condition (1.1) is that there is a

natural number j′ such that

(2.3) lim
x→∞

sup
j­j′

∣∣∣∣ Ij(x)ajI(x)
− 1

∣∣∣∣ = 0.

If µ =
∫∞
0
F (y) dy < ∞, then this condition is equivalent to E(Yj) = µaj .

Finally, recall that the relative stability (1.3) is valid if and only if there is a slowly
varying function `(x) such that

(2.4) I(x) ∼ `(x) (x→∞).

Observe that ` is bounded away from zero and, without loss of generality, it can
be assumed that ` is ultimately non-decreasing; we write ` ∈ SV↑. With these
preliminaries, our weak law is as follows.

THEOREM 2.1. Assume the conditions:

(i) (2.3) and (2.4) with ` ∈ SV↑; and

(ii) limn→∞ b
−1
n max1¬j¬n ωj = 0.

Then Wn(ω)
p−→ 1 if and only if

(2.5) lim
n→∞

b−1n
n∑
j=1

ajωj`(bn/ωj) = 1.

The following result is used in the proof of Theorem 2.1.

LEMMA 2.1. Suppose that the condition (ii) of Theorem 2.1 holds, that ` ∈
SV and that ξ > 0 is a constant. Then the condition

(2.6) lim
n→∞

b−1n
n∑
j=1

ajωj`(ξbn/ωj) = 1

is equivalent to (2.5).
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Proof. It suffices to prove that (2.5) implies (2.6). The condition (ii) implies
that

qn := min
1¬j¬n

(bn/ωj)→∞

and hence, for any ε > 0, there exists a number nε > 0 such that `(ξbn/ωj)
is bounded between (1 ± ε)`(bn/ωj) if 1 ¬ j ¬ n and n > nε. The assertion
follows. �

Proof of Theorem 2.1. The proof that (2.5) implies the weak law is in two parts.
(a) In our notation, the condition (2.1) is that limn→∞

∑n
j=1 F (ξbn/ωj) = 0.

Observe that
Ij(x)− Ij(x/2) ­ 1

2
xF j(x).

It follows from (2.3) that Ij(x) ∼ ajI(x) ∼ aj`(x) and hence that Ij(x) −
Ij(x/2) = o(Ij(x)). We thus conclude, for each j, that F j(x) = o(Ij(x)/x)
as x→∞.

To see that this holds uniformly with respect to j ­ j′ observe, for ε ∈ (0, 1),
that (2.3) implies that there exists xε > 0 such that Ij(x) ¬ (1 + ε)ajI(x) and
Ij(x/2) > (1− ε)ajI(x/2) if x > xε and j ­ j′. Hence

Ij(x)− Ij(x/2) ¬ aj [(1 + ε)I(x)− (1− ε)I(x/2)] ∼ 2εaj`(x) (x→∞).

Thus xε can be chosen so large that

F j(x) ¬ 4(1 + ε)εajx
−1`(x) (x > xε, j ­ j′).

It follows that if n is such that ξqn > xε, then∑
j′¬j¬n

F j(ξbn/ωj) ¬ 4(1 + ε)(ε/ξ)b−1n
∑

j′¬j¬n
ajωj`(ξbn/ωj).

Clearly limn→∞
∑j′

j=1 F j(ξbn/ωj) = 0, and hence we conclude, appealing to
Lemma 2.1, that

lim sup
n→∞

n∑
j=1

F j(ξbn/ωj) ¬ 4(1 + ε)(ε/ξ).

Letting ε→ 0 thus yields (2.1).
(b) Observe that (2.2) is equivalent to

(2.7) lim
n→∞

b−1n
n∑
j=1

ωjE(Yj ;Yj ¬ ξbn/ωj) = 1.

Integration by parts yields the decomposition

E(Yj ;Yj ¬ x) = Ij(x)− xF j(x),
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implying a corresponding decomposition of the n-dependent terms in (2.7). The
subtracted term contributes

ξ
∑
j=1

F j(ξbn/ωj)→ 0 (n→∞)

from part (a). Thus the leading contribution to the left-hand side of (2.7) equals
b−1n
∑n

j=1 Ij(ξbn/ωj). This quantity converges to unity because, as above, the sum
over j ∈ [j′, n] is bounded between (1± ε)b−1n

∑n
j=j′ ajωj`(ξbn/ωj).

We conclude that (2.5) impliesWn(ω)
p−→ 1. It is plain from the above estimates

and Lemma 2.1 that the conditions (2.1) and (2.2) imply (2.5). �

The uniform convergence theorem for slowly varying functions yields the fol-
lowing simplification of the condition (2.5) with the ‘explicit’ form (2.10) of the
norming constants. It is a small generalisation of the Adler and Pakes [2] weak law.
The (de Bruijn) conjugate function ̂̀(x) of 1/`(x) is the asymptotically unique
slowly varying function satisfying (Bingham et al. [4, Theorem 1.5.13])

(2.8) lim
x→∞

`(x̂̀(x))̂̀(x) = 1, equivalently lim
x→∞

̂̀(x/`(x))
`(x)

= 1.

COROLLARY 2.1.

(i) If 0 < infj­1 ωj ¬ supj­1 ωj <∞, then (2.5) is equivalent to the condition

(2.9) lim
n→∞

A(n)`(bn)
bn

= 1, where A(n) =
n∑
j=1

ajωj .

In addition A(n)→∞ and the norming sequence has the ‘explicit’ form

(2.10) bn = A(n)̂̀(A(n)).
(ii) If the weight sequence is arbitrary but µ :=

∫∞
0
F (x) dx < ∞, then (2.5)

holds if bn = µA(n).

This result suggests the plausible conjecture that the replacement of (2.5) with
(2.9) will hold if the weighting sequence converges to zero (or infinity) ‘sufficiently
slowly’. Now what ‘sufficiently slowly’ really means will depend on the nature
of F and the sequence (aj). The following result pins this down in the still quite
general case that there is a function U(y) > 0 such that

(2.11) `(x) = U(log x) and U(y + o(y)) ∼ U(y) (y →∞).

The second condition, written U ∈ AN , an asymptotic negligibility type of con-
dition, is satisfied if, for example, U is regularly varying. Subject to the restriction
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(2.11), the next result can be regarded as a generalisation of Khinchin’s weak law
(reviewed by Adler and Pakes [1]). The proof is for the case ωn → 0.

THEOREM 2.2 Suppose that U ∈ AN , that the weight sequence (ωj) is ulti-
mately monotone, that

A(n) :=
n∑
j=1

ajωj →∞,

and that the sequence (bn) is specified by (2.10). If

(2.12) lim
n→∞

logω−1n
logA(n)

= 0,

then the weak law holds with bn ∼ A(n)`(A(n)).

Proof. It follows from (2.10) and log ̂̀(x) = o(̂̀(x)) that log bn ∼ logA(n),
and hence the hypotheses imply that

`(bn/ωj) = U(log bn + logω−1j ) = U(log bn(1 + o(1)) ∼ U(logA(n))
= `(A(n)).

Consequently,

(2.13) C(n) :=
n∑
j=1

ajωj`(bn/ωj)

satisfies C(n) ∼ A(n)`(A(n)). Using the fact that (log ̂̀(x))/log x → 0
(Bingham et al. [4, Proposition 1.3.6(i)]), we see from (2.11) that `(x̂̀(x)) =
U((log x)(1 + o(1)) ∼ `(x), i.e., the first member of (2.8) is satisfied with ̂̀(x)
∼ `(x). Hence (2.5) is satisfied and the assertion follows from Theorem 2.1. �

Next we explore two examples where the limit (2.12) exists and is positive and
the norming sequence does not have the form (2.10). In both examples we assume
that ` has the form (2.11) in the more specific sense that

(2.14) `(x) = Uρ(log x),

where Uρ ∈ RVρ, the class of regularly varying functions with index ρ ­ 0.
Denote the slowly varying factor of Uρ by LU (x), so Uρ(x) = xρLU (x). We use a
similar notation for other regularly varying functions which may arise below. This
emphasises our convention that the index of regular variation may change but the
slowly varying factors do not.

Observe too that to assess (2.5) we need only the forms of the product pn =
anωn and of logω−1n . In the examples which follow we choose weights ωn → 0.
In addition the terms in sums such as A(n) comprise a regularly varying sequence



62 A. G. Pakes

and hence these sums are asymptotically equal to the analogous integral. These
integrals are evaluated without comment using appropriate properties of regularly
varying functions such as are set out in Bingham et al. [4, §1.6]. Our examples
also involve iterates of the logarithm function. Following Adler and Pakes [2] (but
altering their notation), we define functions log0(x) = x, log1(x) = log x and, for
k = 2, 3, . . . , logk(x) = log(logk−1(x)) = logk−1(log x)). These functions are
defined for sufficiently large x and this suffices since we are involved only with
asymptotic estimates.

EXAMPLE 2.1. Let A ∈ (0, 1) and γ ­ 0 be constants and RA−1 ∈ RVA−1.
For n ­ n′ > 1 we set

(2.15) pn = n−1RA−1(log n) and logω−1n ∼ Qγ(log n),

whereQγ ∈ RVγ , and we assume that the weight sequence is ultimately decreasing
to zero.

We have

A(n) ∼
∑
j¬n

j−1RA−1(log j) ∼
n∫
2

RA−1(log x) d log x

=
logn∫
log 2

RA−1(y) dy ∼ A−1RA(log n).

It follows that
logA(n) ∼ A log2 n,

CASE 1. We assume the condition (2.12) holds, in which case γ = 0. It follows
from Theorem 2.2 that the weak law holds with

bn ∼ A−1RA(log n)Uρ(A log2 n) ∼ Aρ−1RA(log n)Uρ(log2 n).

Now assume that (2.12) fails in the sense that

(2.16) C := lim
n→∞

logA(n)
logω−1n

∈ [0,∞).

In what follows we use the notation Rk,θ (with k = 1, 2, . . . ) to denote regularly
varying functions of index θ which will be specified in terms of those introduced
above. Only the index of regular variation will be significant.

Recalling from Remark 2.1 that

(2.17) B(n) =
n∑
j=1

pj`(ω
−1
j ),
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a computation similar to that for A(n) yields

B(n) ∼
logn∫
log 2

RA−1(y)Uρ(Qγ(y)) dy(2.18)

∼ (A+ ργ)−1RA(log n)Uρ(Qγ(log n)) =: R1,A+ργ(log n).

We will see that (2.5) is satisfied in the case that the limit (2.12) is positive by
taking bn proportional to B(n).

CASE 2: C = 0. This case always holds if γ > 0. In particular, a notion of
asymptotically identical distribution is defined by choosing aj = 1 for all large j.
In this case logω−1n ∼ log n, i.e. γ = 1. See Adler and Pakes [1] for the case where
the Yj have the same law.

We will choose bn ∼ B(n) in which case

(2.19) log bn ∼ (A+ ργ) log2 n.

Noting that the condition (2.16) is equivalent to (log x)/Qγ(x) → 0, we will
write Qγ(x) = (log x)/h(x), where h(x) → 0. Let (jn) denote a monotone
sequence of positive integers satisfying jn → ∞ and log jn ∼ (log n)ν , where
ν ∈ (0, 1) is a constant. Clearly jn/n→ 0. Also,

log bn

logω−1jn
∼ (A+ ργ)

Qγ((log n)ν)
∼ ν−1(A+ ργ)h(jn)→ 0.

Since logω−1j is ultimately non-decreasing, it follows that

(2.20)
log bn

logω−1j
→ 0 if jn < j ¬ n.

Hence

`(bn/ωj) = Uρ(log bn + logω−1j ) ∼ `(ω−1j ) if jn < j ¬ n.

Recalling the definition (2.13), we see that

C(n)− C(jn) =
∑

jn<j¬n
pj`(bn/ωj) ∼

∑
jn<j¬n

pj`(ω
−1
j ) = B(n)− B(jn).

It follows from the above asymptotic form of B(n) that

B(jn) ∼ R1,A+ργ((log n)
ν) ∼ R2,(A+ργ)ν(log n) = o(B(n)).
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Finally, it is clear for large n that

C(jn) ¬ `(bn/ωjn)A(jn) ∼ Uρ(log bn + logω−1jn )A−1RA((log n)
ν)

∼ Uρ(Qγ((log n)ν)A−1RA((log n)ν)
= R3,(A+ργ)ν(log n) = o(B(n).

Hence (2.5) is satisfied by taking bn ∼ B(n), as asserted above.

REMARK 2.2. If Uρ(x) ∼ xρ, RA(x) ∼ xA and Qγ(x) ∼ qxγ where q > 0,
then

bn ∼ (A+ ργ)−1qργ(log n)A+ργ .

Corollary 1.1(i) in Nakata [8] is the case A = b− 1 and ρ = γ = 1.

CASE 3: C>0. This assumption requires that γ=0 andQ0(x)∼ (A/C) log x.
It follows that logω−1j ∼ (A/C) log2 j.

We will set bn = KB(n) where K is a constant to be determined. Choosing
δ ∈ (0, 1) and jn ∼ nδ, we observe that (log2(n

δ))/log2 n → 1 and, as above,
log bn ∼ A log2 n. It follows from these observations that

log bn

logω−1j
→ C if nδ < j ¬ n.

Consequently,

`(bn/ωj) = Uρ(log bn + logω−1j ) ∼ (1 + C)ρ`(ω−1j )

and hence
C(n)− C(jn) ∼ (1 + C)ρ(B(n)− B(jn)).

But
B(jn) ∼ R1,A(log n

δ) ∼ δAR1,A(log n) ∼ δAB(n),

implying that
C(n)− C(jn) ∼ (1 + C)ρ(1− δA)B(n).

As above,

C(jn) ¬ Uρ(log bn + logω−1n )A(nδ) ∼ (1 + C)ρUρ(Q0(log n))δ
AA(n)

= δA(1 + C)ρR1,A(log n)

∼ δA(1 + C)ρB(n).

It follows that

K−1(1 + C)ρ(1− δA) ¬ lim inf
n→∞

b−1n C(n) ¬ lim sup
n→∞

b−1n C(n)

¬ K−1δA +K−1(1 + C)ρ(1− δA).
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Let δ → 0 and choose K = (1 + C)ρ to see that Wn(ω)
p−→ 1 with

(2.21) bn ∼ Aρ−1(1 + C−1)ρRA(log n)Uρ(log2 n).

REMARK 2.3. Taking account of the specific form ofQ0, the other parameters
in Remark 2.2 yield bn ∼ Aρ−1(1 + C−1)ρ(log n)A(log2 n)

ρ. Corollary 1.1(ii) in
Nakata [8] is the case where ρ = 1, A = b, and Q0(x) = (1 − A) log x. These
yield C = b/(1− b), so bn ∼ b−1(log n)b log2 n.

The following result is a companion to Theorem 2.2. It gives different condi-
tions under which (2.10) implies (2.5).

THEOREM 2.3. Suppose that (bn) is a sequence such that bn →∞.

(i) If the weight sequence (ωj) is monotone and

(2.22) lim
n→∞

`(bn/ωn)

`(bn)
= 1,

then (2.5) is equivalent to (2.9).

(ii) The condition (2.22) holds if ωn → 0 (or ωn → ∞) and, in addition, the
index function ε`(x) of ` is slowly varying and

(2.23) lim
n→∞

ε`(bn) logωn = 0.

(iii) Suppose that F is continuous, that ` ∈ SVN and the index function ε` is
ultimately monotone. Then the conditions (2.5) and (2.9) are equivalent if

(2.24) lim
n→∞

F (bn)Bn = 0.

If either of the conditions in (ii) or (iii) hold then the weak law holds with bn as
in (2.10).

Proof. It suffices to assume that (ωn) is decreasing. Since ` is non-decreasing,
we have the inequality

`(bn/ω1) ¬ `(bn/ωj) ¬ `(bn/ωn) (1 ¬ j ¬ n).

Assertion (i) follows from the slow variation of `.
For (ii), it follows from the integral representation of slowly varying functions

that

log
`(bn/ωn)

`(bn)
∼

bn/ωn∫
bn

(ε`(x)/x)dx =
ω−1
n∫
1

(ε`(bny)/y) dy = O(ε`(bn)|logωn|.

The assertion follows.
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(iii) If ω ∈ (0, 1], then

ω

∣∣∣∣`(x/ω)`(x)
− 1

∣∣∣∣ = ωO

(
exp

x/ω∫
x

ε`(y)

y
dy − 1

)
= O

(
ω
x/ω∫
x

ε`(y)

y
dy

)
= O(ε`(x)ω logω−1).

Since ωn ↓ 0 we can assume that ωn ¬ 1. So it follows from the above estimate
that for any sequence bn ↑ ∞,

b−1n

∣∣∣ n∑
j=1

ajωj`(bn/ωj)− `(bn)A(n)
∣∣∣ ¬ `(bn)

bn

n∑
j=1

ajωj

∣∣∣∣`(bn/ωj)`(bn)
− 1

∣∣∣∣
¬ O

(
`(bn)

bn
ε`(bn)Bn

)
.

The continuity assumption implies that `′(x) = F (x) = ε`(x)(`(x)/x). The as-
sertion (iii) now follows.

The final assertion follows because bn given by (2.10) satisfies (2.9). �

What is the relation between the conditions (2.12), (2.23) and (2.24)? Suppose
that (2.10) does hold, in which case

bn/`(bn) ∼ A(n) and B(n) ∼ A(n)`(bn).

Observe that this norming depends on the weights only through A(n). For the
simple case where, if x is large and ρ > 0, then `(x) = (log x)ρ, it follows that

ε`(bn) ∼ ρ/log bn ∼ ρ/logA(n).

Hence (2.23) and (2.12) are equivalent conditions, and this can be expected to hold
for more general forms of `, e.g., `(x) = Uρ(log x) and the slowly varying factor
is normalised slowly varying.

On the other hand, F (x) = ρ`(x)/(x log x), hence F (bn) ∼ ρ/(A(n) log bn)
and

F (bn)B(n) ∼ ρ(log bn)ρ−1.

The right-hand side tends to zero only if ρ < 1. Thus the condition (2.24) has
a quite limited range of applicability. In addition, it does not directly involve the
weight sequence.

EXAMPLE 2.2. A slower rate of decrease of the aj’s and weights are obtained
by altering Example 2.1 so that

(2.25) pn = nα−1RA(log n),

where A is real and α ∈ (0, 1).
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We now have

A(n) ∼ α−1nαRA(log n) and logA(n) ∼ α log n.

CASE 1: If γ ¬ 1 and Qγ(x)/x→ 0, then Theorem 2.2 is applicable with

bn ∼ αρ−1nαRA(log n)Uρ(log n).

CASE 2: If γ ­ 1 and Qγ(x)/x→∞, then the weak law holds with

(2.26) bn ∼ B(n) ∼ α−1nαRA(log n)Uρ(Qγ(log n)).

The proof is similar to that for Case 2 in Example 2.1 using the auxiliary sequence
jn ∼ nδ where δ ∈ (0, 1).

CASE 3: Here γ = 1 so Q1(x) ∼ (α/C)x and (2.16) holds with C ∈ (0,∞).
Using the auxiliary sequence jn ∼ δn with δ ∈ (0, 1), a similar argument to that
used above for Case 3 of Example 2.1 yields the weak law with

bn ∼ αρ−1(1 + C−1)ρnαRA(log n)Uρ(log n).

Case 3 with C = α/(1− α) occurs for asymptotically identical distributions.

3. THE STRONG LAW

The following strong law reflects Theorem 4.1 in Adler and Pakes [2] who give
conditions in the case that ωn ≡ 1 which ensure that lim infn→∞Wn = 1 almost
surely. We need to assume a more stringent version of (2.3), i.e., there exists a
positive integer j′ such that

(3.1) lim
x→∞

sup
j­j′

∣∣∣∣ F j(x)ajF (x)
− 1

∣∣∣∣ = 0.

THEOREM 3.1. Suppose that the Yj are independent with distribution func-
tions Fj satisfying (3.1) with F ∈ RS and let Ĉj = bj/ωj . Suppose in addition
that there are sequences (bn) and C = (Cn) of positive numbers, both diverging
to infinity, such that the following three conditions hold:

S(C) :=
∞∑
j=1

Ĉ−2j aj

Cj∫
0

xF (x) dx <∞;(3.2)

inf
n­n′

Cn/Ĉn > 0;(3.3)

lim
n→∞

b−1n
n∑
j=1

ajωj`(Cj) = 1.(3.4)

Then Wn(ω)
a.s.−−→ 1.
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Proof. We truncate Yj at level Cj and resolve our average into three compo-
nents,

Wn(ω) = K1(n) +K2(n) +K3(n),

where the right-hand side summands will be defined as we go.
First, it follows from the Kolmogorov–Khinchin convergence theorem (Chow

and Teicher [5, p. 110]) and Kronecker’s lemma that

K1(n) := b−1n
n∑
j=1

ωj [Yj1(Yj ¬ Cj)− E(Yj1(Yj ¬ Cj))]
a.s.−−→ 0

if the series
S :=

∞∑
j=1

Ĉ−2j E[Y 2
j 1(Yj ¬ Cj)]

converges. The expectation equals

Cj∫
0

x2 dFj(x) = 2
Cj∫
0

xF j(x) dx− C2
jF j(Cj) = O

(
aj

Cj∫
0

xF (x) dx
)
,

where the final estimate comes by virtue of (3.1). Hence (3.2) implies that S <∞,
so K1(n)

a.s.−−→ 0.
Second, the previous estimate implies that

C2
jP (Yj ­ Cj) ¬ 2

Cj∫
0

xF j(x) dx,

so it follows from (3.3) and S < ∞ that
∑

j­1 P (Yj > Cj) < ∞. Hence the
Borel–Cantelli lemma implies there is a random variableN such that almost surely
Yj ¬ Cj if j ­ N . Hence

K2(n) := b−1n
n∑
j=1

ωjYj1(Yj > Cj) ¬ b−1n
N∑
j=1

ωjCj
a.s.−−→ 0.

Finally,

K3(n) := b−1n
n∑
j=1

ωjE[Yj1(Yj ¬ Cj)]

= b−1n
n∑
j=1

ωj

Cj∫
0

x dFj(x) = K13(n)−K23(n),

where

K13(n) = b−1n
n∑
j=1

ωj

Cj∫
0

F j(x) dx.

The assumption (3.1) implies (2.3) and hence the integral is asymptotically equal
to aj`(Cj). Consequently, (3.4) implies that limn→∞K13(n) = 1.
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The remaining term is

K23(n) := b−1n
n∑
j=1

ωjCjF j(Cj) ∼ b−1n
n∑
j=1

ajωjCjF (Cj) = o(K13(n)),

where the last equality follows because F ∈ RS is equivalent to the condition
xF (x) = o(`(x)); see Bingham et al. [4, Theorem 8.8.1(i, ii, viii)]. Hence K3(n)
→ 1, and the assertion follows. �

If the strong law is valid, then so is the weak law and hence (2.5) must hold. So
this condition will, as seen in the previous section, give the correct form of norm-
ing constants which can be used to seek truncation constants which will satisfy the
conditions (3.2)–(3.4). The condition (3.3) obviously holds for the canonical trun-
cation Cj = Ĉj . The convergence condition (3.1) simplifies with more stringent
assumptions about F ; see Theorem 4.1.

Theorem 4.1 in Adler and Pakes [2] specifies numbers dj such that Cj = ajdj
and their conditions (4.2) and (4.1) correspond, respectively, to (3.2) and (3.4)
above in the case that ωj ≡ 1. Finally, we note that, as shown by Adler and Pakes
[2], there may not be an almost sure strengthening of the weak law.

The following corollary extends Theorem 4.1 of Adler and Pakes [2]. Its proof
strategy is the same as that in this reference, i.e., observing thatWn(ω) ­ K1(n)+
K3(n). The outcome (ii) follows from (i) and the weak law because the latter
implies that lim infn→∞Wn(ω) ¬ 1 almost surely.

COROLLARY 3.1. Suppose that (3.1) holds with F ∈ RS. Suppose in addition
that there are sequences (bn) and (Cn) of positive numbers, both diverging to
infinity, such that (3.2) and (3.4) both hold. Then

(i) lim inf
n→∞

Wn(ω) ­ 1 almost surely .

and if also Wn(ω)
p−→ 1, then

(ii) lim inf
n→∞

Wn(ω) = 1 almost surely .

In the next section we will look at consequences of Theorem 3.1.

4. CASES OF THEOREM 3.1

Denote the condition (3.4) by K(C). A plausible conjecture is that the condition
(2.5) and K(Ĉ) are equivalent, perhaps with the addition of supplementary as-
sumptions. It is certainly obvious that if (2.5) holds, then the lim sup of the average
at (3.4) with Cj = Ĉj is bounded above by unity. The following result, related to
Theorem 4.1(ii) of Adler and Pakes [2], asserts that (2.5) implies (3.4) if (2.12)
holds.
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LEMMA 4.1. Suppose that the assumptions of Theorem 2.2 are satisfied and
that Ĉj →∞. Then the condition K(Ĉ) holds.

Proof. Exactly as in the proof of Theorem 2.2,

`(bj/ωj) ∼ `(bj) ∼ `(A(j)),

implying that

n∑
j=1

ajωj`(bj/ωj) ∼
n∑
j=1

ajωj`(bj) ∼
n∑
j=1

[A(j)−A(j − 1)]`(A(j)),

where we defineA(0) = 0. Extending the definition ofA(·), by linear interpolation
say, to a monotone continuous function on [0,∞), we see that the last sum is an
approximating sum of, and asymptotically equal to, the Stieltjes integral

n∫
1

`(A(z)) dA(z) =
A(n)∫
A(1)

`(x) dx ∼ A(n)`(A(n)) ∼ bn,

recalling that ̂̀(x) ∼ `(x). �

The next result emphasises that truncation sequences satisfying K(C) in gen-
eral are not asymptotically unique. We omit the simple proof.

LEMMA 4.2. Suppose that Ĉj → ∞ and that `(x) = U(log x) where U ∈
AN . Let Cj = Ĉj/Mj where (Mj) is a positive sequence such that Cj →∞ and
logMj = o(log Ĉj). Then K(Ĉ) implies K(C).

Next we consider the series S(C). Observe that if C1 ¬ C2, where the in-
equalities are interpreted termwise, then S(C1) ¬ S(C2). The following result
gives some simpler expressions of S(C) < ∞ under additional conditions and
also a converse assertion in the event that S(C) =∞. This assertion (in part (iii))
echos Theorem 3.1 in Adler and Pakes [2].

THEOREM 4.1 Suppose that (3.1) holds and that

(4.1) F (x) = x−1L(x),

where L ∈ SV .

(i) If Cj →∞, then (3.2) is equivalent to

(4.2) S′(C) :=
∞∑
j=1

Ĉ−2j ajCjL(Cj) <∞.
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(ii) If, in addition,

(4.3) sup
n­n′

Cn/Ĉn <∞,

then S′(C) <∞ if

(4.4) S′′(C) :=
∞∑
j=1

(aj/Cj)L(Cj) <∞.

In particular, S(Ĉ) <∞ if and only if S′′(Ĉ) <∞.

(iii) Conversely, if (4.1) and (3.3) both hold and if S′′(C) =∞, then

lim sup
n→∞

ωnYn/bn =∞ almost surely.

In particular, lim supn→∞Wn(ω) =∞.

(iv) If (4.1) holds and S′′(Ĉ) = ∞, then lim supn→∞Wn(ω) = ∞ almost
surely.

Proof. The slow variation of L implies that the integral in (3.2) is asymptot-
ically equal to CjL(Cj) and the first assertion follows. The condition (4.4) is an
obvious consequence of (4.2) and (4.3).

To prove the converse, if S′′(Ĉ) = ∞ then, since L is slowly varying, it fol-
lows that for any positive constant M we have

∑
(aj/Cj)L(MCj) = ∞. Hence

(4.1) implies that
∑

j P (Yj > MCj) = ∞ so from the second Borel–Cantelli
lemma, P (Yn > MCn i.o.) = 1. Since M is arbitrary, it follows from (3.3) that
lim supωnYn/bn =∞, and (iii) follows. Assertion (iv) follows from (iii) because
(3.3) holds if Cj = Ĉj . �

REMARK 4.1. If F (x) ∼ const/x, in essence the assumption in Nakata [8],
then the condition S′′(Ĉ) <∞ is the same as his condition (1.6) above.

In all that follows we will assume that F has the form (4.1) and that

(4.5) L(x) ∼ const · U(log x)

log x
and U ∈ AN.

The monotone density theorem (Bingham et al. [4, p. 39]) implies this condition
if U(y) ∈ RVρ has an ultimately monotone derivative. In this case the constant
in (4.5) equals ρ. We assume also that Ĉj → ∞ and that Cj = Ĉj/M(j) where
M(x) will be a positive-valued function which satisfies logM(j) = o(log Ĉj).

These conditions together with Theorem 4.1 imply that

L(Cj) ∼
U(log Ĉj)

log Ĉj



72 A. G. Pakes

and hence that

(4.6) S(C) <∞ if and only if S̃(M) :=
∞∑
j=1

pj
bj
· U(log Ĉj)

M(j) log Ĉj
<∞.

The following result shows that, assuming (4.1) and (4.5), the weak law of The-
orem 2.2 does not extend to a strong law. Instead, we have the two-sided behaviour
reported by Adler and Pakes [2] in the unweighted case.

THEOREM 4.2. Suppose that (4.1), (4.5) and the assumptions of Theorem 2.2
hold. Then, almost surely,

(4.7) lim inf
n→∞

Wn(ω) = 1 and lim sup
n→∞

Wn(ω) =∞.

Proof. Recalling that the norming sequence for the weak law is (2.10), and that
log bn ∼ logA(n), it follows from (2.12) that U(log Ĉj) ∼ `(A(j)). Recalling
next that `(x) ∼ ̂̀(x), it follows that the terms σj(M) of the series S̃(M) satisfy

σj(M) ∼ pj

A(j)̂̀(A(j)) · `(A(j))
M(j) logA(j)

∼ pj
M(j)A(j) logA(j)

.

Setting M(x) ≡ 1, we see from an integral test that S̃(M) <∞ if and only if

∞∫
1

dA(x)
A(x) logA(x)

<∞.

But it is obvious that this integral diverges, hence S(Ĉ) = ∞ and the lim sup
assertion follows.

Now choose δ > 0 and M(j) ∼ (logA(j))δ. Then logM(j) ∼ δ log2A(j) =
o(log Ĉj). In addition, the integral test implies that S̃(M) < ∞ and hence the
lim inf assertion follows from Corollary 3.1(ii). �

In essence, this theorem implies that there is no strong law corresponding to
the weak law if the weights converge too slowly to zero, in the sense of (2.12) for
example. Theorem 4.2 obviously encompasses Case 1 of Examples 2.1 and 2.2.

We now re-examine Cases 2 and 3 of these examples and find that the strong law
holds, aside from boundary cases. We do this by verifying (3.2) and (3.4) for the
truncation sequence Ĉ where the norming sequence is that which delivers the weak
law in these examples. It will turn out that the strong law can fail for a critical value
of the parameter γ, but that two-sided behaviour similar to that in Theorem 4.2 can
be established.

In all that follows we assume (4.1) and (4.5) with U = Uρ possessing an ulti-
mately monotone derivative, implying L(x) ∼ U ′ρ(log x) ∼ ρUρ(log x)/log x.
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EXAMPLE 4.1. Recall the specifications of Example 2.1 and assume that
(2.16) holds. To see that (2.5) implies the condition K(Ĉ), argue as follows. Re-
calling the auxiliary sequence jn specified for Case 2, it follows from (2.20) that

log bj/logωjn → 0 if jn < j ¬ n and n→∞,

and hence that `(bj/ωj)/`(ω−1j )→ 1 if jn < j ¬ n. This suffices to conclude that

(2.5) implies K(Ĉ).
Recall for Case 3 that γ = 0 and observe that (2.21) implies log bn ∼ A log2 n.

Hence, choosing jn ∼ nδ, we find that log bjn ∼ log bn. Since logω−1j ∼
(A/C) log2 j, it follows that log bj/logωj → C if nδ < j ¬ n, and hence K(Ĉ)
holds.

In both cases, bj ∼ const ·RA(log j)Uρ(Q(γ(log j)) and hence some algebraic
reduction leads to the estimate

(4.8) σj(M) ∼ const

j log jQγ(log j)M(j)
.

We conclude for this example that the strong law holds if γ > 0, or if γ = 0 and

(4.9) IQ :=
∞∫
1

dy

yLQ(y)
<∞.

This condition may hold, or may not hold, depending on the exact asymptotic
form of LQ. In Case 3, we know that LQ(x) ∝ log x, and hence (4.9) cannot hold.
Thus a further conclusion is that: If γ = 0 and the integral in (4.9) diverges, then
lim supn→∞Wn(ω) =∞ almost surely.

So, suppose that γ = 0 and IQ =∞ and that

(4.10) lim sup
y→∞

log2 y

LQ(y)
= 0,

a condition always holding for Case 3. Let δ > 1 and N(y) = (log y)(log2 y)
δ

for y ­ e, set M(x) = N(log x) and in Lemma 4.2 choose Mj = M(j). Since
log Ĉj ∝ logω−1j ∼ LQ(log j), the negligibility assumption in Lemma 4.2 is
equivalent to limy→∞ logN(y)/LQ(y) = 0, and this is implied by (4.10). Hence
K(C) holds.

The condition (4.10) implies that for any ε > 0, there exists yε > 0 such that
1/LQ(y) ¬ ε/log2 y. Hence the integral

J(N) :=
∞∫
e

dx

(x log x)LQ(log x)N(log x)
=
∞∫
1

dy

yLQ(y)N(y)

¬ O(1) +
∞∫
yε

dy

y(log y)(log2 y)
δ
<∞,
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i.e., S(C) < ∞. So we conclude from Corollary 3.1 that: If γ = 0, IQ = ∞ and
(4.10) holds, then (4.7) is valid. This holds for Case 3.

Suppose now that (4.10) is replaced with the (not quite converse) condition

(4.11) lim inf
y→∞

log2 y

LQ(y)
­ B ∈ (0,∞).

Writing M(x) = N(log x) for some positive-valued function N , the condition
J(N) <∞ and (4.11) imply that for any large number yB ,

∞∫
yB

dy

y(log2 y)N(y)
<∞.

This can hold only ifN(y) ­ const · log y. But this will contradict the negligibility
condition required for Lemma 4.2. Hence the strongest conclusion we can draw for
this case is that: If γ = 0, IQ =∞ and (4.11) holds, then almost surely

(4.12) lim inf
n→∞

Wn(ω) ¬ 1 and lim sup
n→∞

Wn(ω) =∞.

REMARK 4.2. The strong law holds for the specifications of Remark 2.2 and
γ > 0. This subsumes Corollary 1.2 of Nakata [8] where γ = 1. If γ = 0 then,
since LQ(x) ≡ q the integral (at (4.9)) IQ = ∞. In addition the condition (4.10)
fails, but (4.11) holds. Hence our best conclusion is that (4.12) holds.

REMARK 4.3. The configuration of Remark 2.3 corresponds to a Case 3 in-
stance of Example 2.1. The condition (4.10) fails but (4.11) is satisfied and hence
we conclude that (4.12) holds. This outcome holds for Corollary 1.1(ii) in Nakata
[8] for which case he could conclude only that the strong law fails. Instead, follow-
ing the general prescription in Adler and Wittmann [3], he constructed a modified
weight sequence which yields a strong law.

EXAMPLE 4.2. Recall the specifications for Example 2.2 and assume that γ ­
1, a necessary condition for Cases 2 and 3. Arguing as for Example 4.1 it will
follow that K(Ĉ) holds. With reference to (4.6), it follows from (2.25) and (2.26)
that

σj(M) ∼ const

jQγ(log j)M(j)
.

Hence S̃(1) <∞ if γ > 1 or if γ = 1 and

I =
∞∫
1

dy

Q1(y)
<∞.

Hence the strong law holds in these cases.
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In the case that γ = 1 and I = ∞ we choose δ > 0 and M(j) ∼ (log j)δ.
Since log Ĉj ∝ logω−1j ∼ Q1(log j), it follows that logM(j)/ log Ĉj → 0 and

hence, from Lemma 4.2, the condition K(C) holds. In addition, Ŝ(M) < ∞. It
follows that (4.7) holds.
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