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Abstract. In this article, we introduce a weighted periodogram in the
class of smoothed periodograms as a consistent estimator for the spectral
density matrix of a periodically correlated process. We derive its limiting
distribution that appears to be a certain finite linear combination of Wishart
distribution. We also provide numerical derivations for our smoothed peri-
odogram and exhibit its asymptotic consistency using simulated data.

2010 AMS Mathematics Subject Classification: Primary: 62M10;
Secondary: 62M15.

Key words and phrases: Periodically correlated processes, spectral
density matrix, Kullback–Leibler distance, smoothed periodogram, Wishart
distribution, limiting distribution.

1. INTRODUCTION

A univariate zero mean second order process {Xt; t ∈ Z} with covariance
function R(t, s) is called periodically correlated, PC in short, if

R(t, s) = R(t+ T, s+ T ), t, s ∈ Z,

for some integer T >0. The smallest such T is defined to be a period of the process.
The spectral density matrix of the process, f(θ) =

[
fk−j

(
θ+ 2πj

T

)]
j,k=0,...,T−1,

if exists, is a non-negative definite matrix-valued function. In this case,

R(t, s) =
T−1∑

d=−T+1

2π∫
0

e−itθ+is(θ+2πd/T )fd(θ)µ(dθ),

where fd(θ), d = −T + 1, . . . , T − 1, are called the spectral components of f ,
see Gladyshev [2]. The literature on PC or cyclostationary processes is quite rich.

∗ Corresponding author.
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Therefore, we put light on what is done on spectral density estimation, which we
discuss in this article. Nematollahi and Rao [6] derive a consistent estimator for
the spectral density matrix of a PC process using the eigenvalue decomposition
of block Toeplitz matrices. Hurd and Miamee [3] give a bivariate periodogram
for a PC sequence to estimate spectral components of the spectral density matrix.
Soltani and Azimmohseni [7], classically, introduce a periodogram matrix, then by
using the Cholesky decomposition of spectral density matrix obtain the asymptotic
distribution of the periodogram.

In the classical time series it is acknowledged that weighted periodograms
for stationary processes are asymptotically consistent, and their variance goes to
zero relatively fast. The rate of convergence is also specified. In this article we are
concerned with weighted periodograms for periodically correlated processes that
form a class of nonstationary processes rich in theory and practice. We introduce a
class of weighted periodograms, derive rate of convergence for the variances and
give their limiting distributions. This paper is organized as follows.

In Section 2, we provide some important spectral characterizations of PC pro-
cesses including their spectral representations. We give the periodogram and its
asymptotic properties. In Section 3, we derive interesting formulas for the covari-
ance of the periodogram at different Fourier frequencies. In Section 4, we present a
smoothed periodogram as an asymptotically consistent estimator for spectral den-
sity matrix of a PC process, and give the rate of the convergence. Finally, we es-
tablish the limiting distribution of the smoothed periodogram.

2. SPECTRAL CHARACTERIZATIONS OF PC PROCESSES

There are various spectral representations for PC processes. Gladyshev [2]
views a PC process as the Fourier transform of a random measure with certain
values dependencies, see also Hurd and Miamee [3]. Soltani and Shishebor [8]
suggested an alternative representation: to view a PC process as a process with
time dependent spectrum, namely

(2.1) Xt =
2π∫
0

e−itθVt(θ)Φ(dθ),

where Vt(θ), t ∈ Z, θ ∈ [0, 2π), is a kernel which is T -periodic in t; Vt+T (θ) =
Vt(θ), θ ∈ [0, 2π), t ∈ Z; and Φ is a random measure with orthogonal increment
having finite spectral measure µ(dθ) = E|Φ(dθ)|2 on [0, 2π).

Let us define the process Yt by

(2.2) Yt =
2π∫
0

e−itθΦ(dθ), t ∈ Z.

Then Yt is a purely random process on Z; EYtY s = 0, t ̸= s, E |Yt|2 = 1.
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We let
f(θ) = A(θ)A∗(θ),

where

A(θ) =

∥∥∥∥aj−k (θ + 2πj

T

)∥∥∥∥
j­k, j,k=0,...,T−1

denotes the Cholesky factor of the spectral density f(θ), where ak are complex-
valued functions on [0, 2π), subject to

a0(θ) > 0, ak (θ) = 0, θ ∈ [0, 2πk/T ), k = 0, . . . , T − 1, a.e. θ,

so that

T−1−d∑
k=0

ak(θ)ak+d

(
θ +

2πd

T

)
= fd(θ), d = 1, . . . , T − 1,

T−1∑
k=0

|ak(θ)|2 = f0(θ),

T−1∑
k=−d

ak(θ)ak+d

(
θ +

2πd

T

)
= fd(θ), d = −T + 1, . . . ,−1.

A method to construct the kernel Vt(θ) in (2.1) is through the Cholesky factor of
the spectral density, as follows:

Vt(θ) =
T−1∑
k=0

e−i
2πkt
T ak

(
θ +

2πk

T

)
, θ ∈ [0, 2π).

For the inference on periodogram, we let X0, . . . , XN−1 be a finite segment
of the PC process {Xt, t ∈ Z}. The T -variate Fourier transform at frequency λ ∈
[0, 2π/T ) is defined as

(2.3) dX(λ) =

(
dX(λ), dX

(
λ+

2π

T

)
, . . . , dX

(
λ+

2π(T − 1)

T

))′
,

where dX(λ+ 2πj/T ) = N−1/2
∑N−1

t=0 Xte
it(λ+2πj/T ), j = 0, . . . , T − 1.

It will be more convenient to write the periodogram in the matrix form:

(2.4) IX(λ) = dX(λ)d∗X(λ).

It is common to define the discrete Fourier transform and periodogram with
respect to Fourier frequencies λk = 2πk/N, k = 0, . . . , N − 1, as follows:

dX(λ) = dX(λk) for λk ¬ λ < λk+1, k = 0, . . . , N − 1,
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and similarly

IX(λ) = IX(λk) for λk ¬ λ < λk+1, k = 0, . . . , N − 1,

see Brockwell and Davis [1]. Note that, for a PC process, the Fourier frequencies
belong to the interval [0, 2π/T ). Indeed:

(i) For λj ∈ [0, 2π/T ), the set of
{
λj , λj + 2π/T, . . . , λj + 2π(T − 1)/T

}
is the set of Fourier frequencies in [0, 2π).

(ii) Every Fourier frequency λk ∈ [0, 2π) is uniquely represented as λk =
λj + 2π u(k, j)/T , where λj ∈ [0, 2π/T ).

(iii) If λi, λj are two different Fourier frequencies in [0, 2π/T ), then λi +
2πk/T ̸= λj + 2πs/T for all k, s = 0, . . . , T − 1.

(iv) Every Fourier frequency in [0, 2π/T ) is represented as

λk =
2πk

N
, k = 0, . . . ,m− 1.

(v) If λi + λj = 2π/T , then λi + 2πp/T + λj + 2πs/T = 2π for p + s =
T − 1. If λi + λj ̸= 2π/T , then λi + 2πp/T + λj + 2πs/T ̸= 2π.

We apply

(2.5) X̃N
t = N−1/2

N−1∑
p=0

eitλpVt(λp)dY (λp)

to approximate the random integral in the formula (2.1). We form the finite segment
X̃0, . . . , X̃N−1 using the observed segment X0, . . . , XN−1. Let dX̃(·) be the T -
variate Fourier transform of X̃0, . . . , X̃N−1. Then we deduce that

(2.6) dX̃(λj) = A(λj)dY (λj),

where A(·) is the Cholesky factor of the spectral density f(·), and the T -variate
dY (λj) is defined as in (2.3) for the purely random series given in (2.2); note that
E
(
dY (λj)d

∗
Y (λj)

)
= IT .

For the Fourier frequency λj∈ [0, 2π/T ), the components of the vector dX̃(λj)
are given by

(2.7) dX̃

(
λj +

2πs

T

)
=

T−1∑
k=0

ak

(
λj +

2πs

T

)
dY (λp(k,j,s)),

where λp(k,j,s) is uniquely determined by λp(k,j,s) = λj + 2π(s − k)/T for s =

0, . . . , T − 1. Moreover, the periodogram in terms of X̃0, . . . , X̃N−1 is defined by

(2.8) IX̃(λj) = dT
X̃
(λj)d

T
X̃
(λj)

∗ = [Ĩpq(λj)]p,q=0,...,T−1,



Estimation of spectral density matrix of PC processes 229

where

Ĩpq(λj) = dX̃

(
λj +

2πp

T

)
dX̃

(
λj +

2πq

T

)
.

It is clear that
E
(
IX̃(λj)

)
= f(λj).

Moreover, if λ1 < . . . < λJ are arbitrary Fourier frequencies in (0, 2π/T ), then
dX̃(λ1), . . . ,dX̃(λJ) are uncorrelated. If the white noise {Yt, t ∈ Z} is Gaussian,
then these vectors are independent, and consequently, IT

X̃
(λj), j = 1, . . . , J , are

independent and distributed as WC
T

(
1, f(λj)

)
, where “WC

T (·, ·)” stands for the
complex Wishart distribution.

In order to investigate the asymptotic properties of the discrete Fourier trans-
form and the periodogram of PC processes, we apply {X̃t, t ∈ Z} as an auxiliary
operator, as in Soltani and Azimmohseni [7], where it is proved that under the con-
dition that the Cholesky factor A(·) of the spectral density matrix f(·) is continu-
ous, for arbitrary frequencies λ1 < . . . < λJ in (0, 2π/T ), dT

X(λ1), . . . ,d
T
X(λJ)

are asymptotically independent and distributed as N c
T

(
0, f(λj)

)
, j = 1, . . . , J .

Moreover, ITX(λj) are asymptotically independent WC
T

(
1, f(λj)

)
for j = 1, . . . , J .

Using the auxiliary operator is somewhat new and is a short cut to the classical
lengthy procedure of derivations of the periodogram asymptotic distribution given
by Brockwell and Davis [1].

3. PERIODOGRAM COVARIANCES

This section is devoted to the formulations for covariances between the pe-
riodogram at Fourier frequencies. The following kernels are basic tools, namely
the Dirichlet kernel, the Fejér kernel and the generalized spectral kernel SN (·; ·, ·)
introduced by Soltani and Azimmohseni [7], given below.

Suppose DN (θ) =
∑N−1

t=0 eitθ, θ ∈ [0, 2π), is the Dirichlet kernel, and let

(3.1) SN (θ; η, η′) =
DN (θ − η)DN (θ − η′)

N
, θ ∈ [0, 2π), η, η′ ∈ [0, 2π).

Then SN (θ; η, η′), as a function of θ, has the following properties:
(i) SN (θ; η, η) = KN (θ − η), where KN is the Fejér kernel.
(ii) SN (θ; η, η′)→ 0, N →∞, for η ̸= η′, θ ∈ [0, 2π), θ ̸= η, θ ̸= η′.

(iii) For any 0 < δ < 1
2 |η − η′|, |SN (θ; η, η′)| < 1/ sin2(δ/2), N ­ 1, θ ∈

[0, 2π); η, η′ ∈ [0, 2π), η ̸= η′.
(iv) If either θ− η or θ− η′ is a Fourier frequency in (0, 2π), then SN (θ; η, η′)

= 0; also, if both θ − η, θ − η′ ∈ {0, 2π}, then SN (θ; η, η′) = N.
The following lemma is a version of the classic result for the periodogram

of white noise processes given by Brockwell and Davis [1]. For notational conve-
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nience we let

σ
(Y )
ij (p, q; s, r)

= cov

(
dY

(
λi +

2πp

T

)
dY

(
λi +

2πq

T

)
, dY

(
λj +

2πs

T

)
dY

(
λj +

2πr

T

))
denote the periodogram covariance of a process {Yt, t ∈ Z}.

LEMMA 3.1. Let Yt be a white noise process, let dY (·) denote the finite
Fourier transform of the finite segment Y0, . . . , YN−1 and let λi, λj ∈ (0, 2π/T ).
Then:

(i) For λi ̸= λj and λi + λj ̸= 2π/T,

σ
(Y )
ij (p, q; s, r) = O(N−1).

(ii) For λi ̸= λj and λi + λj = 2π/T,

σ
(Y )
ij (p, q; s, r) =

{
1−O(N−1), p+ s = q + r = T − 1,

O(N−1), otherwise.

(iii) For λi = λj ,

σ
(Y )
ii (p, q; s, r) =


1 +O(N−1), p = q = s = r,

1 +O(N−1), (p = r) ̸= (s = q),

O(N−1), otherwise.

In the following we bring our formulations for the covariances of the peri-
odogram of X̃t at Fourier frequencies.

THEOREM 3.1. Assume the spectral density f(·) is positive definite and con-
tinuous. Then for λi, λj ∈ [0, 2π/T ) such that λi+λj ̸= 2π/T and for all p, q, s, r
= 0, 1, . . . , T − 1,

σ
(X̃)
ij (p, q; s, r) =

{
O(N−1), λi ̸= λj ,

fr−p(λi + 2πq/T )fs−q(λi + 2πp/T ) +O(N−1), λi = λj ,

for all p, q, s, r ∈ {0, 1, . . . , T − 1}.

COROLLARY 3.1. Assume IX̃(·) = [Ĩpq(·)]p, q=0,...,T−1 is the periodogram of
{X̃0, . . . , X̃N−1}. Then for all λi, λj ∈ (0, 2π/T ) such that λi + λj ̸= 2π/T and
for p, q, r, s ∈ {0, . . . , T − 1},

cov
(
Ĩpq(λi), Ĩsr(λj)

)
=

{
O(N−1), λi ̸= λj ,

fr−p(λi + 2πq/T )fs−q(λi + 2πp/T ) +O(N−1), λi = λj .
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COROLLARY 3.2. Special cases of Corollary 3.1 can be considered as follows:

var
(
Ĩpp(λi)

)
= f0

(
λi +

2πp

T

)
f0

(
λi +

2πp

T

)
+O(N−1)

= f2
0

(
λi +

2πp

T

)
+O(N−1),

var
(
Ĩpq(λi)

)
= fq−p

(
λi +

2πp

T

)
fp−q

(
λi +

2πq

T

)
+O(N−1).

According to Corollaries 3.1 and 3.2, the periodogram is not a consistent esti-
mator for spectral density of a PC process.

In the next section, we present a consistent estimator for spectral density by
smoothing the periodogram matrix.

4. ASYMPTOTICALLY CONSISTENT ESTIMATORS

In order to construct a consistent estimator for the spectral density, we propose
the following weighted (smoothed) periodogram:

(4.1) IW (λ) =
∑
|k|¬un

Wn(k)I(λ+ λk),

where {un} and {Wn(·)} are sequences of band-widths and weight functions, re-
spectively. We use similar weight functions for all the elements of periodogram
matrix. Technically, we need to impose the following assumptions on the weight
functions {Wn(·)} and the band-width sequence {un, n ∈ Z}:

un →∞ and
un
N
→ 0 as N →∞.(4.2)

Therefore, for all k ¬ un and for a fixed frequency λ, λ+ λ
(un)
k → λ as N →∞.

Wn(k) = Wn(−k) and Wn(k) ­ 0 for all k.(4.3) ∑
|k|¬un

Wn(k) = 1.(4.4)

∑
|k|¬un

W 2
n(k)→ 0 as N →∞,(4.5)

see Brockwell and Davis [1]. In order to show the consistency of the weighted
periodogram, we apply the weighted periodogram IW

X̃
(λ) = [Ĩwpq(λ)]p, q=0,...,T−1

in terms of {X̃0, . . . , X̃N−1} as follows:

(4.6) IW
X̃
(λ) =

∑
|k|¬un

Wn(k)IX̃(λ+ λk).
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In particular, let us put un = n and Wn(k) = 1/(2n+ 1) for |k| ¬ n, where
n/N → 0 as N → +∞. Then it is easy to see that

IW
X̃
(λj) =

1

2n+ 1

∑
|k|¬n

IX̃(λj + λk)

is distributed as WC
T

(
2n+ 1, f(λj)/(2n+ 1)2

)
. This fact shows that the weighted

periodogram is a consistent estimator for spectral density.
The following theorem is for the general case.

THEOREM 4.1. Suppose the spectral density f(·) = [fpq(·)]p, q=0,...,T−1 on
[0, 2π/T ) is continuous. Then f̃(·) = IW

X̃
(·) has the following properties:

(a) E
(
f̃(λj)

)
= f(λj) for λj ∈ [0, 2π/T ).

(b) For all λi ̸= λj ∈ [0, 2π/T ) and p, q, s, r = 0, . . . , T − 1,

cov
(
f̃pq(λi), f̃rs(λj)

)
→ 0 as N →∞.

(c) For all λi ∈ [0, 2π/T ) and p, q, s, r = 0, . . . , T − 1,

cov
(
f̃pq(λi), f̃rs(λi)

)
→ 0 as N →∞.

In particular, var
(
f̃pq(λi)

)
→ 0, and var

(
f̃pp(λi)

)
→ 0 as N →∞.

(d) For λi, λj ∈ [0, 2π/T ),

lim
N→∞

( ∑
|k|¬un

W 2
n(k)

)−1cov
(
f̃pq(λi), f̃sr(λj)

)
=

{
0, λi ̸= λj ,

fr−p(λi + 2πp/T )fs−q(λj + 2πq/T ), λi = λj .

(e) For λi ∈ [0, 2π/T ), f̃(λi) has the same asymptotic distribution as a linear
combination of independent complex Wishart matrices:

f̃(λi)
d
=

∑
Wn(k)Uk,

where Uk is distributed as WC
T

(
1, f(λi+k)

)
.

Note that a linear combination of Wishart matrices with positive coefficients
can be approximated with a Wishart distribution, see Tan and Gupta [9] and Khuri
et al. [5]. Although the method has been obtained for real Wishart matrices, it can
be effectively used for complex Wishart matrices with real positive coefficients.
Therefore, the distribution of weighted periodogram in Theorem 4.1(e), for fixed
λi ∈ [0, 2π/T ), can be approximated as WC

T

(
u,g(λi)

)
, where u and g(λi) can be

expressed in terms of f(λi+k), |k| ¬ un. Using similar notation to that in Khuri et
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al. [5], let d∗i (pq, st) =
∑
|k|¬un

W 2
n(k)fpq(λi+k)fst(λi+k). Also, let f∗(λi) de-

note the T ∗ × T ∗ matrix, T ∗ = 1
2T (T + 1), whose elements are d∗i (pq, st) ar-

ranged in lexicographic order; that is, d∗i (p1q1, s1t1) appears before d∗i (p2q2, s2t2)
in a row if q2 > q1, or q2 = q1 and p2 > p1. Similarly, d∗i (p1q1, s1t1) is before
d∗i (p2q2, s2t2) in a column if t2 > t1, or t2 = t1 and s2 > s1. Now, u and g(λi)
are computed as follows:

u =

 |
∑
|k|¬un

Wn(k)f(λi+k)|T+1

|f∗(λi)|


1/T ∗

,

g(λi) =
1

u

∑
|k|¬un

Wn(k)f(λi+k).

Let us now present the asymptotic properties of the actual estimator of spectral
density matrix f̂(λ), i.e.,

(4.7) f̂(λ) = IWX (λ) =
∑
|k|¬un

Wn(k)IX(λ+ λk).

Since the periodograms of the actual series X1, . . . , XN and the auxiliary series
X̃1, . . . , X̃N have the same asymptotic distribution, the same results as in Theo-
rem 4.1 can be achieved for the estimator (4.7).

THEOREM 4.2. Suppose the spectral density f(·) = [fij(·)]j=0,...,T−1
i=0,...,T−1 is con-

tinuous on [0, 2π/T ). Then f̂(·) = IW (·) has the following properties:
(a) E

(
f̂(λj)

)
= f(λj) for λj ∈ [0, 2π/T ).

(b) For all λi ̸= λj ∈ [0, 2π/T ) and p, q, s, r = 0, . . . , T − 1,

cov
(
f̂pq(λi), f̂rs(λj)

)
→ 0 as N →∞.

(c) For all λi ∈ [0, 2π/T ) and p, q, s, r = 0, . . . , T − 1,

cov
(
f̂pq(λi), f̂rs(λi)

)
→ 0 as N →∞.

In particular, var
(
f̂pq(λi)

)
→ 0, and var

(
f̂pp(λi)

)
→ 0 as N →∞.

(d) For λi, λj ∈ [0, 2π/T ),

lim
N→∞

( ∑
|k|¬un

W 2
n(k)

)−1cov
(
f̂pq(λi), f̂sr(λj)

)
=

{
0, λi ̸= λj ,

fr−p(λi + 2πp/T )fs−q(λj + 2πq/T ), λi = λj .
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(e) For λi ∈ [0, 2π/T ), f̂(λi) has the same asymptotic distribution as a linear
combination of independent complex Wishart matrices:

f̃(λi)
d
=

∑
Wn(k)Uk,

where Uk is distributed as WC
T

(
1, f(λi+k)

)
.

5. NUMERICAL RESULTS

In this section we conduct a simulation study to illustrate the efficiency of the
estimator (4.7). In order to make a comparison between the actual spectral density
f(λ) and its estimator f̂(λ), we utilize the distance measuring function

(5.1) DH(f̂ ; f) =
2π/T∫
0

H
(
f̂(λ)f−1(λ)

)
dλ

for some matrix-valued function H(·). In order to have the symmetric property for
our distance measuring function, we replace the function H in (5.1) with

H̃(Z) = H(Z) +H(Z−1).

There are two commonly used functions H:

HI(Z) = trace(Z)− log(|Z|)− T,(5.2)
Hα(Z) = log |αZ+ (1− α)IT | − α log |Z|,(5.3)

where | · | stands for the determinant of a matrix. The distance measuring func-
tions (5.2) and (5.3) are called Kullback–Leibler and Chernoff disparity measures,
respectively, see Kakizawa et al. [4].

In practice, the integral in (5.1) is approximated by sum over Fourier fre-
quencies at the interval [0, 2π/T ), i.e., λk = 2πk/N, k = 0, . . . ,m − 1, where
m = N/T . By using H̃(·) and the estimator of spectral density, we obtain the
following integral approximation:

(5.4) DH̃(f̂ ; f) ≈
m−1∑
k=0

H̃
(
f̂(λk)f

−1(λk)
)
.

Let us give three examples to illustrate the asymptotic properties of the estima-
tor (4.7). For each example we use the Daniell kernel to smooth the periodograms.
Moreover, to calculate the average distance between the actual spectral density ma-
trices and their corresponding estimators, we replicate the simulation 100 times.

EXAMPLE 5.1. Assume a zero mean PC process {Xt, t ∈ Z} is a PAR(1),
PCAR(1), process:

(5.5) XkT+ν = ϕνXkT+ν−1 + ekT+ν , k ∈ Z, ν = 0, . . . , T − 1,
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with the spectral components fk(θ) = gk(θ) for θ ∈ [0, 2π(T − k)/T ), and f−k(θ)
= gT−k(θ) for θ ∈ [2π(T − k)/T, 2π), where

gk(θ)= |1−Ae−iTθ|−2
T−1∑
l=0

Ĝl

(
θ+

2πl

T

)
Ĝl−k

(
θ+

2πl

T

)
, k=0, . . . , T − 1,

in which

Ĝj(θ) =
1

T

T−1∑
n=0

Gn(θ)e
i2πjn/T , j ∈ Z,

with Gn(θ) =
∑T−1

k=0 An
n−k+1e

−ikθ, As
r =

∏s
j=r νj for r ¬ s, As

r = 1 for r > s,

and A =
∏T−1

j=0 νj . To evaluate the distance between the spectral density matrix
and its estimator in this example, we take exactly the same data as Nematollahi
and Rao [6].

Figure 1 shows the average distance for different choices of sample size.
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Figure 1. The Kullback–Leibler distance between actual spectral density matrix
of the process (5.5) and its estimate for different choices of sample size.

EXAMPLE 5.2. Assume a zero mean PC process {Xt, t∈Z} to be PCMA(2),
with the following structure:
(5.6)
XkT+ν=ZkT+ν+cos(ν)ZkT+ν−1+sin(ν)ZkT+ν−2, k∈Z, ν=0, . . . , T−1.

For T = 2 the spectral density matrix can be expressed as

f(θ) = 2D(2θ)h(2θ)D∗(2θ), θ ∈ [0, π),

where

D(2θ) =

(
0.5 0.5e−iθ

0.5 −0.5e−iθ
)
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and

h(θ) =

(
2
(
1 + cos(θ)

)
sin(1)(ei2θ + eiθ)

sin(1)(e−i2θ + e−iθ) 2
(
1 + cos(1) cos(θ)

)).
By taking T = 2, Figure 2 depicts the average distance between the actual

spectral density matrix and its estimator for different choices of sample size.
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Figure 2. The Chernoff distance (α = 0.1) between actual spectral density
matrix of the process (5.6) and its estimate for different choices of sample size.

EXAMPLE 5.3. Assume a zero mean PC process {Xt, t ∈ Z} admits the
representation

(5.7) Xt = g(t)Yt,

where g(t) is a periodic function with period T , and Yt is a stationary process. In
general, the spectral components of this process are given by

fk(θ) =
T−1∑
p=0

fY

(
θ − 2πp

T

)
GpGp−k, k = 0, . . . , T − 1,

where Gp = 1
T

∑T−1
t=0 g(t)e−i

2πtp
T and fY (θ) is the spectral density matrix of Yt,

see Hurd and Miamee [3].
To perform a numerical study, let us assume g(t) = a

(
1 + cos(2πt/T )

)
and

Yt is an AR(1) process, Yt = ϕYt−1 + Zt. Figure 3 shows the average distance
between the actual spectral density matrix and its estimator for different choices of
sample size and period T = 4.

Figures 1–3 evidently show the consistency of the weighted periodogram (4.7)
to estimate the spectral density matrix of PC processes.
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Figure 3. The Chernoff distance (α = 0.95) between actual spectral density matrix of the process
(5.7) and its estimate by simulated data for different choices of sample size: a = 2 and ϕ = 0.8.

6. APPENDIX

P r o o f o f L e m m a 3.1. (i) Following Proposition 10.1 in Brockwell and
Davis [1], we can conclude that

σ
(Y )
ij (p, q; s, r) =

−1
N2DN

(
2π(p+ s− q − r)/T

)
, p ̸= q ̸= s ̸= r,

{KN (λi + λj + 4πp/T )− 1}/N, p = q = s = r,{
KN

(
λi + λj + 2π(p+ r)/T

)
+KN

(
λi − λj + 2π(p− r)/T

)
− 2

}
/N, (p = q) ≠ (s = r),{

KN

(
λi + λj + 2π(p+ s)/T

)
− 1

}
/N, (p = r) ̸= (s = q),{

SN (λi + λj , 4πp/T, 4πq/T )

+KN

(
λi − λj + 2π(p− r)/T

)}
/N, (p = s) ̸= (r − q).

Without loss of generality suppose λi < λj and also λ
(N)
i , λ

(N)
j are two se-

quences of Fourier frequencies so that λ(N)
i < λi < λ

(N)
j < λj , where λ

(N)
i → λi

and λ
(N)
j → λj . By replacing λi and λj with λ

(N)
i and λ

(N)
j , respectively, and

using the properties (iv) and (v) of SN (·; ·, ·) for large N , we can deduce that

σ
(Y )
ij (p, q; s, r) = O(N−1).

This proves the statement (i) of Lemma 3.1. Other statements can be concluded by
similar arguments. �

P r o o f o f T h e o r e m 3.1. As in the proof of Lemma 3.1 suppose λ(N)
i <

λi < λ
(N)
j < λj . Let us use the notation σ

(X̃)
ij (p, q; s, r∥N) while λi and λj are
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replaced by λ
(N)
i and λ

(N)
j . By using (2.7) we can write

σ
(X̃)
ij (p, q; s, r∥N) =

T−1∑
k,k′,l,l′=0

ak

(
λ
(N)
i +

2πp

T

)
ak′

(
λ
(N)
i +

2πq

T

)

× al

(
λ
(N)
j +

2πs

T

)
al′

(
λ
(N)
j +

2πr

T

)
σ
(Y )
ij (p, q; s, r∥N).

Since λi, λj ∈ [0, 2π/T ), we can conclude by Lemma 3.1(i) that

σ
(X̃)
ij (p, q; s, r∥N) = O

(
1

N

) T−1∑
k,k′,l,l′=0

ak

(
λ
(N)
i +

2πp

T

)
ak′

(
λ
(N)
i +

2πq

T

)

× al

(
λ
(N)
j +

2πs

T

)
al′

(
λ
(N)
j +

2πr

T

)
= O

(
1

N

)
.

In the case that λi = λj , suppose λ
(N)
i → λi. Thus, by (2.7), we can write

σ
(X̃)
ij (p, q; s, r∥N) =

3∑
i=1

∑
Ci

ak

(
λ
(N)
i +

2πp

T

)
ak′

(
λ
(N)
i +

2πq

T

)
al

(
λ
(N)
i +

2πs

T

)

× al′

(
λ
(N)
i +

2πr

T

)
σ
(Y )
ij (p, q; s, r∥N)

= B1 +B2 +B3,

where

C1 =
{
(k, k′, l, l′) ∈ {0, . . . , T − 1} : p− k = q − k′ = s− l = r − l′

}
,

C2 =
{
(k, k′, l, l′) ∈ {0, . . . , T − 1} : (p− k = r − l′) ̸= (q − k′ = s− l)

}
,

C3 = {(k, k′, l, l′) /∈ C1 ∪ C2}.
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According to Lemma 3.1(iii) and continuity of ak(·), we can obtain

B1 =

[
1 +O

(
1

N

)]∑
C1

ak

(
λi +

2πp

T

)
ak′

(
λi +

2πq

T

)
× al

(
λi +

2πs

T

)
al′

(
λi +

2πr

T

)
=

[
1 +O

(
1

N

)] T−1∑
k=0

ak(θ)ak+(q−p)

(
θ +

2π(q − p)

T

)
× ak+(s−p)

(
θ +

2π(s− p)

T

)
ak+(r−p)

(
θ +

2π(r − p)

T

)
=

T−1∑
k=0

ak(θ)ak+(q−p)

(
θ +

2π(q − p)

T

)
× ak+(s−p)

(
θ +

2π(s− p)

T

)
ak+(r−p)

(
θ +

2π(r − p)

T

)
+O

(
1

N

)
= R(p, q; s, r) +O

(
1

N

)
,

where θ = λ
(N)
i + 2πp/T ;

B2 =
∑
C2

ak

(
λ
(N)
i +

2πp

T

)
ak′

(
λ
(N)
i +

2πq

T

)
al

(
λ
(N)
i +

2πs

T

)
× al′

(
λ
(N)
i +

2πr

T

)
σ
(Y )
ij (p, q; s, r∥N)

=

[
1 +O

(
1

N

)]∑
C2

ak

(
λ
(N)
i +

2πp

T

)
ak′

(
λ
(N)
i +

2πq

T

)
× al

(
λ
(N)
i +

2πs

T

)
al′

(
λ
(N)
i +

2πr

T

)
=

∑
k ̸=k′

ak

(
λi +

2πp

T

)
ak′

(
λi +

2πq

T

)
ak′+(s−q)

(
λi +

2πs

T

)

× ak+(r−p)

(
λi +

2πr

T

)
+O

(
1

N

)
=

[ T−1∑
k=0

ak(θ)ak+(r−p)

(
θ +

2π(r − p)

T

)]
×
[ T−1∑
k′=0

ak′(θ
′)ak′+(s−q)

(
θ
′
+

2π(s− q)

T

)]
−R(p, q, r, s) +O

(
1

N

)
,
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where θ
′
= λi + 2πq/T ;

B3 =

[
O

(
1

N

)]∑
C3

ak

(
λ
(N)
i +

2πp

T

)
ak′

(
λ
(N)
i +

2πq

T

)
× al

(
λ
(N)
i +

2πs

T

)
al′

(
λ
(N)
i +

2πr

T

)
= O

(
1

N

)
.

Therefore, we obtain

σij(p, q; s, r) =

[ T−1∑
k=0

ak(θ)ak+(r−p)

(
θ +

2π(r − p)

T

)]
×
[ T−1∑
k′=0

ak′(θ′)ak′+(s−q)

(
θ′ +

2π(s− q)

T

)]
−R(p, q, r, s) +R(p, q, r, s) +O

(
1

N

)
= fr−p

(
λi +

2πp

T

)
fs−q

(
λi +

2πq

T

)
+O

(
1

N

)
. �

P r o o f o f T h e o r e m 4.1. (a) It is immediate from (4.4) and the continu-
ity of f(·) that

E
(
f̃(λj)

)
= E

( ∑
|k|¬un

Wn(k)Ĩ(λj + λk)
)
= f(λj)

∑
|k|¬un

Wn(k) = f(λj).

(b) Using (4.6), we get

cov
(
f̃pq(λi), f̃sr(λj)

)
=

∑
|g|,|t|¬m

Wn(g)Wn(t)cov
(
Ĩpq(λi + λg), Ĩsr(λj + λt)

)
.

If λi ̸= λj , λi + λj ̸= 2π/T and N is sufficiently large, then λi + λg ̸= λj + λt

for all |g|, |t| ¬ un. Therefore, using Corollary 3.1, we can obtain∣∣cov
(
f̃pq(λi), f̃sr(λj)

)∣∣ = ∣∣ ∑
|g|¬m

∑
|t|¬m

Wn(g)Wn(t)O(N−1)
∣∣

¬ O

(
1

N

)( ∑
|t|¬m

Wn(t)
)2
.

It follows from (4.5) that the covariance approaches zero.
Also, in the case that λi + λj = 2π/T , we have

cov
(
f̃pq(λi), f̃sr(λj)

)
=cov

( ∑
|g|¬un

Wn(g)Ĩpq(λi+λg),
∑
|t|¬un

Wn(t)Ĩsr(λj+λt)
)
.
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Let D1 = {(t, g) : |t|+|g| = ml} and D2={(t, g) : |t|+|g| ̸= ml} . Using Lem-
ma 3.1(ii), we can conclude that

cov
(
f̃pq(λi), f̃sr(λj)

)
= B(λi)

(
1−O(N−1)

)∑
D1

Wn(t)Wn(g)

+O(N−1)
∑
D2

Wn(t)Wn(g),

where

B(λi) =

[∑
k

ak(θ)ap+s−(T−1)−k

(
θ − 2π

T

(
p+ s− (T − 1)

))]
×
[∑

k′
ak′(θ′) aq+r−(T−1)−k′

(
θ′ − 2π

T

(
q + r − (T − 1)

))]
and θ = λi + 2πp/T , θ′ = λi + 2πq/T. Since for large N , λk + λj → 0, we have
D1 → ∅. Thus we conclude that

cov
(
f̃pq(λi), f̃sr(λj)

)
→ 0.

(c) We note that

cov
(
f̃pq(λi), f̃sr(λi)

)
=

( ∑
|t|¬m

W 2
n(t)

)(
fr−p

(
λi +

2πp

T

)
fs−q

(
λi +

2πq

T

)
+O(N−1)

)
+

∑
g ̸=t

Wn(g)Wn(t)O(N−1)

=
( ∑
|t|¬m

W 2
n(t)

)
fr−p

(
λi +

2πp

T

)
fs−q

(
λi +

2πq

T

)
+O

(
1

N

)
O
( ∑
|t|¬m

W 2
n(t)

)
+O

(
1

N

)( ∑
|t|¬m

W 2
n(t)

)
(2m+ 1).

According to the properties (4.2), (4.4), and (4.5), all term tends to zero for N
sufficiently large. Moreover, in this case,

( ∑
|t|¬m

W 2
n(t)

)−1cov
(
f̂pq(λi), f̂sr(λi)

)
→ fr−p

(
λi +

2πp

T

)
fs−q

(
λi +

2πq

T

)
,

giving (d). �
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