MATHEMATICAL STATISTICS

Vol. 41, Fasc. 2 (2021), pp. 303–320 Published online 7.9.2021 doi:10.37190/0208-4147.41.2.6

ON THE BESOV REGULARITY OF THE BIFRACTIONAL BROWNIAN MOTION

BY

BRAHIM BOUFOUSSI (MARRAKESH) AND YASSINE NACHIT (MARRAKESH)

Abstract. Our aim is to improve Hölder continuity results for the bifractional Brownian motion (bBm) $(B^{\alpha,\beta}(t))_{t\in[0,1]}$ with $0 < \alpha < 1$ and $0 < \beta \leq 1$. We prove that almost all paths of the bBm belong to (resp. do not belong to) the Besov spaces $\operatorname{Bes}(\alpha\beta,p)$ (resp. $\operatorname{bes}(\alpha\beta,p)$) for any $\frac{1}{\alpha\beta} , where <math>\operatorname{bes}(\alpha\beta,p)$ is a separable subspace of $\operatorname{Bes}(\alpha\beta,p)$. We also show similar regularity results in the Besov–Orlicz space $\operatorname{Bes}(\alpha\beta,M_2)$ with $M_2(x) = e^{x^2} - 1$. We conclude by proving the Itô–Nisio theorem for the bBm with $\alpha\beta > 1/2$ in the Hölder spaces \mathcal{C}^{γ} with $\gamma < \alpha\beta$.

2020 Mathematics Subject Classification: Primary 60G15; Secondary 60G18, 60G17.

Key words and phrases: bifractional Brownian motion, self-similar, Besov spaces, Besov–Orlicz spaces, Itô–Nisio.

THE FULL TEXT IS AVAILABLE HERE

© Probability and Mathematical Statistics, 2021