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Abstract. We study the comparability of the lifetimes of heterogeneous par-
allel systems with independent exponentially distributed components. It is
known that the order statistics of systems composed of two types of compo-
nents may be comparable with respect to the star transform order. On what
concerns the stronger convex transform order, results have been obtained
only for the sample maxima assuming that one of the systems is homo-
geneous. We prove, under the same assumptions as for the star transform
ordering, that the lifetimes of heterogeneous parallel systems are not com-
parable with respect to the convex transform order.
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1. INTRODUCTION

Deciding about the ageing properties of systems whose lifetime is random requires
an appropriate meaning of the comparison criterion. The literature is abundant in
alternative definitions of ageing properties and the corresponding orderings. Gen-
erally speaking, the approach starts by defining how to measure the relevant risk,
which will be considered as the failure rate. The characterization of the mono-
tonicity of the failure rate function for a lifetime distribution is an important aspect
and has been studied, among others, by Barlow and Proschan [4], Patel [16], Sen-
gupta [17] or El-Bassiouny [7].

Once we define a risk measure, we may become interested in ordering lifetime
distributions with respect to the risk considered. This may be viewed as deciding
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which distribution is ageing faster. Order relations, mostly falling into some fam-
ily of transform orders, have been studied extensively by various authors (see, for
example, Desphande et al. [6], Kochar and Wiens [10], Singh [19], Fagiuoli and
Pellerey [8] or Shaked and Shanthikumar [18]). We refer the reader to Shaked and
Shanthikumar [18, Section 4.B] for general definitions and properties of transform
order relations. We mention that the convex transform order that we will be consid-
ering later has a geometric interpretation, as described by van Zwet [21], providing
a way to compare the skewness of lifetime distributions.

The order properties of the lifetime distributions of parallel systems have been
thoroughly studied in the literature, with some recent results in Zhang et al. [23],
Kayal [9] or Wu et al. [22], where the role of different lifetime distribution of the
components is studied, and in Cai et al. [5] or Li and Li [13] dealing with the effect
of dependence of component lifetimes.

The present note responds to a question raised by Kochar and Xu [11]. These
authors were interested in comparing the ageing performance of parallel systems
with respect to the convex transform order when the components have exponential
and independent lifetime distributions. Kochar and Xu [11, Theorem 3.1] proved
that, for systems with the same number of components, a parallel system with
homogeneous components ages faster than a parallel system with heterogeneous
components. Kochar and Xu [11, Remark 3.2] conjectured that the same ageing
behaviour holds when comparing two heterogeneous systems based on compo-
nents that have exponentially distributed lifetimes with hazard rates that can be
ordered in a suitable way (see Definition 3.1 below for details). Their conjecture is
based on the intuitive extension of their Theorem 3.1 and on numerical evidence
they collected. Although Kochar and Xu [12] proved that the ordering relationship
holds with respect to the star transform order under an alternative formulation of
the assumptions on the parameters, the corresponding result for the convex trans-
form order remained open.

In this paper we give a simpler proof of the star ordering proved in [12], based
on quite different arguments. Our approach to the proof of the star transform or-
dering provides a method allowing us to show that the Kochar and Xu conjecture
on the convex transform order is not valid. Furthermore, it is important to highlight
that the contribution of this work is not only the disproval of the conjecture (this
could have been obtained via a counterexample) but also the fact that our proof
gives a general method to obtain regions where the required relationship defining
the convex order fails. These regions seem to be rather narrow, so some insight into
their location is significant to decide about the ordering.

2. PRELIMINARIES

Let X be a nonnegative random variable with density function fX , distribution
function FX , and tail function FX = 1−FX . Moreover, for each x ­ 0 the failure
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rate function ofX is given by rX = fX/FX . Two of the most simple and common
ageing notions are defined in terms of the failure rate function.

DEFINITION 2.1. Let X be a nonnegative valued random variable.

• X is IFR (resp., DFR) if rX is increasing (resp., decreasing) for x ­ 0.

• X is IFRA (resp., DFRA) if 1
x

∫ x
0
rX,s(t) dt is increasing (resp., decreasing) for

x > 0.

The above definitions refer to monotonicity properties of the distribution. In the
following, we introduce criteria to compare distribution functions.

DEFINITION 2.2. Let F denote the family of distribution functions such that
F (0) = 0, and X and Y be nonnegative random variables with distribution func-
tions FX , FY ∈ F .

The random variable X (or its distribution FX ) is said to be smaller than Y
(or its distribution FY ) in convex transform order, and we write X ¬c Y , or
FX ¬c FY , if F−1Y (FX(x)) is convex.

The random variable X (or its distribution FX ) is said to be smaller than Y (or
its distribution FY ) in star transform order, and we write X ¬∗ Y , or FX ¬∗ FY ,

if F
−1
Y (FX(x))

x is increasing (this is also known as F−1Y (FX(x)) being star-shaped).

The definitions above fall into the family of iterated IFR and IFRA orders, re-
spectively, introduced and initially studied by Nanda et al. [15], Arab and Oliveira
[1], [2] or Arab et al. [3], considering their iteration parameter to be 1. It is par-
ticularly useful to highlight at this point that the IFR and IFRA orders are scale
invariant (see Nanda et al. [15]). Consequently, in the case of families of distri-
butions that have scale parameters, this allows one to choose them in the most
convenient way.

A general characterization of transform order relations is given below.

THEOREM 2.1 (Nanda et al. [15, Propositions 3.1 and 4.1]). Let X and Y be
random variables with distribution functions FX , FY ∈ F .

(1) X ¬∗ Y if and only if for any real number a, F Y (x)− FX(ax) changes sign
at most once, and if the change of sign occurs, it is in the order “−,+” as
x varies from 0 to +∞.

(2) X ¬c Y if and only if for any real numbers a and b, F Y (x) − FX(ax + b)
changes sign at most twice, and if the change of sign occurs twice, it is in the
order “+,−,+” as x varies from 0 to +∞.

REMARK 2.1. As mentioned by Arab and Oliveira [1, Remark 25], it is enough
to verify the above characterizations for a > 0. Moreover, when describing a sign
variation of any given function, we will always be considering that x goes from 0
to +∞.
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The characterization given by Theorem 2.1 requires explicit expressions of the
tails of the distributions, which are often unavailable. Computationally tractable
characterizations were studied by Arab and Oliveira [1], [2] and Arab et al. [3,
Theorems 2.3 and 2.4]. As one may see in the proofs in [1], the control of sign
variation is usually more complex when b < 0. However, a prior verification of the
star transform ordering will help circumvent this difficulty.

THEOREM 2.2 (Arab et al. [3, Theorem 29]). Let X and Y be random vari-
ables with distribution functions FX , FY ∈ F . If X ¬∗ Y and the criterion in
Theorem 2.1(2) is satisfied for b ­ 0, then X ¬c Y .

The lifetime of parallel systems is expressed as the maximum of the lifetimes
of the components. When these are exponentially distributed, the distribution func-
tion of the system lifetime is a linear combination of exponential terms. Later, we
will be interested in counting and localizing the roots of such expressions. The
following result will play an important role.

THEOREM 2.3 (Tossavainen [20]). Let n ­ 0, p0 > p1 > · · · > pn > 0, and
αj 6= 0, j = 0, 1, . . . , n, be real numbers. Then the function f(t) =

∑n
j=0 αjp

t
j

has no real zeros if n = 0, and for n ­ 1 it has at most as many real zeros as there
are sign changes in the sequence α0, α1, . . . , αn.

3. MAIN RESULTS

We begin this section by quoting a result by Kochar and Xu [11] that suggested the
conjecture we will be discussing later and therefore it is presented here for the sake
of completeness.

THEOREM 3.1 (Kochar and Xu [11, Theorem 3.1]). Let X1, . . . , Xn be in-
dependent and exponentially distributed random variables with common hazard
rate λ. Similarly, let Y1, . . . , Yn be independent and exponentially distributed ran-
dom variables with hazard rates θi, i = 1, . . . , n. Then max(X1, . . . , Xn) ¬c

max(Y1, . . . , Yn).

For the remainder of this section, we will be interested in characterizing the
order relationship between parallel systems of heterogeneous components with ex-
ponential lifetime distributions. We recall an order relation between Rn vectors
introduced by Marshall and Olkin [14, Definition A.1].

DEFINITION 3.1. Let (λ1, . . . , λn), (θ1, . . . , θn) ∈ Rn. Denote by λ(1) ¬
· · · ¬ λ(n) the ordered coordinates of the first vector, and likewise for the sec-
ond vector. We write (λ1, . . . , λn) ≺ (θ1, . . . , θn) if

k∑
i=1

λ(i) ­
k∑
i=1

θ(i) for k = 1, . . . , n− 1, and
n∑
i=1

λ(i) =
n∑
i=1

θ(i).
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REMARK 3.1. Without loss of generality, we can assume the components of
the hazard rate vectors (λ1, . . . , λn) are arranged increasingly, therefore in what
follows, we will be assuming our hazard rate vectors satisfy λk ¬ λm when k ¬ m.

Based on their proof and some numerical evidence, Kochar and Xu [11] conjec-
tured that the conclusion of Theorem 3.1 still holds if the Xi have hazard rates λi
and the Yi have hazard rates θi such that (λ1, . . . , λn) ≺ (θ1, . . . , θn).

3.1. The star transform ordering. Kochar and Xu [12] proved a stronger ordering
result but with respect to the weaker star transform order.

THEOREM 3.2 (Kochar and Xu [12, Theorem 3.1]). Let X1, . . . , Xn be inde-
pendent and exponentially distributed where X1, . . . , Xp have hazard rate λ1 and
Xp+1, . . . , Xn have hazard rate λ2, and let Y1, . . . , Yn satisfy similar conditions
with hazard rates θ1 and θ2. If λ2/λ1 ­ θ2/θ1, then the k-th order statistics are
ordered with respect to the star transform order, that is, Xk:n ¬∗ Yk:n.

REMARK 3.2. The star transform order is insensitive to multiplication of the
random variables by constants. Taking this into account, it is easily seen that an
equivalent formulation of Theorem 3.2 is obtained by assuming that the hazard
rates satisfy (λ1, λ2) ≺ (θ1, θ2).

In Subsection 3.2, we will compare the lifetimes of parallel systems with re-
spect to the convex transform order. Our approach is based on characterizing the
sign variation of suitable functions, as expressed by Theorem 2.1. Therefore, taking
into account Theorem 2.2, the following reduced version of Theorem 3.2 provides
a useful first step for the proof of Theorem 3.4, and provides some calculation
details.

THEOREM 3.3. Let X1 and X2 be independent and exponentially distributed
with hazard rates λ1 and λ2, respectively. Analogously, let Y1 and Y2 be inde-
pendent and exponentially distributed with hazard rates θ1 and θ2, respectively. If
(λ1, λ2) ≺ (θ1, θ2), then X = max(X1, X2) ¬∗ Y = max(Y1, Y2).

Proof. If λ1 = θ1, Definition 3.1 implies that (λ1, λ2) = (θ1, θ2), and X and
Y are equivalent. Suppose now that λ1 > θ1. Let FX and F Y be the survival
functions of X and Y . Then

FX(x) = e−λ1x + e−λ2x − e−(λ1+λ2)x,
F Y (x) = e−θ1x + e−θ2x − e−(θ1+θ2)x.

Taking into account Theorem 2.1 and Remark 2.1, it is sufficient to prove that
V (x) = F Y (x) − FX(ax) changes sign at most once, and if the sign change
occurs, it is in the order “−,+” for every real a > 0. We will consider three
separate cases, depending on the value of a. First, note that the assumptions on the
hazard rates imply that θ1 < λ1 < λ2 < θ2 and λ1 + λ2 = θ1 + θ2, hence neither
system has homogeneous components.
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CASE 1: a = 1. We have V (x) = e−θ1x+ e−θ2x− (e−λ1x+ e−λ2x). Reorder-
ing the exponential terms so that they appear in decreasing order of their basis,
the sign pattern of the coefficients is “+,−,−,+”. Hence, according to Theo-
rem 2.3, V has at most two real roots. Moreover, limx→−∞ V (x) = +∞, while
limx→+∞ V (x) = 0+. Furthermore, taking into account that V (0) = 0, V ′(0) = 0

and V ′′(0) = −λ21+θ21−λ22+θ22 = −(θ2−λ2)(λ1−λ2+θ1−θ2) > 0, it follows
that V (x) ­ 0, which means that F Y (x) ­ FX(x) for every x ∈ R, thus no sign
changes occur.

CASE 2: a > 1. As FX is decreasing, it follows that, for x ­ 0, V (x) ­
F Y (x)− FX(x) ­ 0, so again no sign changes occur.

CASE 3: 0 < a < 1. To analyse the sign pattern of the coefficients in V , we
distinguish two cases:

θ1 < aλ1: After reordering the exponentials in V according to their basis, the
sign pattern of the coefficients is “+,−,−,+,+,−”. Thus, according to Theo-
rem 2.3, V has at most three real roots. The sign pattern of the coefficients implies
that limx→−∞ V (x) = −∞, while limx→+∞ V (x) = 0+. Finally, taking into ac-
count that V (0) = V

′
(0) = 0, the possible sign changes for V are either “+”

or “−,+”.

θ1 ­ aλ1: As FX is decreasing and a ¬ θ1/λ1, it follows that, for x ­ 0,

V (x) ¬ H(x) = F Y (x)− FX
(
θ1
λ1
x
)

= e−θ2x − e−(θ1+θ2)x −
(
e
− θ1λ2

λ1
x − e−

θ1
λ1

(λ1+λ2)x).
After reordering the exponentials in H according to their basis, the sign pattern
of the coefficients in H is “−,+,+,−”, implying that, according to Theorem 2.3,
H has at most two real roots. The sign of the coefficients of H also implies that
limx→+∞H(x) = 0−, which, together with the fact that H(0) = H

′
(0) = 0 and

H
′′
(0) = 2θ1

(
θ1
λ1
λ2 − θ2

)
< 0, further implies that H(x) ¬ 0, so V (x) ¬ 0, that

is, no sign changes occur.

So, finally, V has at most one sign change when x goes from 0 to +∞, and
if the change occurs, it is in the order “−,+”. Thus, according to Theorem 2.1,
X ¬∗ Y . �

Recalling Remark 3.2, the following alternative equivalent formulation is im-
mediate.

COROLLARY 3.1. Let X1 and X2 be independent and exponentially distri-
buted with hazard rates λ1 and λ2, respectively. Analogously, let Y1 and Y2 be in-
dependent and exponentially distributed with hazard rates θ1 and θ2, respectively.
If λ2/λ1 ­ θ2/θ1, then X = max(X1, X2) ¬∗ Y = max(Y1, Y2).
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REMARK 3.3. Note that although Theorem 3.2 allows for an arbitrary number
of components, each system is only allowed to have two different types of compo-
nent. On the other hand, Theorem 3.3 is obtained for lifetimes which may all have
different hazard rates, but its proof is limited to systems with only two components.
It remains an open problem to prove the star transform order between systems with
more than three types of components.

3.2. The convex transform ordering. We may now give a partial answer to the con-
jecture announced by Kochar and Xu [11], about the comparability of the lifetime
distributions of parallel systems with respect to the convex transform order.

THEOREM 3.4. Let X and Y be as in Theorem 3.3. Then X and Y are not
comparable with respect to the convex transform order.

Proof. As before, if λ1 = θ1, then X and Y are equivalent. Suppose now
that λ1 > θ1. We start by noticing that the sign variation analysis of V (x) =
F Y (x)−FX(ax+ b) is inconclusive. Note that, unlike in the star transform order
case (Theorem 3.3), we have V (0) = 1− FX(b) > 0.

The favourable cases. Taking into account Theorems 2.1 and 2.2, and Re-
mark 2.1, we need to describe the sign variation of V for a, b > 0. In each case,
control is obtained by identifying the possible number of real roots with the use of
Theorem 2.3, and coupling this with the behaviour of V when x→ ±∞.

CASE 1: a ­ 1. As b > 0 and x ­ 0, we have ax + b ­ x, hence V (x) ­
F Y (x)− FX(x) ­ 0.

CASE 2: θ1/λ1 ¬ a < 1. Reordering the terms in V appropriately, the sign
pattern of its coefficients is “+,−,−,+,+,−” (or “+,−,+,+,−” if a = θ1/λ1),
hence, according to Theorem 2.3, V has at most three real roots. Moreover, it is
easily seen that limx→+∞ V (x) = 0+. As V (0) > 0, this means there are at
most two nonnegative real roots. Thus, the sign pattern can only be either “+” or
“+,−,+”.

CASE 3: 0 < a ¬ θ1/λ2 < 1. Reordering again the terms in V to apply
Theorem 2.3, we find the sign pattern for its coefficients is “−,−,+,+,+,−”
(collapsing to “−,+,+,+,−” if a = θ1/λ2), so V has at most two real roots.
At infinity, we find that limx→+∞ V (x) = 0−. Hence, as V (0) > 0, V has one
nonnegative real root and the sign pattern of V is “+,−”.

The violating case: θ1/λ2 < a < θ1/λ1. The sign pattern of the ordered co-
efficients in V is “−,+,−,+,+,−”. Thus, using Theorem 2.3, V may have up
to four real roots. The fact that limx→−∞ V (x) = −∞, together with V (0) > 0,
implies that one of the roots is negative. Moreover, limx→+∞ V (x) = 0−, so this
is compatible with the sign variations (when x varies from 0 to +∞) “+,−” or
“+,−,+,−”. That is, the use of Theorem 2.3 is not conclusive.
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We need to show that the sign variation “+,−,+,−” is indeed achieved for
an appropriate choice of a, b > 0, hence violating the comparison criterion. From
the previous analysis, if a = θ1/λ2 the sign variation of V is “+,−”. Likewise,
if a = θ1/λ1 the sign variation of V is either “+” or “+,−,+”. Choose b0 > 0
so that the sign variation of V (x) = F Y (x) − FX

(
θ1
λ1
x + b0

)
is “+,−,+”, and

keep this choice fixed for the rest of the proof. Furthermore, remember that when
θ1/λ2 < a < θ1/λ1, we have verified that limx→+∞ V (x) = 0−. Hence we have
the following graphical description of the sign of V , depending on x and a:

x

a

θ1
λ2

+ + · · · + + − − − − · · · − − − − −

θ1
λ1

+ + · · · + + + + − − · · · − − + + +

−
−
−

Keeping b0 fixed, we may look at V as a function of x and a. Thus, we may
differentiate with respect to a, to find

∂V

∂a
(x, a, b) = xfX(ax+ b),

where fX is the density function of X , implying that for every possible choice
for b > 0, in particular for b = b0, ∂V

∂a (x, a, b) > 0. Hence, as a function of
a alone, V is increasing. Thus, when a increases from θ1/λ2 to θ1/λ1 the value
for V is also increasing, so once it becomes positive it may no longer get back to
negative values. For the particular choice b = b0 which produces the lines of signs
“+” and “−” above, the increase of V with respect to a explains why the initial
sequence of “+” signs for a0 = θ1/λ1 is longer than the corresponding initial
sequence when a = θ1/λ2.

It remains to justify that the choice for b0 does exist. First, note that we proved
in Case 3 of the proof of Theorem 3.3 that F Y (x) − FX(a0x) ¬ 0 for every
x ­ 0, and the inequality is strict for every x > 0. Now, choosing some x0 > 0,
we have F−1X (F Y (x0)) > a0x0, so we may find b0 (depending on x0) such that
F
−1
X (F Y (x0)) > a0x0+b0, which implies that F Y (x0) < FX(a0x0+b0). As the

functions are continuous, this inequality will hold on some neighbourhood of x0,
so the sign pattern represented above always happens.

Getting back to the graphical representation above, we now locate the set of
points (x, a) such that V (x, a, b0) = 0, that is, we may take a = h(x). As V is
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continuous, this function h is also continuous, and we will find the behaviour of h
described by the thick line below, where we also identify the sign of V in each
region:

x

a

θ1
λ2

+ + · · · + + − − − − · · · − − − − −

θ1
λ1

+ + · · · + + + + − − · · · − − + + +

−
−
−

+

+

−

The position of the horizontal dashed line identifies a value of the parameter a for
which the sign variation of V , with b = b0, is actually “+,−,+,−”, so the random
variables are not comparable with respect to the convex transform order. �

REMARK 3.4. Although a counterexample would have been enough, the proof
of Theorem 3.4 goes one step further, as it shows how to identify a set of parameters
for which the convex transform order comparability fails, that Kochar and Xu [11]
could not locate, since without prior indication of where to look for, it is easy to
miss the appropriate choice for a and b. The construction above depends critically
on an appropriate choice for b, producing the “+,−,+” sign pattern on the top
line. Numerical experiments confirm the arguments produced in the course of the
proof, indicating that b must be chosen close to 0. Moreover, experiments suggest
that even with a convenient choice of b the top-right region with the “+” signs may
be relatively narrow.

The original motivation for the conjecture stems from the characterization of
skewness of the densities, in the sense introduced by van Zwet [21], which was
the problem studied by Kochar and Xu [11]. The link between the convexity ap-
proach used by Kochar and Xu [11] and our sign variation approach follows from
the characterization of convexity by means of sign variation, described by Arab
and Oliveira [1, Theorem 20], [2]. The narrow region for the choice of a and b vi-
olating the sign variation pattern means that the function F−1Y (FX(x)) is concave
in almost the whole of its domain and convex in a small interval.

An explicit example and choice of the parameters violating the ¬c-compara-
bility may be obtained by taking, for example, λ1 = 2, λ2 = 3, θ1 = 1.5, θ2 = 3.5,
a = 0.749 and b = 0.0125. Note that the choice of hazard rates and parameters
is meant to identify where the sign variation condition is violated, and not directly
the convexity of F−1Y (FX(x)) itself. The graphical representation of F−1Y (FX(x))
is not very illustrative, as this function behaves almost as a straight line. More-
over, the function F Y is obviously not explicitly invertible, so simple closed rep-



356 I. Arab et al.

resentations of the derivatives seem to be out of reach. However, proceeding nu-
merically, one may obtain the approximations F−1Y (FX)

′′(1.5) ≈ 0.20344 and
F
−1
Y (FX)

′′(2.5) ≈ −0.06557, hence the function is neither convex nor concave.
Let us go back to the framework of Theorems 3.3 and 3.4 and describe the

sign pattern of V (x, a, b) = F Y (x) − FX(ax + b), considering the effect of the
three variables x, a and b. It is easily seen that the intersection of the surface de-

fined by V (x, a, b) = 0 with the plane b = 0 is described by a = F
−1
X (FY (x))

x ,
and the intersection with the plane a = 0 by b = F

−1
X (F Y (x)). Therefore, the

intersection with the plane b = 0 defines, as a function of x, a decreasing curve.
An inspection of the proof of Theorem 3.3 implies that this function is always
­ θ1/λ1. Indeed, the proof of Theorem 3.3 shows that for (x, a, 0) with x ­ 0
and a ¬ θ1/λ1 the sign of V is negative, hence this region does not intersect the
surface V (x, a, b) = 0. On the other hand, when x ­ 0 and a > θ1/λ1, the sign
pattern of V (x, a, 0) may be “−,+”, therefore an intersection with V (x, a, b) = 0

may occur. These considerations imply that the curve a(x) = F
−1
X (FY (x))

x is
decreasing and has a lower bound. As this function is obviously nonnegative,
limx→+∞ a(x) is finite and is ­ θ1/λ1. Moreover, taking into consideration that
the sign variation of F−1X (F Y (x)) −

(
θ1
λ1
x + b

)
is either “−” or “−,+,−”, it

follows that limx→+∞ F
−1
X (F Y (x)) − θ1

λ1
x = 0. Therefore, for the particular ex-

ample mentioned above, where (λ1, λ2) = (2, 3) and (θ1, θ2) = (1.5, 3.5), we
have limx→+∞ F

−1
X (F Y (x))− 3

4x = 0.
We now address an extension of Theorem 3.4 to a generalized version of the

framework of Theorem 3.2. The observation above that F−1Y (FX(x)) behaves al-
most like a straight line suggests a criterion for noncomparability, which we apply
to lifetimes of parallel systems.

THEOREM 3.5. Let X1, . . . , Xn be independent and exponentially distributed
random variables where X1, . . . , Xp have hazard rate λ1 and Xp+1, . . . , Xn

have hazard rate λ2, and let Y1, . . . , Yn satisfy similar conditions with haz-
ard rates θ1 and θ2. If (λ1, λ2) ≺ (θ1, θ2), then X = max(X1, . . . , Xn) and
Y = max(Y1, . . . , Yn) are not comparable with respect to the convex transform
order.

Proof. We seek to conclude that F−1Y (FX(x)) is neither convex nor concave.
It is easily seen that this function is increasing and F−1Y (FX(0)) = 0. We shall
prove that, as x → +∞, F−1Y (FX(x)) approaches a straight line that starts at
the origin. Hence, nonconvexity follows immediately. Before proceeding, notice
that F−1Y (FX(x)) = F−1Y (FX(x)), FY (x) = F p1 (x)F

n−p
2 (x) and FX(x) =

Gp1(x)G
n−p
2 (x), where Fi(x) = 1 − e−θix and Gi(x) = 1 − e−λix. Taking into

account the comments above, choose c1 = λ1/θ1 > 1 and consider H(x) =
FX(x) − FY (c1x). After expansion, H(x) is represented as a linear combination
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of exponentials. Moreover, when x→ +∞, the dominant terms correspond to the
smallest values of the multiplicative constants appearing in the exponents. That is,
considering the choice for c1, the dominant terms are the ones that involve e−λ1x.
Consider now the perturbation H1(x) = FX(x)−FY (c1x− ε), where ε > 0. It is
obvious that limx→+∞H1(x) = 0 andH ′1(x) = fX(x)−c1fY (c1x−ε). The dom-
inant term, when x → +∞, in H ′1(x) is λ1e−λ1x(1 − eθ1ε) < 0. Hence, for large
values of x, H1 is decreasing to 0, that is, FX(x) ­ FY (c1x− ε). Likewise, for x
large enough, FX(x) ¬ FY (c1x + ε). As FY is increasing, these two inequalities
imply that, when x → +∞,

∣∣F−1Y (FX(x))− c1x
∣∣ ¬ ε, and therefore, as ε > 0 is

arbitrary, limx→+∞
∣∣F−1Y (FX(x))− c1x

∣∣ = 0, completing the proof. �

REMARK 3.5. Theorems 3.4 and 3.5 were proved under the assumption
(λ1, λ2) ≺ (θ1, θ2) on the hazard rates. Similar to what was mentioned with respect
to Corollary 3.1, the conclusions of all these results still hold under the alternative
assumptions λ1 < λ2 and λ2/λ1 > θ2/θ1.

REFERENCES

[1] I. Arab and P. E. Oliveira, Iterated failure rate monotonicity and ordering relations within
gamma and Weibull distributions, Probab. Engrg. Inform. Sci. 33 (2019), 64–80.

[2] I. Arab and P. E. Oliveira, Iterated failure rate monotonicity and ordering relations within
gamma and Weibull distributions—Corrigendum, Probab. Engrg. Inform. Sci. 32 (2018), 640–
641.

[3] I. Arab, M. Hadjikyriakou and P.E. Oliveira, Failure rate properties of parallel systems, Adv.
Appl. Probab. 52 (2020), 563–587.

[4] R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing: Probability
Models, Holt, Rinehart and Winston, New York, 1975.

[5] N. Cai, W. Ni and C. Li, Some ordering properties of series and parallel systems with dependent
component lifetimes, Comm. Statist. 48 (2019), 4764–4779.

[6] J. V. Deshpande, S. C. Kochar and H. Singh, Aspects of positive ageing, J. Appl. Probab. 23
(1986), 748–758.

[7] A. H. El-Bassiouny, On testing exponentiality against IFRA alternatives, Appl. Math. Comput.
146 (2003), 445–453.

[8] E. Fagiuoli and F. Pellerey, New partial orderings and applications, Naval Res. Logistics 40
(1993), 829–842.

[9] S. Kayal, Stochastic comparisons of series and parallel systems with Kumaraswamy-G dis-
tributed components, Amer. J. Math. Management Sci. 38 (2019), 1–22,

[10] S. C. Kochar and D. D. Wiens, Partial orderings of life distributions with respect to their ageing
properties, Naval Res. Logistics 34 (1987), 823–829.

[11] S. C. Kochar and M. Xu, Comparisons of parallel systems according to the convex transform
order, J. Appl. Probab. 46 (2009), 342–352.

[12] S. C. Kochar and M. Xu, On the skewness of order statistics in multiple-outlier models, J. Appl.
Probab. 48 (2011), 271–284.

[13] C. Li and X. Li, Stochastic comparisons of parallel and series systems of dependent compo-
nents equipped with starting devices, Comm. Statist. 48 (2019), 694–708.

[14] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Application, Aca-
demic Press, New York, 1979.



358 I. Arab et al.

[15] A. K. Nanda, N. K. Hazra, D. K. Al-Mutairi and M. E. Ghitany, On some generalized ageing
orderings, Comm. Statist. 46 (2017), 5273–5291.

[16] J. K. Patel, Hazard rate and other classifications of distributions, in: Encyclopedia in Statistical
Sciences 3, Wiley, 1983, 590–594.

[17] D. Sengupta, Another look at the moment bounds on reliability, J. Appl. Probab. 31 (1994),
777–787.

[18] S. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer, New York, 2007.
[19] H. Singh, On partial orderings, Naval Res. Logistics 36 (1989), 103–110.
[20] T. Tossavainen, The lost cousin of the fundamental theorem of algebra, Math. Magazine 80

(2007), 290–294.
[21] W. R. van Zwet, Convex transformations of random variables, MC Tracts 7, Amsterdam, 1964.
[22] J. Wua, M. Wanga and X. Li, Convex transform order of the maximum of independent Weibull

random variables, Statist. Probab. Lett. 156 (2020), 1–6.
[23] Y. Zhang, X. Cai, P. Zhao and H. Wang, Stochastic comparisons of parallel and series systems

with heterogeneous resilience-scaled components, Statistics 53 (2019), 126–147.

Idir Arab, Paulo Eduardo Oliveira
CMUC, Department of Mathematics
University of Coimbra
Coimbra, Portugal
E-mail: idir.bhh@gmail.com

paulo@mat.uc.pt

Milto Hadjikyriakou
University of Central Lancashire

Larnaka, Cyprus
E-mail: MHadjikyriakou@uclan.ac.uk

Received 22.12.2019;
revised version 15.2.2021


	1 Introduction
	2 Preliminaries
	3 Main results
	3.1 The star transform ordering
	3.2 The convex transform ordering

	References

