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Abstract. In this paper, we establish a general result on complete f -moment
convergence of the moving average process based on widely orthant depen-
dent random variables, which generalizes some results in the literature. In
addition, an application of complete consistency to nonparametric regres-
sion models is provided. Finally, we provide a numerical simulation to ver-
ify the validity of our theoretical results.

2020 Mathematics Subject Classification: Primary 60F15; Secondary
62G20.

Key words and phrases: complete f -moment convergence, widely orthant
dependent random variables, nonparametric regression models, complete
consistency.

1. INTRODUCTION

Widely orthant dependence is one of the most important dependence structures,
and the convergence of moving average processes based on widely orthant depen-
dent (WOD, for short) random variables is of great interest. In probability the-
ory and mathematical statistics, as a more general type of convergence, complete
f -moment convergence is much stronger than complete convergence and complete
moment convergence. In this paper, we give some results on complete f -moment
convergence of moving average processes based on WOD random variables, and
present an application to nonparametric regression models.

Firstly, let us introduce some concepts which will be used in this paper.
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Let {Yi,−∞ < i < ∞} be a doubly infinite sequence of random variables
defined on the same probability space {Ω,F , P}, and {ai,−∞ < i < ∞} be an
absolutely summable sequence of real numbers, that is,

∞∑
i=−∞

|ai| <∞.

Then {Xn, n1} is a moving average process of the sequence {Yi, −∞<i<∞}
if

Xn =
∞∑

i=−∞
aiYi+n, n  1.

When the sequence {Yi,−∞ < i < ∞} is independent and identically dis-
tributed, many results about the moving average process {Xn, n  1} have been
obtained. For example, stationary stochastic processes in the strong sense were
investigated by Ibragimov [10]; Burton and Dehling [4] established a large devia-
tion result; Li et al. [12] got the complete convergence property. Recently, several
results have been obtained under the assumption that the sequence {Yn,−∞ <
n <∞} is dependent. Baek et al. [3] established complete convergence under NA
assumptions. Kim et al. [11] discussed the complete moment convergence under
ϕ-mixing random variables. Qiu and Chen [15] obtained a result on complete con-
vergence of the moving average process for extended negatively dependent (END)
sequences.

We aim to study complete f -moment convergence property for a moving aver-
age process based on WOD random variables, and give an application to nonpara-
metric regression models.

Let us introduce the concept of WOD random variables, introduced by
Wang et al. [22].

DEFINITION 1.1. An infinite sequence {Xn, n  1} of random variables is
said to be widely upper orthant dependent (WUOD, for short) if there exists a finite
real sequence {gU (n), n  1} such that for each n  1 and all xi ∈ (−∞,∞),
1 ¬ i ¬ n,

P (X1 > x1, X2 > x2, . . . , Xn > xn) ¬ gU (n)
n∏
i=1

P (Xi > xi);

and {Xn, n  1} is widely lower orthant dependent (WLOD) if there exists a finite
real sequence {gL(n), n  1} such that for each n  1 and all xi ∈ (−∞,∞),
1 ¬ i ¬ n,

P (X1 ¬ x1, X2 ¬ x2, . . . , Xn ¬ xn) ¬ gL(n)
n∏
i=1

P (Xi ¬ xi).

Finally, {Xn, n  1} is WOD if it is both WUOD and WLOD, and gU (n), gL(n),
n  1, are called the dominating coefficients.
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Denote g(n) = max {gU (n), gL(n)}. Clearly, g(n)  1. It is easily seen
that the class of WOD random variables includes END sequences, negatively or-
thant dependent (NOD) sequences, negatively superadditive dependent (NSD) se-
quences, negatively associated (NA) sequences and independent sequences as spe-
cial cases. Thus, the limiting probability behavior of WOD random variables and
its applications are of great interest. Many scholars studied the limit probability be-
havior and applications based on WOD random variables. For example, Wang et al.
[25] studied complete convergence for WOD random variables and gave an ap-
plication to nonparametric regression models. Qiu and Chen [14] obtained some
results on complete convergence and complete moment convergence for weighted
sums of WOD random variables. The consistency of the nearest neighbor estima-
tor of the density function based on widely orthant dependent samples was in-
vestigated by Wang and Hu [24]. Wu et al. [28] investigated complete moment
convergence for widely orthant dependent random variables under some mild con-
ditions. Deng and Wang [6] provided an exponential inequality for WOD random
variables and presented an application to M estimators in multiple linear models.

Now, let us recall some concepts of convergence. The first one is complete
convergence, introduced by Hsu and Robbins [9].

DEFINITION 1.2. A sequence {Xn, n  1} of random variables converges
completely to the constant C if for any ε > 0 ,

∞∑
n=1

P (|Xn − C| > ε) <∞.

By the Borel–Cantelli lemma, this implies that Xn → C almost surely, so
complete convergence is stronger than almost sure convergence.

Chow [5] presented the following more general concept of complete moment
convergence, which is much stronger than complete convergence.

DEFINITION 1.3. Let {Zn, n  1} be a sequence of random variables, and
an > 0, bn > 0, and q > 0.We say that {Zn, n  1} converges moment completely
if

∞∑
n=1

anE{b−1n |Zn| − ε}
q
+ <∞ for some or all ε > 0,

where a+ = max {0, a}.
Recently, Wu et al. [26] introduced the concept of complete f -moment conver-

gence, which is more general than complete moment convergence.

DEFINITION 1.4. Let {Sn, n  1} be a sequence of random variables,
{cn, n  1} be a sequence of positive constants and f : R+ → R+ be an in-
creasing continuous function with f(0) = 0. We say that {Sn, n  1} converges
f -moment completely if

∞∑
n=1

cnEf({|Sn| − ε}+) <∞ for all ε > 0.
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It is easy to check that complete f -moment convergence implies complete mo-
ment convergence if f(t) = tq, and complete convergence if cn = 1, n  1, and
f(t) = t. Thus, complete f -moment convergence is more general than complete
moment convergence and complete convergence.

The following concept of stochastic domination will be used.

DEFINITION 1.5. A sequence {Xi,−∞ < i <∞} of random variables is said
to be stochastically dominated by a random variable X if there exists a positive
constant C such that

P (|Xi| > x) ¬ CP (|X| > x)

for all x  0 and −∞ < i <∞.

The main purpose of this paper is to study complete f -moment convergence
of moving average processes based on WOD random variables, and give an ap-
plication to nonparametric regression models. In Section 2, we provide some pre-
liminary lemmas which will be used to prove the main results. The main results
and their proofs are stated in Section 3. In Sections 4 and 5, an application and a
numerical simulation are presented.

2. PRELIMINARY LEMMAS

The following lemmas are useful for the proofs of the main results. In Lemma 2.1,
the first inequality is due to Adler and Rosalsky [1, Lemma 1] and the second to
Adler et al. [2, Lemma 3].

LEMMA 2.1. Let {Yi, i  1} be a sequence of random variables, stochastically
dominated by a random variable Y. For any α, b > 0,

E|Yi|αI(|Yi| ¬ b) ¬ C1[E|Y |αI(|Y | ¬ b) + bαP (|Y | > b)],

E|Yi|αI(|Yi| > b) ¬ C2E|Y |αI(|Y | > b),

where C1 and C2 are positive constants. Thus, E|Yi|α ¬ CE|Y |α, where C is a
positive constant.

The following two lemmas are the basic properties of WOD random variables,
which can be found in Wang et al. [25].

LEMMA 2.2. Let {Yn, n  1} be a sequence of WOD random variables. If
{fn(·), n  1} are all nondecreasing (or all nonincreasing), then {fn(Yn), n  1}
are still WOD.

LEMMA 2.3. Let τ > 1 and {Yn, n  1} be a sequence of WOD random
variables with EYn = 0 and E|Yn|τ < ∞ for each n  1. Then there exists a
positive constant C(τ) depending only on τ such that for each j and 1 < τ ¬ 2,

E
∣∣∣ j+n∑
i=j+1

Yi

∣∣∣τ ¬ C(τ)g(n)
j+n∑
i=j+1

E|Yi|τ ,
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and for each j and τ  2,

E
∣∣∣ j+n∑
i=j+1

Yi

∣∣∣τ ¬ C(τ)g(n)
[ j+n∑
i=j+1

E|Yi|τ +
( j+n∑
i=j+1

E|Yi|2
)τ/2]

.

By Lemma 2.3, we can easily obtain the following result by using the method
of Stout [20, Theorem 2.3.1].

LEMMA 2.4. Let τ > 1 and {Yn, n  1} be a sequence of WOD random
variables with EYn = 0 and E|Yn|τ < ∞ for each n  1. Then there exists a
positive constant C(τ) depending only on τ such that for each j and 1 < τ ¬ 2,

E
(

max
1¬m¬n

∣∣∣ j+m∑
i=j+1

Yi

∣∣∣τ) ¬ C(τ)(log n)τg(n)
j+n∑
i=j+1

E|Yi|τ ,

and for each j and τ  2,

E
(

max
1¬m¬n

∣∣∣ j+m∑
i=j+1

Yi

∣∣∣τ) ¬ C(τ)(log n)τg(n)
[ j+n∑
i=j+1

E|Yi|τ +
( j+n∑
i=j+1

E|Yi|2
)τ/2]

.

The next lemma can be found in Wu et al. [27].

LEMMA 2.5. Let {Yi, 1 ¬ i ¬ n} and {Zi, 1 ¬ i ¬ n} be sequences of
random variables. Then for any q > r > 0, ε > 0, and a > 0,

E
(∣∣∣ n∑
i=1

(Yi+Zi)
∣∣∣−εa)r

+
¬ C(r)

(
ε−q+

r

q − r

)
ar−qE

∣∣∣ n∑
i=1

Yi

∣∣∣q+C(r)E
∣∣∣ n∑
i=1

Zi

∣∣∣r,
and

E
(

max
1¬k¬n

∣∣∣ k∑
i=1

(Yi+Zi)
∣∣∣−εa)r

+
¬ C(r)

(
ε−q+

r

q−r

)
ar−qE

(
max
1¬k¬n

∣∣∣ k∑
i=1

Yi

∣∣∣q)
+C(r)E

(
max
1¬k¬n

∣∣∣ k∑
i=1

Zi

∣∣∣r),
where C(r) = 1 for 0 < r ¬ 1, and C(r) = 2r−1 for r > 1.

The following lemma is indispensable in proving our main results in Section 3.

LEMMA 2.6. Let α, v, p > 0, and let Y be a random variable. Assume that D
is a positive constant and l(·) is a slowly varying function. Then

∞∑
n=1

nαp−αv−1l(n)E|Y |vI(|Y | > Dnα) ¬

CE|Y |
pl(|Y |1/α), v < p,

CE|Y |pl(|Y |1/α) log |Y |, v = p,
CE|Y |v, v > p,
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∞∑
n=1

nαp−1l(n)P (|Y | > Dnα) ¬ CE|Y |pl(|Y |1/α),

and for any τ > p,
∞∑
n=1

nαp−ατ−1l(n)E|Y |τI(|Y | ¬ Dnα) ¬ CE|Y |pl(|Y |1/α).

Proof. By standard computation, for α, v, p,D > 0, we have
∞∑
n=1

nαp−αv−1l(n)E|Y |vI(|Y | > Dnα)

=
∞∑
n=1

nαp−αv−1l(n)
∞∑
j=n

E|Y |vI(Djα < |Y | ¬ D(j + 1)α)

=
∞∑
j=1

E|Y |vI(Djα < |Y | ¬ D(j + 1)α)
j∑

n=1

nαp−αv−1l(n)

¬



C
∞∑
j=1

jαp−αvl(j)E|Y |vI(Djα < |Y | ¬ D(j + 1)α) if v < p,

C
∞∑
j=1

log j l(j)E|Y |pI(Djα < |Y | ¬ D(j + 1)α) if v = p,

C
∞∑
j=1

E|Y |vI(Djα < |Y | ¬ D(j + 1)α) if v > p,

¬



C
∞∑
j=1

E|Y |pl(|Y |1/α)I(Djα < |Y | ¬ D(j + 1)α) if v < p,

C
∞∑
j=1

E|Y |pl(|Y |1/α) log |Y |I(Djα < |Y | ¬ D(j + 1)α) if v = p,

C
∞∑
j=1

E|Y |vI(Djα < |Y | ¬ D(j + 1)α) if v > p,

¬


CE|Y |pl(|Y |1/α) if v < p,

CE|Y |pl(|Y |1/α) log |Y | if v = p,
CE|Y |v, if v > p,

and
∞∑
n=1

nαp−1l(n)P (|Y | > Dnα)

=
∞∑
n=1

nαp−1l(n)
∞∑
j=n

P (Djα < |Y | ¬ D(j + 1)α)

¬ C
∞∑
j=1

jαpl(j)P (Djα < |Y | ¬ D(j + 1)α)

¬ C
∞∑
j=1

E|Y |pl(|Y |1/α)I(Djα < |Y | ¬ D(j + 1)α) ¬ CE|Y |pl(|Y |1/α).
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For any τ > p, we have

∞∑
n=1

nαp−ατ−1l(n)E|Y |τI(|Y | ¬ Dnα)

=
∞∑
n=1

nαp−ατ−1l(n)
n∑
j=1

E|Y |τI(D(j − 1)α < |Y | ¬ Djα)

¬ C
∞∑
j=1

jαp−ατ l(j)E|Y |τI(D(j − 1)α < |Y | ¬ Djα)

¬ C
∞∑
j=1

E|Y |pl(|Y |1/α)I(D(j − 1)α < |Y | ¬ Djα) ¬ CE|Y |pl(|Y |1/α).

The proof is complete. �

3. MAIN RESULTS

Let f : R+ → R+ be an increasing and continuous function with f(0) = 0, and
let h : R+ → R+ be the inverse function of f(t), that is, h(f(t)) = t for t  0.
Assume that for some positive constants v and δ,

∞∫
f(δ)

h−v(t) dt <∞.(3.1)

Let l(·) be a slowly varying function.
Using the above functions f , h and l, we present our main results.

THEOREM 3.1. Let v > 0, α > 1/2, p > 0 and α(p ∨ v) > 1. Let
{ai,−∞ < i < ∞} be an absolutely summable sequence of real numbers,
and {Xn, n  1} be the corresponding moving average process of a doubly in-
finite WOD sequence {Yi,−∞ < i < ∞} with EYi = 0. Assume further that∑∞

i=−∞ |ai|
v < ∞ when 0 < v < 1, and {Yi,−∞ < i < ∞} is stochastically

dominated by a random variable Y such thatE|Y |
pl(|Y |1/α) <∞ if v < p,

E|Y |pl(|Y |1/α) log |Y | <∞ if v = p,
E|Y |v <∞ if v > p.

(3.2)

For n  1, denote

Sn = max
1¬m¬n

∣∣∣ m∑
k=1

Xk

∣∣∣/(g1/v(n)nα).

Then the sequence {Sn, n  1} converges f -moment completely with cn =
nαp−2l(n), that is, for all ε > 0,

∞∑
n=1

nαp−2l(n)Ef({|Sn| − ε}+) <∞.(3.3)
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Proof. It is easily checked that

(3.4)
∞∑
n=1

nαp−2l(n)Ef({|Sn| − ε}+)

=
∞∑
n=1

nαp−2l(n)
∞∫
0

P (|Sn| > ε+ h(t)) dt

=
∞∑
n=1

nαp−2l(n)
f(δ)∫
0

P (|Sn| > ε+ h(t)) dt

+
∞∑
n=1

nαp−2l(n)
∞∫
f(δ)

P (|Sn| > ε+ h(t)) dt

, I ′ + I ′′.

To prove (3.3), we only need to show I ′ <∞ and I ′′ <∞.
For I ′, because g(n)  1, we can easily see g1/v(n)  1 for v > 0. By

Markov’s inequality, we have

I ′ ¬ f(δ)
∞∑
n=1

nαp−2l(n)P (|Sn| > ε)

¬ f(δ)
∞∑
n=1

nαp−2l(n)P
(

max
1¬m¬n

∣∣∣ m∑
k=1

Xk

∣∣∣ > εg1/v(n)nα/2 + εnα/2
)

¬ Cf(δ)
∞∑
n=1

nαp−αv−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ m∑
k=1

Xk

∣∣∣− εnα/2)v
+
.

Hence, to prove I ′ <∞, we only need to prove that

(3.5) I∗ ,
∞∑
n=1

nαp−αv−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ m∑
k=1

Xk

∣∣∣− εnα/2)v
+
<∞.

In order to prove (3.5), we consider the following two cases.

CASE 1: 0 < p ∨ v < 1. For 1 ¬ i ¬ n, set

Y
(n,1)
i = YiI(|Yi| ¬ nα), Y

(n,2)
i = Yi − Y (n,1)

i = YiI(|Yi| > nα).

Then, for each positive integer m,

m∑
k=1

Xk =
m∑
k=1

∞∑
i=−∞

aiYi+k =
∞∑

i=−∞
ai

i+m∑
j=i+1

Yj

=
∞∑

i=−∞
ai

i+m∑
j=i+1

(Y
(n,1)
j + Y

(n,2)
j ).
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Noting that v < 1, by (3.2), Lemmas 2.1, 2.5 and 2.6, the Cr-inequality,∑∞
i=−∞ |ai|

v <∞, and g−1(n) ¬ 1, we find that

I∗ =
∞∑
n=1

nαp−αv−2l(n)g−1(n)

× E
(

max
1¬m¬n

∣∣∣ ∞∑
i=−∞

ai
i+m∑
j=i+1

(Y
(n,1)
j + Y

(n,2)
j )

∣∣∣− εnα/2)v
+

¬ C
∞∑
n=1

nαp−α−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ ∞∑
i=−∞

ai
i+m∑
j=i+1

Y
(n,1)
j

∣∣∣)
+ C

∞∑
n=1

nαp−αv−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ ∞∑
i=−∞

ai
i+m∑
j=i+1

Y
(n,2)
j

∣∣∣)v
¬ C

∞∑
n=1

nαp−α−2l(n)g−1(n)
∞∑

i=−∞
|ai|

i+n∑
j=i+1

E|Yj |I(|Yj | ¬ nα)

+ C
∞∑
n=1

nαp−αv−2l(n)g−1(n)
∞∑

i=−∞
|ai|v

i+n∑
j=i+1

E|Yj |vI(|Yj | > nα)

¬ C
∞∑
n=1

nαp−α−1l(n)[E|Y |I(|Y | ¬ nα) + nαP (|Y | > nα)]

+ C
∞∑
n=1

nαp−αv−1l(n)E|Y |vI(|Y | > nα)

¬ CE|Y |pl(|Y |1/α) +


CE|Y |pl(|Y |1/α), v < p,

CE|Y |pl(|Y |1/α) log |Y |, v = p,
CE|Y |v, v > p,

<∞,

which implies (3.5).

CASE 2: p ∨ v  1. Take 1
α(p∨v) < q < 1, and for each n  1 and

−∞ < i <∞, set

Y
(n,1)
i = −nαqI(Yi < −nαq) + YiI(|Yi| ¬ nαq) + nαqI(Yi > nαq),

Y
(n,2)
i = (Yi − nαq)I(nαq < Yi ¬ nα + nαq) + nαI(Yi > nα + nαq),

Y
(n,3)
i = (Yi + nαq)I(−nα − nαq ¬ Yi < −nαq)− nαI(Yi < −nα − nαq),
Y

(n,4)
i = (Yi − nαq − nα)I(Yi > nα + nαq),

Y
(n,5)
i = (Yi + nαq + nα)I(Yi < −nα − nαq).

Then, for each positive integer m,

m∑
k=1

Xk =
m∑
k=1

∞∑
i=−∞

aiYi+k =
∞∑

i=−∞
ai

i+m∑
j=i+1

Yj =
∞∑

i=−∞
ai

i+m∑
j=i+1

5∑
k=1

Y
(n,k)
j .
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Since
∑∞

j=−∞ |aj | < ∞, EYj = 0, and 1/α(p ∨ v) < q < 1, by (3.2) and
Lemma 2.1 we have

n−α max
1¬m¬n

∣∣∣E ∞∑
i=−∞

ai
i+m∑
j=i+1

Y
(n,1)
j

∣∣∣ ¬ n−α ∞∑
i=−∞

|ai| max
1¬m¬n

∣∣∣ i+m∑
j=i+1

EY
(n,1)
j

∣∣∣
¬ n−α

∞∑
i=−∞

|ai|
i+n∑
j=i+1

[E|Yj |I(|Yj | > nαq) + nαqP (|Yj | > nαq)]

¬ Cn1−αE|Y |I(|Y | > nαq) ¬ Cn1−α · nαq(1−(p∨v))E|Y |(p∨v)

¬ Cn1−αq(p∨v)−α(1−q) → 0, n→∞.

Similarly, we get

n−α max
1¬m¬n

∣∣∣E ∞∑
i=−∞

ai
i+m∑
j=i+1

Y
(n,2)
j

∣∣∣ ¬ n−α ∞∑
i=−∞

|ai|
i+n∑
j=i+1

E|Yj |I(|Yj | > nαq)

¬ Cn1−αE|Y |I(|Y | > nαq)

¬ Cn1−αq(p∨v)−α(1−q) → 0, n→∞,

and

n−α max
1¬m¬n

∣∣∣E ∞∑
i=−∞

ai
i+m∑
j=i+1

Y
(n,4)
j

∣∣∣ ¬ n−α ∞∑
i=−∞

|ai|
i+n∑
j=i+1

E|Yj |I(|Yj | > nα)

¬ Cn1−αE|Y |I(|Y | > nα)

¬ Cn1−α(p∨v) → 0, n→∞.

We can also deduce that

n−α max
1¬m¬n

∣∣∣E ∞∑
i=−∞

ai
i+m∑
j=i+1

Y
(n,3)
j

∣∣∣→ 0, n→∞,

n−α max
1¬m¬n

∣∣∣E ∞∑
i=−∞

ai
i+m∑
j=i+1

Y
(n,5)
j

∣∣∣→ 0, n→∞.

From EYj = 0, Lemma 2.5 and the Cr-inequality, when τ > v and 0 < v < 1,
it follows that

I∗ ¬ C
∞∑
n=1

nαp−αv−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ ∞∑
i=−∞

ai
i+m∑
j=i+1

(Y
(n,1)
j − EY (n,1)

j )
∣∣∣

+ max
1¬m¬n

∣∣∣ ∞∑
i=−∞

ai
i+m∑
j=i+1

5∑
k=2

Y
(n,k)
j

∣∣∣− εnα/3)v
+

¬ C
∞∑
n=1

nαp−αv−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ ∞∑
i=−∞

ai
i+m∑
j=i+1

(Y
(n,1)
j − EY (n,1)

j )
∣∣∣

+
5∑

k=2

∞∑
i=−∞

|ai|
∣∣∣ i+n∑
j=i+1

Y
(n,k)
j

∣∣∣− εnα/3)v
+
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¬ C
∞∑
n=1

nαp−αv−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ ∞∑
i=−∞

ai
i+m∑
j=i+1

(Y
(n,1)
j − EY (n,1)

j )
∣∣∣

+
3∑

k=2

∞∑
i=−∞

|ai|
∣∣∣ i+n∑
j=i+1

(Y
(n,k)
j − EY (n,k)

j )
∣∣∣

+
5∑

k=4

∞∑
i=−∞

|ai|
∣∣∣ i+n∑
j=i+1

Y
(n,k)
j

∣∣∣− εnα/4)v
+

¬ C
∞∑
n=1

nαp−ατ−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ ∞∑
i=−∞

ai
i+m∑
j=i+1

(Y
(n,1)
j − EY (n,1)

j )
∣∣∣τ)

+ C
∞∑
n=1

nαp−ατ−2l(n)g−1(n)
3∑

k=2

E
( ∞∑
i=−∞

|ai|
∣∣∣ i+n∑
j=i+1

(Y
(n,k)
j − EY (n,k)

j )
∣∣∣)τ

+ C
∞∑
n=1

nαp−αv−2l(n)g−1(n)
5∑

k=4

E
( ∞∑
i=−∞

|ai|
∣∣∣ i+n∑
j=i+1

Y
(n,k)
j

∣∣∣)v
, I1 + I2 + I3 + I4 + I5;

when τ > v  1, we similarly obtain

I∗ ¬ C
∞∑
n=1

nαp−αv−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ ∞∑
i=−∞

ai
i+m∑
j=i+1

(Y
(n,1)
j − EY (n,1)

j )
∣∣∣

+
5∑

k=2

∞∑
i=−∞

|ai|
∣∣∣ i+n∑
j=i+1

Y
(n,k)
j

∣∣∣− εnα/3)v
+

¬ C
∞∑
n=1

nαp−ατ−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ ∞∑
i=−∞

ai
i+m∑
j=i+1

(Y
(n,1)
j − EY (n,1)

j )
∣∣∣τ)

+ C
∞∑
n=1

nαp−ατ−2l(n)g−1(n)
3∑

k=2

E
( ∞∑
i=−∞

|ai|
∣∣∣ i+n∑
j=i+1

(Y
(n,k)
j − EY (n,k)

j )
∣∣∣)τ

+ C
∞∑
n=1

nαp−αv−2l(n)g−1(n)
5∑

k=4

E
( ∞∑
i=−∞

|ai|
∣∣∣ i+n∑
j=i+1

(Y
(n,k)
j − EY (n,k)

j )
∣∣∣)v

, I1 + I2 + I3 + I ′4 + I ′5.

For fixed n  1, Lemma 2.2 shows that {Y (n,k)
j − EY (n,k)

j ,−∞ < j < ∞}
is still a sequence of zero mean WOD random variables for each k = 1, . . . , 5. In
order to prove our main result, we consider the following two situations.

CASE 2.1: 1 ¬ p ∨ v < 2. Let 1 ¬ p ∨ v < τ ¬ 2. Noting that q < 1, we
have α(p− τ)(1− q)− 1 < −1, and thus by (3.2), Lemmas 2.1 and 2.4, Hölder’s
inequality, the Cr-inequality and

∑∞
i=−∞ |ai| <∞ we obtain
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I1 ¬ C
∞∑
n=1

nαp−ατ−2l(n)g−1(n)

× E
{ ∞∑
i=−∞

|ai| max
1¬m¬n

∣∣∣ i+m∑
j=i+1

(Y
(n,1)
j − EY (n,1)

j )
∣∣∣}τ

= C
∞∑
n=1

nαp−ατ−2l(n)g−1(n)

× E
{ ∞∑
i=−∞

|ai|1−1/τ
(
|ai|1/τ max

1¬m¬n

∣∣∣ i+m∑
j=i+1

(Y
(n,1)
j − EY (n,1)

j )
∣∣∣)}τ

¬ C
∞∑
n=1

nαp−ατ−2l(n)g−1(n)
( ∞∑
i=−∞

|ai|
)τ−1

×
∞∑

i=−∞
|ai|E

(
max

1¬m¬n

∣∣∣ i+m∑
j=i+1

(Y
(n,1)
j − EY (n,1)

j )
∣∣∣τ)

¬ C
∞∑
n=1

nαp−ατ−2l(n)(log n)τ
∞∑

i=−∞
|ai|

i+n∑
j=i+1

E|Y (n,1)
j |τ

¬ C
∞∑
n=1

nαp−ατ−2l(n)(log n)τ
∞∑

i=−∞
|ai|

×
i+n∑
j=i+1

[E|Yj |τI(|Yj | ¬ nαq) + nαqτP (|Yj | > nαq)]

¬ C
∞∑
n=1

nαp−ατ−1l(n)(log n)τE|Y |pn(τ−p)αq

¬ C
∞∑
n=1

nα(p−τ)(1−q)−1l(n)(log n)τ <∞.

For I2, it follows from (3.2), Lemmas 2.1, 2.3 and 2.6 and the Cr-inequality
that

I2 = C
∞∑
n=1

nαp−ατ−2l(n)g−1(n)E
{ ∞∑
i=−∞

|ai|
i+n∑
j=i+1

(Y
(n,2)
j − EY (n,2)

j )
}τ

¬ C
∞∑
n=1

nαp−ατ−2l(n)
∞∑

i=−∞
|ai|

i+n∑
j=i+1

E|Y (n,2)
j −EY (n,2)

j |τ

¬ C
∞∑
n=1

nαp−ατ−2l(n)
∞∑

i=−∞
|ai|

i+n∑
j=i+1

[E|Yj |τI(|Yj | ¬ 2nα)+nατP (|Yj |> nα)]

¬ C
∞∑
n=1

nαp−ατ−1l(n)E|Y |τI(|Y | ¬ 2nα)+C
∞∑
n=1

nαp−1l(n)P (|Y |> nα)

¬ CE|Y |pl(|Y |1/α)<∞.

Similarly, we can also get I3 <∞.
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For I4, noting that 0 < v < 1, by the Cr-inequality, Lemma 2.6 and∑∞
i=−∞ |ai|

v <∞, we have

(3.6) I4 ¬ C
∞∑
n=1

nαp−αv−2l(n)g−1(n)
∞∑

i=−∞
|ai|vE

∣∣∣ i+n∑
j=i+1

Y
(n,4)
j

∣∣∣v
¬ C

∞∑
n=1

nαp−αv−2l(n)
∞∑

i=−∞
|ai|v

i+n∑
j=i+1

E|Yj |vI(|Yj | > nα)

¬ C
∞∑
n=1

nαp−αv−1l(n)E|Y |vI(|Y | > nα)

¬


CE|Y |pl(|Y |1/α), v < p,

CE|Y |pl(|Y |1/α) log |Y |, v = p,
CE|Y |v, v > p,

<∞.

Similar to the proofs of I2 <∞ and I4 <∞, we can derive that I ′4 <∞, I5 <∞
and I ′5 <∞. Then I∗ <∞ follows immediately.

CASE 2.2: p∨v  2. Let τ > max
{ αp−1
α−1/2 , v, p

}
. Noting that q < 1, we have

α(p− τ)(1− q)− 1 < −1 and (1/2−α)τ +αp− 2 < −1. In this case, it is easy
to see that E|Y |2 <∞. By (3.2), Lemmas 2.1 and 2.4 and

∑∞
i=−∞ |ai| <∞, we

get

I1 ¬ C
∞∑
n=1

nαp−ατ−2l(n)g−1(n)
∞∑

i=−∞
|ai|

× E
(

max
1¬m¬n

∣∣∣ i+m∑
j=i+1

(Y
(n,1)
j − EY (n,1)

j )
∣∣∣τ)

¬ C
∞∑
n=1

nαp−ατ−2l(n)
∞∑

i=−∞
|ai|(log n)τ

×
{ i+n∑
j=i+1

E|Y (n,1)
j |τ +

[ i+n∑
j=i+1

E(Y
(n,1)
j )2

]τ/2}
¬ C

∞∑
n=1

nαp−ατ−2l(n)
∞∑

i=−∞
|ai|(log n)τ

×
i+n∑
j=i+1

[E|Yj |τI(|Yj | ¬ nαq) + nαqτP (|Yj | > nαq)]

+ C
∞∑
n=1

nαp−ατ−2l(n)
∞∑

i=−∞
|ai|(log n)τ

×
{ i+n∑
j=i+1

[EY 2
j I(|Yj | ¬ nαq) + n2αqP (|Yj | > nαq)]

}τ/2
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¬ C
∞∑
n=1

nαp−ατ−1l(n)(log n)τ [E|Y |τI(|Y | ¬ nαq) + nαqτP (|Y | > nαq)]

+ C
∞∑
n=1

nαp−ατ+τ/2−2(log n)τ l(n)

× [EY 2I(|Y | ¬ nαq) + n2αqP (|Y | > nαq)]τ/2

¬ C
∞∑
n=1

nαp−ατ−1l(n)(log n)τE|Y |pn(τ−p)αq

+ C
∞∑
n=1

n(1/2−α)τ+αp−2l(n)(log n)τ (EY 2)τ/2

¬ C
∞∑
n=1

nα(p−τ)(1−q)−1l(n)(log n)τ + C
∞∑
n=1

n(1/2−α)τ+αp−2l(n)(log n)τ

<∞.

For I2, it follows from Lemmas 2.1, 2.3 and 2.6 that

I2 ¬ C
∞∑
n=1

nαp−ατ−2l(n)g−1(n)
∞∑

i=−∞
|ai|E

∣∣∣ i+n∑
j=i+1

(Y
(n,2)
j − EY (n,2)

j )
∣∣∣τ

¬ C
∞∑
n=1

nαp−ατ−2l(n)
∞∑

i=−∞
|ai|
{ i+n∑
j=i+1

E|Y (n,2)
j |τ+

[ i+n∑
j=i+1

E(Y
(n,2)
j )2

]τ/2}
¬ C

∞∑
n=1

nαp−ατ−2l(n)
∞∑

i=−∞
|ai|

×
i+n∑
j=i+1

[E|Yj |τI(|Yj | ¬ 2nα) + nατP (|Yj | > nα)]

+ C
∞∑
n=1

nαp−ατ−2l(n)
∞∑

i=−∞
|ai|
( i+n∑
j=i+1

EY 2
j

)τ/2
¬ C

∞∑
n=1

nαp−ατ−1l(n)E|Y |τI(|Y | ¬ 2nα) + C
∞∑
n=1

nαp−1l(n)P (|Y | > nα)

+ C
∞∑
n=1

nαp−ατ+τ/2−2l(n)(EY 2)τ/2

¬ CE|Y |pl(|Y |1/α) + C
∞∑
n=1

n(1/2−α)τ+αp−2l(n)(EY 2)τ/2 <∞.

Similarly, we get I3 <∞.
In addition, similar to the proof of (3.6), we have I4 < ∞, I5 < ∞, I ′4 < ∞

and I ′5 <∞ if v ¬ 2; and if v > 2, we have (α(p ∨ v)− 1)(1− v/2)− 1 < −1.
By (3.2), and Lemmas 2.1, 2.3 and 2.6, we derive

I ′4 ¬ C
∞∑
n=1

nαp−αv−2l(n)g−1(n)
∞∑

i=−∞
|ai|E

∣∣∣ i+n∑
j=i+1

(Y
(n,4)
j − EY (n,4)

j )
∣∣∣v
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¬ C
∞∑
n=1

nαp−αv−2l(n)
∞∑

i=−∞
|ai|
{ i+n∑
j=i+1

E|Y (n,4)
j |v+

[ i+n∑
j=i+1

E(Y
(n,4)
j )2

]v/2}
¬ C

∞∑
n=1

nαp−αv−2l(n)
∞∑

i=−∞
|ai|

i+n∑
j=i+1

E|Yj |vI(|Yj | > nα)

+ C
∞∑
n=1

nαp−αv−2l(n)
∞∑

i=−∞
|ai|
[ i+n∑
j=i+1

E|Yj |2I(|Yj | > nα)
]v/2

¬ C
∞∑
n=1

nαp−αv−1l(n)E|Y |vI(|Y | > nα)

+ C
∞∑
n=1

nαp−αv−2+v/2l(n)(E|Y |(p∨v) · n(2−(p∨v))α)v/2

¬ C + C
∞∑
n=1

n(α(p∨v)−1)(1−v/2)−1l(n) <∞.

Similarly, we find that I ′5 <∞.
Now, I∗ <∞ follows immediately from the statements above.
For I ′′, by (3.1), Markov’s inequality and g1/v(n)  1 for v > 0, we have

I ′′ ¬
∞∑
n=1

nαp−2l(n)
∞∫
f(δ)

P
(

max
1¬m¬n

∣∣∣ m∑
k=1

Xk

∣∣∣ > εnα + h(t)g1/v(n) · nα
)
dt

=
∞∑
n=1

nαp−2l(n)
∞∫
f(δ)

P
(

max
1¬m¬n

∣∣∣ m∑
k=1

Xk

∣∣∣− εnα > h(t)g1/v(n) · nα
)
dt

¬ C
∞∑
n=1

nαp−αv−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ m∑
k=1

Xk

∣∣∣− εnα)v
+

∞∫
f(δ)

h−v(t) dt

¬ C
∞∑
n=1

nαp−αv−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ m∑
k=1

Xk

∣∣∣− εnα)v
+
.

Hence, to prove I ′′ <∞, we only need to show that

(3.7) I∗∗ ,
∞∑
n=1

nαp−αv−2l(n)g−1(n)E
(

max
1¬m¬n

∣∣∣ m∑
k=1

Xk

∣∣∣− εnα)v
+
<∞.

The proof of (3.7) is similar to that of (3.5), one also has to consider two cases; we
omit the details.

Now, I ′ <∞ and I ′′ <∞ follow immediately from the statements above. This
completes the proof of the theorem. �

REMARK 3.1. Theorem 3.1 generalizes Theorem 1.2 of Qiu and Xiao [16] for
END random variables to the case of the moving average process of WOD random
variables, and strengthens the result of complete moment convergence to complete
f -moment convergence. What is more, we also consider the case 0 < p ∨ v < 1,
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which was not investigated by Qiu and Xiao [16], and the condition of identical
distribution is replaced by the weaker condition of stochastic domination.

REMARK 3.2. Compared with Theorem 3.1 of Lu et al. [13], we use different
assumptions to prove complete f -moment convergence for WOD random variables
in Theorem 3.1. Meanwhile, when {ai,−∞ < i <∞} take appropriate values, we
can see that partial sums of the moving average process based on WOD random
variables reduce to partial sums of sequences of WOD random variables, so our
result extends the corresponding one of Lu et al. [13].

REMARK 3.3. Concerning the condition on f(t), we point out that (3.1) holds
trivially if we take f(t) = ts for t  0 and some 0 < s < v. Hence, we can get the
following corollary from Theorem 3.1.

COROLLARY 3.1. Let v > 0, α > 1/2, p > 0 and α(p ∨ v) > 1. Let
{ai,−∞ < i < ∞} be an absolutely summable sequence of real numbers, and
{Xn, n  1} be the corresponding moving average process of a doubly infi-
nite WOD sequence {Yi,−∞ < i < ∞} with EYi = 0. Assume further that∑∞

i=−∞ |ai|
v < ∞ when 0 < v < 1, and {Yi,−∞ < i < ∞} is stochastically

dominated by a random variable Y such thatE|Y |
pl(|Y |1/α) <∞ if v < p,

E|Y |pl(|Y |1/α) log |Y | <∞ if v = p,
E|Y |v <∞ if v > p.

Then for all ε > 0 and any 0 < s < v,

∞∑
n=1

nαp−αs−2l(n)E
(

max
1¬m¬n

∣∣∣ m∑
k=1

Xk

∣∣∣/g1/v(n)− εnα
)s
+
<∞.

Furthermore, for all ε > 0,

∞∑
n=1

nαp−2l(n)P
(

max
1¬m¬n

∣∣∣ m∑
k=1

Xk

∣∣∣ > εnαg1/v(n)
)
<∞.(3.8)

REMARK 3.4. Let αp− 2 = 0 and l(n) ≡ 1. It can be deduced from (3.8) that

n−α max
1¬m¬n

∣∣∣ n∑
k=1

Xk

∣∣∣/g1/v(n)→ 0 completely as n→∞.(3.9)

REMARK 3.5. Compared with Corollaries 4.1 and 4.2 of Shen and Wu [18], we
relax the restriction on the dominating coefficients g(n) for n  1 in Corollary 3.1.
What is more, if we choose s = q, α = 1/p, a0 = 1, and ai ≡ 0 if −∞ < i < ∞
and i 6= 0, then we can apply Corollary 3.1 to obtain Corollary 4.2 of Shen and
Wu [18].
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4. AN APPLICATION TO NONPARAMETRIC REGRESSION MODELS

In this section, we present an application of complete convergence to nonparamet-
ric regression models based on moving average processes of WOD errors.

Consider the following nonparametric regression model:

Yk = f(xk) + εk, k = 1, . . . , n, n  1,(4.1)

where xk are known fixed design points from A ⊂ Rd, a given compact set for
some positive integer d  1, f(·) is an unknown regression function defined on A,
and εk are random errors. We will consider the following weighted linear regres-
sion estimator of f(·):

fn(x) =
n∑
k=1

Wnk(x)Yk, x ∈ A ⊂ Rd,(4.2)

where Wnk(x) = Wnk(x;x1, . . . , xn), k = 1, . . . , n, n  1, are weight functions.
Such an estimator with constant weight was first proposed by Stone [19],

adapted by Georgiev [7] to the fixed design case, and then studied by many authors.
Roussas [17] considered the fixed regression model with general weights, and sup-
posed that the error random variables come from a strictly stationary stochastic pro-
cess satisfying the strong mixing condition. Tran et al. [21] investigated a regres-
sion function on the basis of noisy observations taken at uniformly spaced design
points. Horowitz and Lee [8] considered nonparametric estimation of a regression
function that is identified by requiring a specified quantile of the regression error
conditional on an instrumental variable being zero. Wang et al. [23] investigated
complete consistency for a weighted linear regression estimator under negatively
superadditive-dependent errors by using complete convergence. Xi et al. [29] ob-
tained some convergence properties for partial sums of WOD random variables and
gave applications to nonparametric regression models. Yang et al. [30] established
complete consistency and convergence rate for weighted estimators in nonpara-
metric regression models.

In this subsection, let c(f) denote the set of continuity points of the function
f on A. The symbol ‖x‖ denotes the Euclidean norm. For any fixed design point
x ∈ A, the following assumptions on the weight functions Wnk(x) will be used:

(H1)
n∑
k=1

Wnk(x)→ 1 as n→∞;

(H2)
n∑
k=1

|Wnk(x)| ¬ C <∞ for all n;

(H3)
n∑
k=1

|Wnk(x)| · |f(xk)−f(x)|I(‖xk−x‖ > a)→ 0 as n→∞ for all a > 0.

Based on the assumptions above, we will further study complete consistency for
the nonparametric regression estimator fn(x).
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THEOREM 4.1. Let 1/2 < α ¬ 1, αp = 2 and 1 ¬ v < p. Let {ai,−∞ <
i < ∞} be an absolutely summable sequence of real numbers, and {εn, n  1}
be the corresponding moving average process of a doubly infinite WOD sequence
{δi,−∞ < i <∞} with Eδi = 0, that is,

εn =
∞∑

i=−∞
aiδi+n.

Suppose that conditions (H1)–(H3) hold true, and

max
1¬k¬n

|Wnk(x)| = O(n−αg−1/v(n)).

Assume further that {δi,−∞ < i < ∞} is stochastically dominated by a random
variable δ with E|δ|p <∞. Then for all x ∈ c(f),

fn(x)→ f(x) completely as n→∞.(4.3)

Proof. For a > 0 and x ∈ c(f), we infer from (4.1) and (4.2) that

|Efn(x)− f(x)| ¬
n∑
k=1

|Wnk(x)| · |f(xk)− f(x)|I(‖xk − x‖ ¬ a)(4.4)

+
n∑
k=1

|Wnk(x)| · |f(xk)− f(x)|I(‖xk − x‖ > a)

+ |f(x)| ·
∣∣∣ n∑
k=1

Wnk(x)− 1
∣∣∣.

Since x ∈ c(f), it follows that for any ε > 0, there exists a δ > 0 such that for all
x′ satisfying ‖x′−x‖ < δ, we have |f(x′)−f(x)| < ε. Taking a ∈ (0, δ) in (4.4),
we have

|Efn(x)− f(x)| ¬ ε
n∑
k=1

|Wnk(x)|

+
n∑
k=1

|Wnk(x)| · |f(xk)− f(x)|I(‖xk − x‖ > a)

+ |f(x)| ·
∣∣∣ n∑
k=1

Wnk(x)− 1
∣∣∣.

By assumptions (H1)–(H3) and since ε > 0 is arbitrary, we see that for all
x ∈ c(f),

lim
n→∞

Efn(x) = f(x).

Hence, to prove (4.3), it suffices to show

fn(x)− Efn(x) =
n∑
k=1

Wnk(x)εk → 0 completely as n→∞.(4.5)
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Noting that max1¬k¬n |Wnk(x)| = O(n−αg−1/v(n)) and v < p, we apply
(3.9) with l(n) = 1, Xk = εk and Yi = δi. Then we have∣∣∣ n∑
k=1

Wnk(x)εk

∣∣∣ ¬ max
1¬k¬n

|Wnk(x)| max
1¬m¬n

∣∣∣ m∑
k=1

εk

∣∣∣
¬ Cn−αg−1/v(n) max

1¬m¬n

∣∣∣ m∑
k=1

εk

∣∣∣→ 0 completely as n→∞,

which implies (4.5). Hence, we immediately get (4.3). �

5. NUMERICAL SIMULATION

In this section, we will present a simulation to study the convergence behavior
of (4.3) and the numerical performance of the consistency for the nonparametric
regression estimator fn(x) by using R software.

Let a0 = 1 and ai ≡ 0 if −∞ < i < ∞ and i 6= 0. Then for each n  1, we
have

εn =
∞∑

i=−∞
aiδi+n = δn.

The data are generated from model (4.1). The marginal distributions of
δ1, . . . , δn are such that (δ1, δ2), (δ3, δ4), . . . , (δ2m−1, δ2m), . . . follow the joint
distribution of the FGM copula

Cθn(u, v) = uv + θnuv(1− u)(1− v), (u, v) ∈ [0, 1]× [0, 1],

with θn = n−1. We find that {δn, n  1} is a sequence of WOD random variables
with g(n) = O(n); we refer to Wang et al. [22].

We consider the nearest neighbor weight function estimator fn(x). Let A =
[0, 1], and xi = i/n, i = 1, . . . , n. For any x ∈ A, we rewrite |x1 − x|, |x2 − x|,
. . . , |xn − x| as follows:

|xR1(x) − x| ¬ |xR2(x) − x| ¬ · · · ¬ |xRn(x) − x|.

If |xi − x| = |xj − x|, then |xi − x| is permuted before |xj − x| when xi < xj .
Let 1 ¬ kn ¬ n. We define the nearest neighbor weight function estimator as

follows:
fn(x) =

n∑
i=1

W̃ni(x)Yi,

where

W̃ni(x) =

{
1/kn if |xi − x| ¬ |xRkn (x)

− x|,
0 otherwise.
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Table 1. MSE and MAE of the estimator fn(x) for f(x) = ln(x+ 1)

f(x) = ln(x+ 1) n = 500 n = 1000 n = 5000

x = 0.25
MSE 0.00055281 0.00032644 0.00009642

MAE 0.01878854 0.01446009 0.00783691

x = 0.5
MSE 0.00049672 0.00030170 0.00009410

MAE 0.01767296 0.01370186 0.00768290

x = 0.75
MSE 0.00052272 0.00032653 0.00009884

MAE 0.01819816 0.01441898 0.00780354

Table 2. MSE and MAE of the estimator fn(x) for f(x) = sin(2πx)

f(x) = sin(2πx) n = 500 n = 1000 n = 5000

x = 0.25
MSE 0.00061419 0.00038020 0.00012965

MAE 0.01964917 0.01577989 0.00897997

x = 0.5
MSE 0.00051962 0.00030750 0.00010701

MAE 0.01788127 0.01415661 0.00822577

x = 0.75
MSE 0.00085179 0.00047776 0.00012971

MAE 0.02388512 0.01744242 0.00910759

Figure 1. Boxplots of fn(x) with x = 0.25, 0.5 and 0.75 when f(x) = ln(x+ 1)

We take kn = bn0.77c, α = 51
100 , p = 200

51 and v = 50
13 in Theorem 4.1. As stated

in Wang et al. [22], conditions (H1)–(H3) are satisfied for W̃ni(x). We choose
f(x) = ln(x + 1) and f(x) = sin(2πx), take the points x = 0.25, 0.5, 0.75 and
the sample sizes n = 500, 1000, 5000, respectively, and compute the values of
fn(x) − f(x) for 500 times. Tables 1 and 2 show the mean squared error (MSE)
and the mean absolute error (MAE) of fn(x). From the tables, we can see that both
MSE and MAE decrease markedly as n increases.

Figures 1 and 2 show the boxplots of fn(x) − f(x) for f(x) = ln(x + 1)
and f(x) = sin(2πx), respectively. With the increase of n, the boxes become
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Figure 2. Boxplots of fn(x) with x = 0.25, 0.5 and 0.75 when f(x) = sin(2πx)

Figure 3. Fitting points of fn(x) with n = 500, 1000 and 5000 when f(x) = ln(x+ 1)

Figure 4. Fitting points of fn(x) with n = 500, 1000 and 5000 when f(x) = sin(2πx)

narrower and the values of the mean are closer to 0. This shows that the simulation
is consistent with the conclusion.

Figures 3 and 4 show the fitting curves of fn(x) for f(x) = ln(x + 1) and
f(x) = sin(2πx) with sample sizes n = 500, 1000, 5000, respectively. From these
curves, we can see that the larger the n-value is, the closer the points of fn(n) are
to the line of f(x). This shows that our results are quite effective.
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