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Abstract. Our aim is to improve Holder continuity results for the bifrac-
tional Brownian motion (bBm) (Ba’B(t))te[()’l] with 0 < a < 1 and
0 < B < 1. We prove that almost all paths of the bBm belong to
(resp. do not belong to) the Besov spaces Bes(a3,p) (resp. bes(af, p))
for any C% < p < oo, where bes(af,p) is a separable subspace of
Bes(af, p). We also show similar regularity results in the Besov—Orlicz

space Bes(a3, M2) with Ma(z) = ¢ — 1. We conclude by proving the
It6-Nisio theorem for the bBm with @3 > 1/2 in the Holder spaces C” with
v < af.
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1. INTRODUCTION

Let (B (t));>0 be a bifractional Brownian motion (bBm for short), i.e., a centred
real-valued Gaussian process with covariance function

1
(1.1) R*P(s,t) := R(s,t) = 273(@%( + 820 - S|2aﬁ)’

where o € (0,1) and 8 € (0,1]. Observe that when 3 = 1, B®! is a frac-
tional Brownian motion with Hurst parameter o € (0, 1). However, the increments
of B*# are not stationary except for 4 = 1. The bBm has the following general
properties: it is self-similar with index «3, that is, for every a > 0,

(1.2) (B*P(at), t > 0} £ {a®PB*P(t), t > 0},

where X 2 Y means that the two processes have the same finite-dimensional
distributions. It is a quasi-helix (see [17]] and [[18] for various properties and appli-
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cations of quasi-helices) since for every s,¢ € [0, T], we have
(1.3) 20|t — 5|27 <E(B*(t) — B*F(s))? < 21 Pt — 5|2

Based on the fractional Brownian motion structure, Houdré and Villa [14]] have
constructed the bifractional Brownian motion as a more general self-similar Gaus-
sian process. Russo and Tudor [27] have shown that the bBm behaves, in terms
of sample path properties, like a fractional Brownian motion with Hurst parameter
af (one can see that clearly in Lei and Nualart decomposition). There is a rich lit-
erature investigating the properties of the bifractional Brownian motion; we refer
for example to the following non-exhaustive list: Bojdecki et al. [4], EI-Nouty [[1O],
El-Nouty and Journé [11], Kruk et al. [20], Es-Sebaiy and Tudor [12], Tudor and
Xiao [30], Bardina and Es-Sebaiy [3] and Lei and Nualart [22], to mention but
a few. In this last paper the following decomposition of the bBm was essentially
shown:
{CoBB(t), t > 0} £ {C1X*P () + B*P(1), ¢ > 0},

where Cy, Cy are constants, (B*? (t))t>0 is a fractional Brownian motion (fBm)
with parameter a3 and (X®(t));>0 is a Gaussian process with infinitely dif-
ferentiable trajectories on (0,00) and absolutely continuous on [0, 00). On the
other hand, we know from Ciesielski et al. [9]] that almost all paths of the fBm
(B*5(t));>0 belong (resp. do not belong) to the Besov spaces Bes(a3, p) (resp.
to the separable subspaces bes(af3, p)). In fact, a stronger regularity result was
obtained in the Besov—Orlicz space Bes(a3, M), where My (z) = ¢® — 1, (def-
initions are given in Section 2). Needless to mention that if we take 0 < a < b
one can deduce directly by Lei and Nualart decomposition that the sample paths
of (B*P(t))a<t<p have the same Besov regularity as those of fractional Brownian
motion of parameter a3. Otherwise, we are unable to get the Holder regularity
of X®# on intervals of type [0, <] for € > 0, since the trajectories of this process
are only absolutely continuous near 0. Hence we cannot derive directly from Lei
and Nualart decomposition the Besov regularity for the bBm on the interval [0, ¢].
Our main purpose in this paper is to investigate the Besov regularity for sample
paths of the bBm (B®#(t)) for t € [0, 1].

The Besov spaces Bes(7, p) are a general framework to investigate the modu-
lus of smoothness in LP-norms for trajectories of continuous time stochastic pro-
cesses. In our paper we are concerned with a particular class of Besov spaces
of real functions (f(t), t € [0,1]) (for a more general context see Triebel [29]).
One can get an improvement of the regularity in Besov spaces Bes(~, p) by using
the Besov-Orlicz spaces Bes(y, M), because of the following injections: for all
p=>1

Bes(v, M) — Bes(v,p).

We denote by C” the space of functions satisfying the Holder condition of order
~v > 0, endowed with the usual norm. It is known that Besov spaces cover Holder
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spaces as particular cases, more precisely C? = Bes(v, o0). In addition, for any
€ > 0 and p large enough, we have the following continuous injections (see Sec-
tion 2):

C7(I) < bes(y,p)(I) and C7(I) = Bes(y,p)(I) — "~ /7(I),

where bes(7, p) is a separable subspace of Bes(~, p). It is well known that almost
surely the sample paths of the bBm (B*#(t));>0 belong to the Holder space CY
for v < a3, and do not belong a.s. to C*F.

Our aim is to improve these classical results by showing that we can get smooth-
ness of order o in the Besov space Bes(a/3, p) for a—lﬂ < p < o0, or even in the
Besov—Orlicz space Bes(a/3, Ms). This is the best regularity one can get in the
context of Besov spaces, because we also prove that almost surely the trajectories
of the bBm do not belong to the separable spaces bes(a/, p) for 0417% < p < .
So the above injections explain clearly the sharpness of our results. Note that our
paper leads to some previous Besov regularity results: When o« = 1/2 and § = 1
we get the standard Brownian motion considered in [7]] and [8], for 5 = 1 we re-
cover the fBm situation considered in [9]], and the case « = 5 = 1/2 corresponds
to the regularity of the mild solution for a linear stochastic heat equation driven by
a white noise (see [6]]).

Among Itd’s accomplishments, there is the [t6—Nisio theorem (cf. [16]), in
which the authors have established on the one hand a general improvement of
the Fourier series decomposition of the Brownian motion, and on the other hand a
generalization of Wiener’s construction of the Brownian motion. They gave the ex-
pansion as the convergence of normalized sums of independent random variables.
Later, Kerkyacharian and Roynette [[19] proved the same result of the It6—Nisio in
Holder spaces with a sample proof. In this paper we show the [t6—Nisio theorem
for the bBm with o8 > 1/2 in the Holder spaces C” with v < 3. The case § = 1
corresponds to the fBm with Hurst parameter o > 1/2.

This paper is organized as follows. In the second section we give a brief intro-
duction to Besov spaces. The third section is devoted to the study of Besov regu-
larity for sample paths of the bifractional Brownian motion. In the fourth section
we investigate the Ito—Nisio theorem for bBm with a5 > 1/2. The proofs of our
results use technical and fine calculations based on dyadic coordinate expansions
of the bifractional Brownian motion and descriptions of Besov norms in terms of
the corresponding expansion coefficients of a function.

2. PRELIMINARIES

2.1. Besov spaces. Let I C R be a compactinterval, 1 < p < coand f € LP(I;R).
For any ¢ > 0 we define

80,00 = sup {11+ 9) = fra}
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where Iy = {z € I; v+ s € I}. Ap(f,I)(t) denotes the modulus of continuity
of f in the LP-norm. For v > 0, we consider the norm

A (F, D(t)

fllvp = 1IIf + sup
1 fllv.p = I fll ey Sup -

The Besov space is given by Bes(v,p)(I) = {f € LP(I); || f|lyp < oo}. The
space (Bes(v,p)(I),] - |l4,p) is a non-separable Banach space. We also define
bes(v,p)(I) = {f € LP(1); Ap(f, I)(t) = o(t") as t — 01}, a separable
subspace of Bes(v, p)(I). For p = oo, the space Bes(v, c0)(I) is defined in the
same way by using the usual L°°-norm.

In the case of the unit interval I = [0, 1] Besov spaces are characterized in terms
of sequences of the coefficients of the expansion of continuous functions with re-
spect to the Schauder basis. The following isomorphism theorem was established
by Ciesielski [[7] (see also Ciesielski et al. [9]]):

THEOREM 2.1. Letl <p <ooandl/p <~y < 1

(1) Bes(v,p)([0,1]) is linearly isomorphic to a sequence space and we have the
following equivalence of norms:

. 27 1/p
1 llp ~ max { o, |l sup 2771/ 220 U [ 57 | g,
J k=1

where the coefficients { fo, f1, fjk, j = 0, 1 < k < 27} are given by

fo=f(0), fi=f(1)— f(0),
. 2k —1 1 2k 1 2k — 2
fjk=2-2j/2{f< 5771 )—2f<2j+1> —2f(2j+1>}.

(2) fisinbes(v,p)([0,1]) if and only if

J—00

. 21 1/
lim 29(1/2=7+1/p) [kz:l ’fjk|p} o

2.2. Besov—Orlicz spaces. Let I C R be a compact interval, v € (0,1), and M»

the Young function defined by My (z) = e®” — 1. The Orlicz space Ly, (I) is the
space of measurable functions f : I — R such that

1135, = fnf 5 [1+ M @) ] < o0

It is more suitable to use an equivalent norm to || - ||3,, (see Fernique [13] or
Ciesielski [8]] for a proof):

[Fire
1 £llas, = sup ),

p21 /P
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Let A, (f,I)(t) be the modulus of continuity of f in the Orlicz space Ly, (1)
defined as

Ao (. 1)(t) = sup A<fﬁj><t>

For v > 0, we consider the norm

AMz(fv I)(t)

17ty = Wl + sup SME
0<t<1

The Besov—Orlicz space is defined by

Bes(y, Ma)(I) := {f € La,(1); || f]ly.00, < 00}

Bes(v, M>)(I) endowed with the norm || - ||, az, is a non-separable Banach space.
We introduce bes(y, Ma)(I) = {f € L, (I); A, (f,I)(t) =o(t7) ast — 01},
a separable subspace of Bes(vy, M2)(I).

With the same notations as in Theorem [2.1] we have the following characteri-
zation of Besov—Orlicz spaces (see Ciesielski [8] or Ciesielski et al. [9])):

THEOREM 2.2.

(1) Bes(y, M2)([0,1]) is linearly isomorphic to a sequence space and we have
the following equivalence of norms:

1 lhats ~ maX{\for, lsup - d0/21510 35 |7 /}

p7j

(2) f belongs to bes(y, M2)([0,1]) if and only if

1 2/
lim sup —27(1/2=7+1/p) [Z | fikl? —0.
k=1

]1/12
J—00 P>1 p
REMARK 2.3. (I)Let1 <p<ooand0 <y <~/ < 1. Then

Bes(y',p)(I) — bes(v,p)(I).

(2) We denote by C” (1) the Holder space defined by

(2.1) C'(I):= {f e C(I); sup M < oo},
z,yel |z —y|7
TH#Y
endowed with the norm
_ |f(z) — f(y)]

TFEY
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It has the following properties:

« Bes(y,00)(I) = C(I).

 For 1 < p < oo, we have C?(I) — Bes(v,p)(I).

« For1 <p<ooande > 0, weget C7(I) — bes(v,p)(]).

« Forl < p<ooand1/p < v < 1, we obtain Bes(v,p)(I) — CY~Y/P(I).
e Forpe[l,o0)and 0 < vy < 1,

Bes(v, M3)(I) — Bes(v,p)(I) and bes(y, M3)(I) — bes(v,p)(I).

In the following, we restrict ourselves to the interval I = [0, 1], so we will
omit [ in our notations, e.g. Bes(v, p) := Bes(vy,p)(I).

3. BESOV REGULARITY OF THE BIFRACTIONAL BROWNIAN MOTION

Our main result is the following theorem:

THEOREM 3.1. Foreach o € (0,1), 5 € (0,1] and % < p < oo, we have

P(B*(-) € Bes(af,p)) =1 and P(B“’(-) € bes(af,p)) = 0,

where B (-) are the sample paths [0,1] > t — BYP(t).

To prove this theorem, we adapt the techniques of [9]. Let us first give some
preliminary results.

The lemma below is a useful tool to obtain precise estimations in the calcula-
tions of this paper. For the proof we refer to [9]].

LEMMA 3.2. Let (X,Y) be a mean zero Gaussian vector such that E(X?) =
E(Y?) = 1 and p = |[EXY|. Then for any measurable functions f and g such that
E(f(X))? < 00, E(f(Y))? < 0o and f(X), f(Y) are centred, we have

[Ef(X)g(Y)] < p{E(f(X))*}*{E(g(Y)*}/%;
when f (or g) is even we can replace p by p? in the previous inequality.

We define

. 2k —1 1 2k 1 2k — 2
L .—9.9]/2 a,B _ - Rpap _ - Rpap
3.1 ujp =22 {B < 571 > 2B (2j+1) 2B < 9j+1 >}

We set

U4 .
(3.2) jk ::UL: with o = {E[Jug]?]}/2.
J
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By using (T.T)) and (3-1) we have, forall j > 1 and k, k' € {1,...,2/},

2j(1—2a6)

(33) E[Ujku]-k/] = W

(AZA2W},40(0,0) — Ay 1 (0)),

where Ag (resp. A2) is the one step progressive difference of order 2 in the y

variable (resp. x variable), and A is the one step progressive difference of order 4,
i.e.

AYF(0) = f(4) = 4f(3) +6£(2) — 4f(1) + f(0),

and

AZAZg(0,0) = g(2,2) — 29(2,1) + g(2,0) — 29(1,2) + 4g(1,1)
- 29(170) + 9(07 2) - 29(07 1) + 9(07 0)'

The functions in (3.3)) are

W (,) 1= ((2k — 2+ 2)% + (2K — 2+ y)2)”,
Oy pr(2) = [2(k — k') — 2+ z|*F.

LEMMA 3.3. Foralla € (0,1), 3 € (0,1], 7 > land k, k' € {1,...,27} with
k' < k, there exist C > 0, k1 € (0,2) and ¢y gy € (0,4) such that

1
(2k‘/ -2 + /{k7k/)4_2a6

(G4 |Elujpujp]| < 029’0—2&3){

1
* (2(k — k') — 24 cppr)4208 }

Moreover, there exist constants my, mo > 0 such that, for all j > 1 and k €
{1,...,27},

(3:5) my 2007208 < BfJug[?] < my 2707209),

Proof. Denote by <I>,(€4])€/ the derivative of order 4 of ® ;,. By the mean value
theorem and (3.3)), there exist constants ¢y j i/, c2. k1 € (0,2) and ¢ 1 € (0,4)
such that

2j(1—20¢ﬁ)

4
(3.6)  Elujpup] = W(agaﬁ‘ﬂk,k'(cl,k,kuC2,k,k’) - (D]g,]l/(c3,k,k’))’

where 0, = 8% and 9, = 8%. On the other hand, we find that for all j > 1 and
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kK e{1,...,27},

(7)) ORORW g (C1 ot C2 k)
= 40”20 = 1)?B(B = 1)(2k — 2+ c1pp)** 2 (2K = 2+ copp)* 2
X ((2k =2+ 1 )Y+ (2K — 2+ coppr) )2
+80%(2a = 1)B(8 —1)(B8 — 2)(2k — 2+ c1 ) > 22K — 2+ copp)**
X ((2k — 24 1 ppr)?* + (2K — 2+ cop pr)?)P 73
+80%(2a = 1)B(8 — 1)(B — 2)(2k — 2+ c1pp) (2K — 2+ copp)**
X ((2k — 24 c1 ) ?* + (2K — 2+ cop pr)?*)P 73
+16a*B(B8 — 1)(B —2)(B — 3)(2k — 2 + c1 ) 2 (2K — 2+ coppr )2
X ((2k — 24 ey ppr)?* + (2K — 2+ cop ) >)P 1
=L+ L+ I+

Moreover, for all j > 1and k, k' € {1,...,2/} such that ¥’ < k, we have

3
3.8) @ (capw) = T1(208 — D2k — k) — 2+ e300 27
1=0
Let us first investigate the inequality (3.4). Combining (3.6)—(3.8) we get, for
allj > land k, k" € {1,...,27} such that k' < F,

2fﬂ-ﬂaﬁ>{ d [T 208 — 1 }

3.9)  [Elujruim]| < g9 2 1
(3.9 [Elujkujm]l < Zgimap l;"|+(2(k:—k’)—2+c:a,k,kf)4*2“ﬁ

« Suppose a < 1/2. Letj > 1 and k, k' € {1,...,27} such that ¥’ < k. By

(3:7) we have

\ )
(3.10) L) < Cla, 5)
=1

(2]{7/ -2+ C1,k,k A 02’k’k,)4—20¢,3’

where

G C(a, B) = 2028 — 1{B(20: — 1)* + 20|22 — 1]8(B — 2|
+a?B|8 2|18 - 3[}.

Combining (3.9) and (3-10), we get
2i(1—2ap) C(a, B)
3.12 Elujpuip]| < ’
G2 Bl < s {(Qk’—2+01,k,k' A e p g )4 2P

+

[Tiol208 — 1 }.

(20 — k) — 2+ cgppr) 208
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* Suppose o > 1/2.Letj > 1and k, k' € {1,...,27} such that k¥’ < k. We
remark that
8032 — 1)A(B—1)(3—2)
(2k = 2+ c1 )2 292K — 24 coppr)? 2
1
: ((2k =2+ c1pp)?™ + (2K — 2+ coppr)?)27F

(3.13) L+ I3=

By the inequality ag‘ﬂbe < % we have

4o'B1B = 1118 = 2|18 - 3|
(2k — 2+ Cl’k’k/)2_2a(2k‘/ -2+ 627]{7]{/)2_20‘
1
X .
((2]{3 — 24 Cl,k,k’)Qa + (2k‘l -2+ ngkyk/)za)zfﬁ

Combining (3.7), (3.13) and (3.14)), we get

(3.14) |14 <

: C(a, p)
3.15 I < : :
( ) lzzl | l| (2k/ -2+ 1k k! A CQ,k,k’)4_2a’8
where C/(av, () is given by (B.11)). According to (3.9) and (3.13)), we obtain
97(1—208) C(a, p)
3.16 Elupuip]| < :
( ) | [U]kujk ]| 98-+2a3 { (Qk’ —24 1k A CQ,k,k’)4_2aﬁ
L Iiy2e8-1
(2(k = K) =2+ capp)t=208 J7

We put
~ 3
C(O&,ﬂ) \ Hl:() |20éﬁ - l|
98+2a8 '
Then forall a € (0,1), 3 € (0,1],j > 1and k, k' € {1,...,27} such that k¥’ < k,

C =

1
(2K — 2+ g o) 208

317 [Elugpup] < Czj(12a5){

+

1
(2(k — k') — 2+ cp )t 208 }’
where Ky i = ¢1 k7 A Co ki and ¢y jr = c3 1 & This finishes the proof of (3.4).
Now we will prove (3.5). To this end, let us start by proving the upper bound.
Forall j > 1and k € {1,...,27}, by (3.3) and the mean value theorem, there
exist ¢1 , c2. 1 € (0,2) such that
9i(1—=2ap)
9B+2af3
97 (1-2ap)
~ "9B+2aB

(3.18) E[|u;?] = (ajagwk,k(cl,k, cog) — A 1 (0))

(8585‘1%#(61,]6, CQ’k) + 8 — 22a5+1)‘
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* Suppose o < 1/2. By (3.7) we note that 8§8§\Pk7k(clvk,027;€) < 0, so by

using (3:18)) we have
] — 22aﬁ+1 L
(3.19) Efju|?] < Wzﬂ“ 22),

« Suppose a > 1/2. By (3.7) we observe that I1, Iy < 0, and by (3.13) we get,
forall j > 1land k € {2,...,27},

o¥(20 — BB~ 1)(5 - 2)

(3.20) L+1I5< s

So (3-18) and (3:20) entail
321)  Efjujl?]
< i(1-2a8) <a3(2a ~DBB-1)(B-2) 8- 22a5+1)

8 2B+2a8
Now for j > 1 and k = 1 we have, by (3.1) and (1.2),
i(1-208) 4E[B*P(1) — %BQ’B(QW'

(322) El|uj1|*) = 2 5308
Put

0320~ BB~ 1)(B—2) - 221
(3.23) mo = max{ 3 + 9F 28

(0% (0% 2
AE[B*P(1) — $B*A(2)]
2203 '

Combining (3.21)-(3:23) and (3.19) we get, for all & € (0,1), 8 € (0,1],5 > 1

and k € {1,...,27},
(3.24) ElJuj|?] < mg2i(=208),

This finishes the proof of the upper bound in (3-3).
Let us now investigate the lower bound. From (3:1)) and (T.2)), it follows that for
allj >landk € {1,...,27},

(120 2C (k)
(3.25) Ef|usi|*) = 2707200 2,

where
C(k) = E[B*®(2k — 1) — $B*P(2k) — L B*P(2k — 2)]°.

We know by [[1, Lemma 3.3] (see also [24]) that the process (Ba’ﬁ(t))@o is locally
non-deterministic, i.e. forall 0 = tg < t1 < -+ < tp, < 1 with ¢, —t; < ¢ and



Besov regularity of the bifractional Brownian motion 313

(Ug,...,up) € R™,

(3.26) Var(il wy (B (1) — B0 (1;.1)])
=

> Chy Y w3 Var(B*P(t;) — B*P(t;_1)).
j=1

On the other hand, by (T.Z) we have, for some £ < 3 A o,

(327)  C(k) = **PE[L[B*P(c(2k — 1)) — B*P(e(2k — 2))]
— §[B*P(e(2k)) — B*P(e(2k — 1))]]”.

Combining (3.26)), (3.27) and (1.3)), we get C(k) > 2?—35. Hence

4C5

2 i(1—2 .
Elujnl?] > mi 2707207 with my = oo

This finishes the proof of Lemma[3.3] =
REMARK 3.4. We remark that if 5 = 1, then 9202}, s (1 i, Coehr) = O
and hence AZ A2 Wy, 1,(0,0) = 0, so equation (3.3) becomes

93(1-20)

(3.28) Elujpujp] = — A1 (0),

21+2a
the same as in [9, (IV.9)] for the fractional Brownian motion.

LEMMA 3.5. There exists a constant M > 0 such that, for all j > 1 and
k. k' € {1,...,27}, we have
27 )
(3.29) 3o | Evjpvp]® < M27,
k=1
where the v;j, are given by (3.2).

Proof. Equality (3.2)) and Holder’s inequality give

27 27 27
> [Bupvwl?=2 Y [Bupvwl?+2 Y [Bupupl’
k,k'=1 k' <k,k'>2 K <k, k!'>2
k—k’/>2 k—k'=1
27 27
+2 3 [Bujeoj|? + D {E[jojl’]}?
k=2 k=1
27 Fuwrti |2 , : -
<2 —RR 990 — 9) 4 2(20 — 1) + 20
K<k k'>21 OjkOjk!
k—k'>2

=2J+5-2 —6.
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We will estimate .J. To this end, set A = 2C?/m3. Then by (3-4) and (3.3),

1 1
J<A
k’<kz;c’22{ (2K = 2 + kg )3 718 " (2(k — k') — 24 cp gy )3 408 }
k—k'>2

4 2] k—2 1 1
= ;;4k; { (2]{3/ — 24 ’Qk,k’)874a’8 + (2(]43 — k/) — 24+ Ck,k’)84a'3}

1 1
s4 Z Z { 2k — 2)8—4as * (2(k — k') — 2)8—4aﬂ}

=4 k'=

2 k—2 (2k'— 1 2k-k)-2 4
AZ Z{ f 5B dx + f S4B daz}

=4k 2k' — 2(k—k')—3 ¥

27 k—2 2k'—2 29 2k—6 1

—ouAS S 338—; AT [ o d

k=4 k'=2 2k’ -3
2A ,
< ———(27 - 3).
7— 4a6( )
This proves Lemma[3.5] =

LEMMA 3.6. Forall j > 1andk € {1,...,27}, we have

2]

2 .
(3.30) E{Z (o0l — cp)] < (cap — AYMY,
k=1

where ¢, = \/% fR |z[Pe*"/2 dx.

Proof. First we get

27

2 27
B[S (ol - e)] = 3 El(osel? = ep) (fogul? — )l
kE =1

k=1

)

By applying Lemma 3.2 with f(z) = g(z) = |z’ — ¢,, we obtain
27 2 27

E[Z(\Uﬂc\p - Cp)} <(ep—cp) > |Evjpoe]]*.

k=1 k=1
Inequality (3.29) of Lemma [3.5]ends the proof. =

Proof of Theorem[3.1) We are going to prove that, almost surely,

2
(3.3 277 Z |vjk\p — Cp.
k=1 J—oo
To this end we will show that for all ¢ > 0,

(3.32) Z]P’{Z j Z [ol? ¢ lep — 2,0+ 2] } < o0,

j=>1



Besov regularity of the bifractional Brownian motion 315

Markov’s inequality gives

Y 1 2 2
(3.33)  P{27 3 [l ¢ [ep — 2,0+ 2]} < i B X (ol — )]
k=1 e=2% L3

Combining (3.33) and Lemma we find that (3.32) holds, and (3.31)) is then

a consequence of the Borel-Cantelli Lemma. Finally, Theorem [3.1] is a simple
consequence of Theorem[2.1] =

Here is a stronger regularity result than Theorem 3.1

THEOREM 3.7. Foreach o € (0,1) and 5 € (0, 1], we have

P(B*A(.) € Bes(af3, Ms)) =1 and P(B“P(-) € bes(a3, Ms)) =0,
where B (-) are the sample paths [0,1] > t — B (t).

Proof. The proof is similar to that of [9, Theorem II.5]. Indeed, taking into
account Theorem[2.2] Lemma[3.6] and the fact that for positive integers p, we have

cop = (2)!/(P12F) ~ T2,

we infer that there exists a constant ¢ > 1 such that ¢z, < ce ?(2p)’. =

REMARK 3.8. (1) Let (Y;*):>0 be a sub-fractional Brownian motion, i.e. a
mean zero Gaussian process with covariance function

E[Y Y] = 82 + % — 5l(s + 1) + |t — 5],

where a € (0, 1). We believe that by the same calculations as above one can deduce
that almost all paths of the sub-fractional Brownian motion belong to (resp. do not
belong to) the Besov space Bes(a, p) and the Besov—Orlicz space Bes(a, Ma)
(resp. bes(a, p) and bes(a, M>)).

(2) Let r(t) be a real valued function such that the kernel K,.(¢, s) defined by

K, (t,s) :=r(t)—r(s) —r(t—s)

is positive on the real line, and let

p(t) = [(1— ey dm(u),

038

where m is a positive measure on [0, c0) such that |’ 100 dm(u) < oo. Therefore by
[2, Theorem 5.1],

K(s,t) := p(r(t) +r(s)) = p(r(t = s))

is a positive kernel on the real line. Let (X} ):>( be a centred Gaussian process with
covariance function
E[X; Xs] = K(s,t).
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If in addition we assume that o and r are in C*((0, c0)), and that for all @ > 0, we
have 7(at) = a®r(t) and p(azx) = a’¢(x) (.e. X is a self-similar Gaussian pro-
cess with index «3/2), then we expect that almost all paths of the proces X belong
to (resp. do not belong to) the Besov spaces Bes(a/3/2, p) (resp. bes(a/3/2, p)).
We intend to provide, in a future paper, a proof of this result using a new method
dealing directly with Besov norms without using Ciesielski’s isomorphism theo-
rem. For this new approach, we refer to [15]], [31]], [23]].

(3) The bifractional Brownian motion B“? with 0 < o < 1,1 < 8 < 2
such that a8 < 1 has been introduced and studied in [3]]. The case o > 1
such that 2a8 < 1 has been considered in [28]]. One can show that the reg-
ularity results in Theorems [3.1] and [3.7] remain valid here, since the derivatives
628 Wy k(€1 ks C2.k k) and <I>§f ,l,(03kk/) do not change. So in the proof of
Lemma @], we need just to take into account the other cases (i.e. 0 < o < 1,
1 < B < 2suchthat af < 1and a > 1 with 2a8 < 1).

4. AN ITO-NISIO THEOREM FOR THE BIFRACTIONAL BROWNIAN MOTION

Let £ be the linear space generated by the indicator functions 1 ;; endowed with
the inner product

(4.1 (Lo, Lo, )1 = R(s,t), s,t€0,1].

Define H as the completion of £ with respect to the inner product (-, ). The
map H 3 ¢ — B%P(yp) is an isometry from H to the Gaussian space generated
by B*”. Moreover, B*”(¢) is the Wiener integral of o with respect to B*”.

Our main result in this section is the following It6—Nisio theorem for the bifrac-
tional Brownian motion.

THEOREM 4.1. Suppose a5 > 1/2 and let (pp,)n>1 be an orthonormal basis
of 'H. Then almost surely

z ©ns Lo )1 B* Bon) —— B¥P(t)  in the Besov space Bes(af — ¢, p),

N—oo

where ¢ > 0 and p > 1 are such that 1/2 < ap —e — 1/p.
By classical continuous injections we can deduce

COROLLARY 4.2. Suppose a3 > 1/2 and let (py)n>1 be an orthonormal
basis of 'H. Then almost surely

N
Z {¢n; Ljo )1 B* P (pp) — BYP(t) in the Hélder space C7,

n—1 N—o00

Sfor any v < ap.
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Proof of Thearem Put Xy (t) := 2521 (on, IL[O’t]>HBO‘7B(<pn) and define

; 2k -1 1 2k 1 2k -2
. .93/2 _ - _Z =
=227 {XN< i +1 > 2XN<2j+1> 2XN< 2j+1 >}

Let {hji; j > 0, k =1,...,27} be the Haar functions defined by

Jk_fﬂ%ml — V2 1 , and =T ).

2Jj+1 ’2J+1 2]+1 ’2J+1
Note that
wik — zjr = BP (hj) — Xn(hjk)
N
= B*P(hy,) — Z(‘thjk>HB B pn).
n=1
Set
ujk — ij

N

(4.2) why, =
Ok

with  ofy, = {Efjur — 2zl *]}/2.
First, by the Borel-Cantelli lemma, we can easily show that almost surely
. 2]
(4.3) 2790+ 5™ Wl P —— 0.
k=1 J—0

Let ¢, € H and let ZiLGl AT Lo em)s Z]A/i"{ ©i L, sm) be two sequences in £ such
that

Ly, My,
¢ = lim ; Ailjpgr and = lim ; py Lpo,sm)  inH.

For all a > 0, define

L, My,
¢ = lim > AN'ljggm and %= lm > pi'ljgem inH.
1 m—eo i1 !

n—oo =
One can easily see by (1.2) and a density argument that
(4.4) E[B*?(¢*)BP (")) = a**PE[B*P (¢) B> ().

Setting 07, = (¢n, hji) 1, We get
N2 N 2
@) 1gF =B [B () = 3 (on hirhn B ()

o
= ||xl3 + Zl 1676l — 2 Zl 056" = 22 1074
n= n—=

n=N+1
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Put
]F:Lk—:[].Qk22kl)*]].[2 )
27 +1795+1 2]+1 ’2J+1
(46) g]k — :H.[ 2k—2 2k—1 ) - :[l[ 2k—1 )
20 +1)/279(3+1)/2 20 +1)/27 2(J+1)/2

9k = Lpr_22r-1) — Ipr—12k)-
Letting a; = 2-U+1)/2 by @3) we have

“.7) ik = BB (hjr) B* (0n)] = 2//PE[B*F (hjs) B* (10n)]

= 2/ BB (g B (7))
= 2707/ 2N E B (g,) B ()]

Hence combining (4.5) and 7)), we get

. 0 -1
4.8)  |olf|? = 272082028 S IE[BO(5;) BV (! )]}
n=N-+1
. 0 -1
< 2720P 020 M gup 3> {B[BP(5;8) B (o )]}

-1
The last supremum is finite. In fact, we remark that (a}lﬁ cpzj )n>1 18 an orthonor-
mal basis of H, and therefore

o0 0B~ a8 a;l 9 —208 o0 B o a;l 9
@9 > {EB (@) B (e N =a;" 5 (g )
n=N+1 n=N+1
208 X - aj! 2 2
< 0" 30 @ i = 0 Nagle = a5 gy e = Nl
n—=

On the other hand, by (3:24) we have E[|u;,|?] < m22/(1=2%%)_ Therefore by (3.1),

(T2), (@.6) and (@.1)) we get, forall k > 1,
4.10)  |grll3, = E2B“?(2k — 1) — B®P(2k) — B*P(2k — 2)]* < ma.

According to (4.9), for all N > 1 we obtain

(e e] _71
4.11) Ay :=sup > {E[B“?(g;1)B*"(on’ )|} < 0.
Then (AN )n>1 18 a non-increasing real valued sequence such that

(4.12) h]]\ffn Ay =0 as.
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From (4.2), (4.8)) and (@.11)) we derive

i(1 2 N ip(1/2 1 2 lujr — zjk|P
(4.13) 9—i(1+ep) Z |wjk|p > gpaBo—ip(1/2—(af—e)+1/p) Z J p/2] )
k=1 k=1 Ay

We remark that the sequence 27P(1/2—(af-£)+1/p) Zijzl |t — zjx|P is increasing
in j for e small enough, p large enough and a5 > 1/2. Therefore by (4.3) and
(4.13)), almost surely,

27
sup 27/P1/2=(af=e)+1/p) S lujr — 2P < 9—paB AP/2.
J=20 k=1

which finishes the proof of Theorem§.1|by applying (4.12)) and Theorem[2.1] =

REMARK 4.3. When = 1 we get the [t6—Nisio theorem for the fractional
Brownian motion with o > 1/2.
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ful reading and relevant comments. Their suggestions concerning the regularity in
Besov—Orlicz space (Theorem 3.7) and the discussion of the regularity of the bBm
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