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ON THE TRANSFER THEOREMS FOR OBSERVED AND
UNOBSERVED RANDOM VARIABLES

BY
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Abstract. We characterize the possible weak limits of

n∑
i=1

εiXi/kn

for a sequence {Xn, n  1} of independent random variables and a se-
quence {εn, n  1} of indicator random variables (P [εn ∈ {0, 1}] = 1

for n  1) and a non-random normalizing sequence {kn, n  1} of posi-
tive reals. We consider two cases: when {Xn, n  1} and {εn, n  1} are
independent or dependent. In the first case we obtain results generalizing
transfer theorems, whereas in the other case, only a partial characterization
was possible.
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1. INTRODUCTION

Let {Xn, n  1} be a sequence of independent random variables. We will denote
by ε = {εn, n  1} and ν = {νn, n  1} random and non-random sequences
of values from the set {0, 1}, respectively. Let {Nn, n  1} be a sequence of
integer-valued random variables. For n  1 set

Sn =
n∑
i=1

Xi, Sn(ε) =
n∑
i=1

εiXi, Sn(ν) =
n∑
i=1

νiXi, SNn =
Nn∑
k=1

Xk.

Throughout the paper the upper case Greek letters are used to denote the distribu-
tion functions while their lower case counterparts denote the corresponding char-
acteristic functions.

Gnedenko and Fahim [1] proved the so-called transfer theorem, establishing
sufficient conditions for the weak convergence of random sums of independent
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identically distributed random variables under the assumption of independence of
indices and summands. Gnedenko also posed the problem of describing criteria,
that is, necessary and sufficient conditions for the convergence of random sums.
Partial inverses of the transfer theorem and criteria under some rather loose ad-
ditional assumptions were published in [7] and [8]. The final solution and some
important corollaries are presented in [9]. Kruglov and Korolev [5, Section 2]
gathered many of those results. Recently Kern [2] presented a widely applicable
transfer theorem for random variables on a general metric space with random mul-
tiparameters. On the other hand, Klebanov and Rachev [3] constructed a general
theory of summation of a random number of random variables generalizing the
definition of infinite divisibility and introducing ν-infinitely divisible families of
random variables.

The main theorem of [9] can be formulated as follows.

THEOREM 1.1. Let {Xn, n  1} be a sequence of independent random vari-
ables, and let {Nn, n  1} be a sequence of positive integer-valued random vari-

ables independent of the sequence {Xn, n  1} and such that Nn
P−→ ∞. Let

{kn, n  1} be a sequence of integers such that

kn →∞ as n→∞.

Let {an, n  1} be a sequence of positive reals and let Φ(x) and A(x) be distri-
bution functions. If

P [Skn/an < x]→ Φ(x) as n→∞,(A)
P [Nn/kn < x]→ A(x) as n→∞,(B)

then
P [SNn/an < x]→ Ψ(x) as n→∞,(C)

where

ψ(t) =
∞∫
−∞

eitx dΨ(x) =
∞∫
0

[φ(t)]y dA(y),

and ψ(t) and φ(t) are the characteristic functions of the distribution functions
Ψ(x) and Φ(x), respectively.

If Φ(x) is a non-degenerate distribution function, then conditions (A) and (C)
imply (B).

If the equality

(1.1)
∞∫
0

[φ1(t)]
y dA(y) ≡

∞∫
0

[φ2(t)]
y dA(y)

implies φ1(t) ≡ φ2(t) for any characteristic functions φ1, φ2 of stable laws,
and A(x) is a non-degenerate distribution function, then conditions (B) and (C)
imply (A).
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For α ∈ (0, 2], β ∈ [−1, 1], λ > 0 let Gα,β,γ,λ be the stable distribution func-
tion with characteristic function∫
eitx dGα,β,γ,λ(t) =

{
exp{itγ − λα|t|α(1− iβsign(t)tan(πα/2))}, α 6= 1,

exp
{
itγ − λ|t|

(
1 + iβ 2

π sign(t) ln(|t|)
)}
, α = 1.

In (1.1) it is enough to consider the characteristic functions of stable laws, because,
by the well known fact, the set of possible weak limits of appropriate centered and
normalized sums of i.i.d. random variables is exactly equal to the class of stable
laws.

Let ε = {εn, n  1} be a sequence of random variables taking values 0
and 1 only. We may interpret them as indicators which random variables among
{Xn, n  1} are observed (εn(ω) = 1) or unobserved (εn(ω) = 0). Throughout
this paper it is assumed that ε is arbitrarily interdependent. In Section 2 we as-
sume that ε is independent of {Xn, n  1}, but in Section 3 we allow dependence
between these random sequences.

The general aim of this paper is to obtain results analogous to the transfer the-
orem 1.1 for sums of observed and unobserved random variables. We will show
that in some cases the sums of the sequence {εnXn, n  1} behave “similarly”
to randomly indexed sums of random variables. Such sums were also investigated
by Krajka and Rychlik [4]. In two special cases we may formulate the transfer
theorem for sums of such observed and unobserved summands.

THEOREM 1.2. Let {Xn, n  1} be a sequence of i.i.d. random variables. Let
the sequence ε = {εn, n  1} be independent of the previous one, let {an, n  1}
be a sequence of positive reals and let Φ(x) and A(x) be distribution functions. If

P [Skn/an < x]→ Φ(x) as n→∞,(A)

P
[ n∑
i=1

εi/kn < x
]
→ A(x) as n→∞,(B)

then
P [Sn(ε)/an < x]→ Ψ(x), where(C)

ψ(t) =
∞∫
−∞

eitx dΨ(x) =
∞∫
0

[φ(t)]y dA(y),

and ψ(t) and φ(t) are the characteristic functions of Ψ(x) and Φ(x), respectively.
If Φ(x) is a non-degenerate distribution function, then conditions (A) and (C)

imply (B).
If the equality

∞∫
0

[φ1(t)]
y dA(y) ≡

∞∫
0

[φ2(t)]
y dA(y)

implies φ1(t) ≡ φ2(t) for any characteristic functions φ1, φ2 of stable laws,
and A(x) is a non-degenerate distribution function, then conditions (B) and (C)
imply (A).
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Theorem 1.2 immediately follows from Theorem 1.1 applied to Nn =
∑n

i=1 εi
and the fact that for exchangeable random variables {Xn, n  1} we have

{ε1X1, ε2X2, . . . , εnXn}
D
= {X1, X2, . . . , XNn , 0, 0, . . . , 0},

where D= denotes equality in law.
Furthermore, we may formulate the following characterization theorem:

THEOREM 1.3. Let {Xn, n  1} be a sequence of i.i.d. random variables
belonging to the area of attraction of the stable (or normal) limit law Gα,β,γ,λ,
0 < α ¬ 2,−1 ¬ β ¬ 1, λ > 0. Then the set of all possible weak limits of the sum
{
∑n

i=1 εiXi/an, n  1}, where {εn, n  1} are independent of {Xn, n  1},
and {an, n  1} is a sequence of positive reals divergent to infinity, is equal to the
family of random variables Y such that P [Y < 0] = 0 with law ΦY satisfying

∞∫
−∞

eitx dΦY (x) =
∞∫
0

[ ∞∫
−∞

eitx dGα,β,γ,λ(t)
]y
dP [Y < y].

REMARK 1.1. Theorems 1.2 and 1.3 may be generalized to the case of more
observers. For example, if {εn, n  1} and {ε′n, n  1} are two sequences de-
scribing two observers and if

P [Skn/an < x]→ Φ(x) as n→∞,(A)

P
[ n∑
i=1

εi(1− ε′i)/kn < x,
n∑
i=1

εiε
′
i/kn < y,

n∑
i=1

ε′i(1− εi)/kn < z
]

→ A(x, y, z)

(B)

as n→∞, then
P [Sn(ε)/an < x, Sn(ε′)/an < y]→ Ψ(x, y),(C)

where

ψ(t1, t2) =
∞∫
−∞

∞∫
−∞

ei(t1x1+t2x2)dΨ(x1, x2)

=
∞∫
0

∞∫
0

∞∫
0

[φ(t1)]
x+y[φ(t2)]

y+z dA(x, y, z),

and ψ(t1, t2) and φ(t) are the characteristic functions of the distribution functions
Ψ(x, y) and Φ(x), respectively.

In general, we cannot prove this theorem for sequences {Xn, n  1} that are
not identically distributed. The proof of Theorem 1.2 cannot be generalized to this
case, and the arising difficulties are explained in the next section.
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2. THE CASE WHEN ε IS INDEPENDENT OF {Xn, n  1}

EXAMPLE 2.1. Let {Yn, n  1} be a sequence of i.i.d. random variables with
stable distribution function Gα,0,0,λ, α 6= 1, and let {Zn, n  1} be a sequence of
independent random variables such that Zn ∼ N(0, n2/α − (n− 1)2/α), n  1.
Putting

Xn =

{
Yn/2 for n even,
Z(n+1)/2 for n odd,

εn =

{
1 for n even,
0 for n odd,

ε′n = 1− εn, n  1.

we see that

Sn/n
1/α D−→ G

α,0,0,(1/2)1/α
2
λ

+N(0, (1/2)2/α),

n∑
i=1

εi/n
D−→ E1/2,

n∑
i=1

ε′i/n
D−→ E1/2,(2.1)

Sn(ε′)/n1/α
D−→ N(0, (1/2)2/α),

Sn(ε)/n1/α
D−→ G

α,0,0,(1/2)1/α
2
λ

as n→∞;

here and in what follows, Ex(u) = I[u < x], u, x ∈ R. Taking into account
the first three convergences in (2.1) and Theorem 1.2 it seems that the appropriate
normalized limits of Sn(ε) and Sn(ε′) should be the same, but in (2.1) they are
different. We conclude that conditions (A) and (B) in Theorem 1.2 are not suffi-
cient for (C) to hold. In this example {Xn, n  1} are not i.i.d. Because every
sequence of numbers is independent of each random sequence, {Xn, n  1} and
{εn, n  1} are independent.

This example shows that the expression
∑n

i=1 εi is not suitable to consider the
convergence of {Sn(ε)/kn, n  1}; it should rather be considered using some
random sequences {an(ε), n  1} of positive reals. Furthermore, we should have
some information about the possible weak limits of appropriate normalized sub-
sequences of {Sn, n  1}. The normalizing sequences may be dependent on pos-
sible limits. For example, if we change in Example 2.1 the law {Zn, n  1} into
Zn ∼ N(0, 1), then for the subsequence {S2n, n  1} the appropriate normalizing
is n1/α, whereas for {S2n−1, n  1} we should normalize by n1/2.

We see that the main problem is the possibility of obtaining different weak
limits for the sums of different subsequences with different normalizing sequences.
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Therefore, instead of condition (A), we should consider the condition:

Sn(ν)/an(ν)
D−→ Ψν as n→∞,

and instead of (B),

an(ε)/kn
D−→ A as n→∞,

for some subsequence {kn, n  1} and distribution functions A,Ψν , ν ∈ M, for
some family of subsequencesM⊂ {0, 1}N.

THEOREM 2.1. Consider five conditions:

(a) For every ν ∈M,

Sn(ν)/an(ν)
D−→ Ψν as n→∞.

(b) For a random sequence ε ∈ M, a.s., a sequence {kn, n  1} diverging to
infinity, and a distribution function A we have

an(ε)/kn
D−→ A as n→∞.

(c) For a random sequence ε ∈ M, a.s., a sequence {kn, n  1} diverging to
infinity, and distribution functions Ψν ,Ψ we have

lim
n→∞

Eψε(tan(ε)/kn) = ψ(t),

where ψν(t) =
∫
eitx dΨν(x) and ψ(t) =

∫
eitx dΨ(x).

(d) For a random sequence ε ∈M, a.s., and a distribution function Ψ we have

Sn(ε)/kn
D−→ Ψ as n→∞.

(e) For a random sequence ε ∈M, a.s., and a sequence {kn, n  1} diverging to
infinity, the sequence {an(ε)/kn, n  1} is tight.

We have:

(i) (a) and (c) and (e) =⇒ (d),

(ii) (a) and (d) and EΨε is continuous at 0 =⇒ {an(ε)/kn, n  1}
is relatively compact,

(iii) (b) and (d) and A is continuous at 0 =⇒ {Sn(ε)/an(ε), n  1}
is relatively compact.
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Proof. If Sn(ν)/an(ν)
D−→ Ψν then for every continuous and bounded func-

tion f we haveEf(Sn(ν)/an(ν))→
∫
f(x) dΨν(x), thus from the independence

of ε from {Xn, n  1} we have Ef(Sn(ε)/an(ε)) →
∫∫
f(x) dΨν(x) dPε(ν) =∫

f(x) dEΨε(x),where Pε denotes the law of ε. Therefore Sn(ε)/an(ε)
D−→ EΨε.

Proof of (i). Let φj(t) = EeitXj , j  1, and let Pε denote the law of ε.
Because φj(0) = 1, we have

lim
n→∞

EeitSn(ε)/kn = lim
n→∞

∫
ν∈M

∏
1¬j¬n, νj=1

φj(t/kn) dPε(ν)

= lim
n→∞

∫
ν∈M

n∏
j=1

φj(tνj/kn) dPε(ν).

On the other hand, from (a) we have, for every T > 0 and ν ∈M,

(2.2) lim
n→∞

sup
|t|<T

∣∣∣ n∏
j=1

φj(νjt/an(ν))− ψν(t)
∣∣∣ = 0.

Choose any ε > 0 and a positive numberKε such that P [|an(ε)/kn| > Kε] < ε
from (e). Then

sup
|t|<T

∣∣∣∣EeitSn(ε)/kn − Eψε

(
t
an(ε)

kn

)∣∣∣∣
¬

∫
ν∈M

|an(ν)/kn|<Kε

sup
|t|<T

∣∣∣∣ n∏
j=1

φj

(
νjt

an(ν)

an(ν)

kn

)
− ψν

(
t
an(ν)

kn

)∣∣∣∣ dPε(ν)

+ P [|an(ε)/kn| > Kε]

¬
∫

ν∈M
sup
|t|<TKε

∣∣∣∣ n∏
j=1

φj

(
νjt

an(ν)

)
− ψν(t)

∣∣∣∣ dPε(ν) + ε.

Now the conclusion follows from (2.2) and (c). �

Proof of (ii). From our assumptions we conclude that {Sn(ε)/an(ε), n  1}
and {Sn(ε)/kn, n  1} are tight, and EΨε is continuous at 0. We prove that
{an(ε)/kn, n  1} is tight. Assume the contrary; then there exists a subsequence
{nr, r  1} such that

(2.3) P

[∣∣∣∣anr(ε)

knr

∣∣∣∣  r] > 2δ, say,

for r ∈ N. But since {Snr(ε)/knr , r  1} is tight (being a subsequence of a tight
sequence), for any δ > 0 and some Kδ we have

P

[∣∣∣∣Snr(ε)

knr

∣∣∣∣ < Kδ

]
> 1− δ.
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Furthermore,

P

[∣∣∣∣Snr(ε)

knr

∣∣∣∣ < Kδ

]
= P

[∣∣∣∣Snr(ε)

anr(ε)

∣∣∣∣ < Kδ/
anr(ε)

knr

]
¬ P

[∣∣∣∣Snr(ε)

anr(ε)

∣∣∣∣ < Kδ/r,

∣∣∣∣anr(ε)

knr

∣∣∣∣  r]+ P

[∣∣∣∣anr(ε)

knr

∣∣∣∣ < r

]
¬ P

[∣∣∣∣Snr(ε)

anr(ε)

∣∣∣∣ < Kδ/r

]
+ P

[∣∣∣∣anr(ε)

knr

∣∣∣∣ < r

]
,

thus

1− δ < P

[∣∣∣∣Snr(ε)

knr

∣∣∣∣ < Kδ

]
< P

[∣∣∣∣Snr(ε)

anr(ε)

∣∣∣∣ < Kδ/r

]
+ 1− 2δ,

therefore

δ < P

[∣∣∣∣Snr(ε)

anr(ε)

∣∣∣∣ < Kδ/r

]
,

and letting r →∞, we see that the weak limit of {Snr(ε)/anr(ε), r  1} is 0 with
non-zero probability, which contradicts the assumption that EΨε is continuous
at 0. Thus, {an(ε)/kn, n  1} is tight and hence relatively compact. �

Proof of (iii). The proof is analogous to the one above. We prove that
{Sn(ε)/an(ε), n  1} is tight. Assume the contrary; then there exists a subse-
quence {nr, r  1} such that

P

[∣∣∣∣Snr(ε)

anr(ε)

∣∣∣∣ < r

]
< 1− 2δ.

Since

P

[∣∣∣∣Snr(ε)

knr

∣∣∣∣ > Kδ

]
< δ,

we have

1− δ < P

[∣∣∣∣Snr(ε)

knr

∣∣∣∣ < Kδ

]
= P

[∣∣∣∣Snr(ε)

anr(ε)

anr(ε)

knr

∣∣∣∣ < Kδ

]
< P

[∣∣∣∣anr(ε)

knr

∣∣∣∣ < Kδ/r

]
+ P

[∣∣∣∣Snr(ε)

anr(ε)

∣∣∣∣ < r

]
< P

[∣∣∣∣anr(ε)

knr

∣∣∣∣ < Kδ/r

]
+ 1− 2δ,

and

(2.4) P

[∣∣∣∣anr(ε)

knr

∣∣∣∣ > Kδ/r

]
> δ,

and since {anr(ε)/knr , r  1} weakly tends to A, letting r → ∞ in
(2.4) we see that A is not continuous at 0, contrary to assumption. Therefore,
{Sn(ε)/an(ε), n  1} is tight and so relatively compact. �
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COROLLARY 2.1. (a) Assume that the familyM is decomposed into pairwise
disjoint subfamilies {Mj , 1 ¬ j ¬ k}. If for every 1 ¬ j ¬ k and every ν ∈ Mj

we have
Sn(ν)

an(ν)

D−→ Ψj as n→∞,

and for some random sequence ε ∈ M, a.s., such that pj = P [ε ∈ Mj ],
1 ¬ j ¬ k, a sequence {kn, n  1} diverging to infinity and a distribution func-
tion A we have

an(ε)

kn

Dmixing−−−−−→ A as n→∞,

where “D mixing” means mixing in the Rényi sense ( for details see [6, Chap-
ter VIII, §6, pp. 466–467]), then

Sn(ε)

kn

D−→ Ψ as n→∞,

where
∞∫
−∞

eitx Ψ(dx) =
k∑
j=1

pj
∞∫
0

ψj(tx)A(dx) = ψ(t), say.

If k = 1, then the assumption of mixing convergence may be omitted.
(b) If for every ν ∈M we have

Sn(ν)

an(ν)

D−→ Φ as n→∞,

and for some ε such that P [ε ∈ M] = 1 and for some sequence {kn, n  1}
diverging to infinity we have

Sn(ε)

kn

D−→ Ψ as n→∞,

with a distribution function Ψ continuous at 0, and for any distribution functions
A1, A2 such that A1(0) = A2(0) = 0, we have

∀t∈R
∞∫
0

φ(tx)A1(dx) =
∞∫
0

φ(tx)A2(dx) =⇒ A1 ≡ A2,

then
an(ε)

kn

D−→ A as n→∞,

with
∞∫
0

φ(xt)A(dx) = ψ(t).
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Proof of (a). Obviously, assumptions (a) and (e) of Theorem 2.1 hold. The
mixing convergence of {an(ε)/kn, n  1} means that for every event B with
P [B] > 0 we have

P

[
an(ε)

kn
< x

∣∣∣∣ B]→ A(x) as n→∞,

for every x which is a point of continuity of A. Putting Bj = {ω ∈ Ω : ε ∈ Mj},
1 ¬ j ¬ k, and taking into account that every characteristic function is continuous
and bounded we have

E

[
ψj

(
t
an(ε)

kn

) ∣∣∣∣ Bj]→ ∞∫
0

ψj(tx)A(dx) as n→∞.

Thus

Eψε

(
t
an(ε)

kn

)
=

k∑
j=1

Eψj

(
t
an(ε)

kn

)
I[Bj ]

=
k∑
j=1

pjE

[
ψj

(
t
an(ε)

kn

) ∣∣∣∣ Bj]
→

k∑
j=1

pj
∞∫
0

ψj(tx)A(dx) = ψ(t),

and the assertion follows from Theorem 2.1(i). �

Proof of (b). From Theorem 2.1(ii) we see that {an(ε)/kn, n  1} is relatively
compact. Assuming that for two subsequences n′k and n′′k and two distribution func-
tions A1 and A2 we have

lim
k→∞

an′k(ε)

kn′k
= A1, lim

k→∞

an′′k (ε)

kn′′k
= A2,

by applying (a) we get

ψ(t) =
∞∫
0

φ(tx)A1(dx) =
∞∫
0

φ(tx)A2(dx),

which implies A1 = A2 and ends the proof. �

THEOREM 2.2. Let {ψn, n  1} be a family of functions ψn :M→ R and let
{Xn, n  1} be a sequence of independent random variables independent of the
sequence {εn, n  1} of indicators. Assume that for some distribution function Ψ
and some sequence {kn, n  1} of positive reals,

sup
ν∈M

P
[ n∑
j=1

νjXj < xψn(ν1, . . . , νn)
]
→ Φ(x) as n→∞,

inf
ν∈M

P
[ n∑
j=1

νjXj < xψn(ν1, . . . , νn)
]
→ Φ(x) as n→∞,(2.5)
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for every point x of continuity of Φ, and if additionally

ψn(ε1, . . . , εn)

kn

D→ A as n→∞,

then ∑n
j=1 εjXj

kn

D→ Ψ as n→∞,

where ψ(t) =
∫∞
0
φ(tx)A(dx).

Proof. Condition (2.5) and the independence of ε and {Xn, n  1} lead to

Sn(ε)

ψn(ε)

D→ Φ as n→∞.

Similarly to the proof of Theorem 2.1(i) we have

sup
|t|<T

∣∣∣∣EeitSn(ε)/kn − Eφ(tan(ε)

kn

)∣∣∣∣
¬
∫

ν∈M
sup
|t|<TKε

∣∣∣∣ n∏
j=1

φj

(
tνj
an(ν)

)
− Φ(t)

∣∣∣∣ dPε(ν) + ε,

which yields the conclusion. �

When {Xn, n  1} are i.i.d., we obviously put ψn(νi, . . . , νn) =
∑n

i=1 νi and
obtain Theorem 1.2 as a corollary.

3. THE CASE WHEN ε IS DEPENDENT ON {Xn, n  1}

EXAMPLE 3.1. Let 0 < p < 1/2 be a real number and let x be defined by
p = Gα,0,γ,λ(−x) = 1 − Gα,0,γ,λ(x). Let {Yn, n  1} be a sequence of i.i.d.
random variables with symmetric law

P [Yn ∈ A] =
1

2p
Gα,0,γ,λ(A ∩ [(−∞,−x) ∪ (x,∞)]), A ∈ B(R), n  1,

and let {Zn, n  1} be a sequence of i.i.d. random variables with uniform law
on [−x, x]. Let {εn, n  1} be an i.i.d. sequence with P [εi = 0] = 2p and
P [εi = 1] = 1−2p, and let {Xn, n  1} be an i.i.d. sequence of random variables
defined by

Xn = YnI[εn = 0] + ZnI[εn = 1], n  1.
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LetM denote the family of infinite sequences ν of 0s and 1s such that
∑n

i=1 νi
→∞ as n→∞. Then for every ν ∈M we have

Sn(ν)

(2p
∑n

i=1 νi)
1/α

D−→ Gα,0,γ,λ as n→∞,

Sn(ε)

(x/
√

3)
√

(1− 2p)n

D−→ N(0, 1) as n→∞,

but for α < 2 there is no distribution function A such that
∞∫
−∞

eitx dGα,0,γ,λ(x) =
∞∫
0

e−t
2y/2 dA(y).

Moreover, putting an(ν) = (2p
∑n

i=1 νi)
1/α and kn = (x/

√
3)
√

(1− 2p)n, and
denoting by Bn

p the binomial random variable with chance of success equal to p
and n trials, we have

an(ε)

kn
=

(2p
∑n

i=1 I[εi = 1])1/α

(x/
√

3)
√

(1− 2p)n
=

(2pBn
1−2p)

1/α

(x/
√

3)
√

(1− 2p)n
.

From the Central Limit Theorem we have(
Bn

1−2p − (1− 2p)n√
n(1− 2p)2p

)1/α
D→ (N(0, 1))1/α as n→∞,

thus

P [Bn
1−2p > (1− 2p)n]  1

2
− sup

x

∣∣∣∣P[Bn
1−2p − EBn

1−2p√
Var(Bn

1−2p)
< x

]
− Φ(x)

∣∣∣∣,
where Φ(x) is the standard normal distribution function. From the Berry–Esseen
Theorem, putting qx,p,α =

√
3(2p(1−2p))1/α
x
√
1−2p we have

P

[
an(ε)

kn
> qx,p,αn

1/α−1/2
]
 1

2
− 0.4748 · 4p− 1√

2p(1− 2p)
n−1/2.

As a consequence, the implication (ii) of Theorem 2.1 fails, as {an(ε)/kn, n  1}
is not relatively compact when α < 2.

It is easy to check that if we omit the assumption that {εn, n  1} are the
indicators under the small restriction (P [

⋃
n1[Xn = 0]] = 0), we get convergence

in probability to an arbitrary random variable X ((
∑n

i=1
X
Xi
Xi)/n = X). For

indicators we have not achieved this result in this case, but we only remark that
since for every random variable X and indicator function ε we have

XI[X < 0] ¬ Xε ¬ XI[X > 0],
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it follows that if
n∑
i=1

Xiεi/kn
D−→ F as n→∞,

then

lim inf
n→∞

P
[ n∑
i=1

XiI[Xi > 0] < xkn

]
¬ F (x) ¬ lim sup

n→∞
P
[ n∑
i=1

XiI[Xi < 0] < xkn

]
.
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