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Abstract. We describe a method of calculating sharp lower and upper
bounds on the expectations of linear combinations of kth records expressed
in the Gini mean difference units of the original i.i.d. observations. In par-
ticular, we provide sharp lower and upper bounds on the expectations of kth
records and their differences. We also present the families of distributions
which attain the bounds in the limit.

2010 AMS Mathematics Subject Classification: Primary: 60E15,
62G32.

Key words and phrases: Expectation, Gini mean difference, sharp
bound, kth record.

1. INTRODUCTION AND MAIN RESULT

Let X1, X2, . . . be i.i.d. random variables with common continuous cumu-
lative distribution function F . Assume that Xi:n stands for the ith order statistic
obtained from the first n observations. For a given k ∈ N, the sequence of kth (up-
per) record values (Rn,k : n ∈ N) based on the sequence (Xn : n ∈ N) was defined
by Dziubdziela and Kopociński [7] asRn,k = XTn,k:Tn,k+k−1, where T1,k = 1 and
Tn+1,k = min{j > Tn,k: Xj:j+k−1 > XTn,k:Tn,k+k−1}, n ∈ N, are the respective
occurrence times of kth records. This is a generalization of the notion of classic up-
per records with k = 1 introduced by Chandler [3]. In this section, we determine
sharp lower and upper bounds for expectations of arbitrary linear combinations of
kth records E

[∑n
i=1 ci(Ri,k − µ)

]
, centered about the population mean µ = EX1,

and expressed in the Gini mean difference units ∆ = E|X1−X2|. In Section 2, we
specify the bounds on the expectations of centered kth records Rn,k − µ and their
differences Rn,k − Rm,k. Section 3 contains the proofs of the results presented in
Section 2.

∗ The second author was supported by the National Science Centre, Poland, grant no.
2015/19/B/ST1/03100.
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The Gini mean difference is a simple useful measure of dispersion. For defin-
ing it, only finiteness of the first population moment is sufficient. By now, various
evaluations of E

[∑n
i=1 ci(Ri,k − µ)

]
for specific c = (c1, . . . , cn) were presented

in terms of scale units σp = [E|X1 − µ|p]1/p generated by pth absolute central
moments. The first result of this type was presented by Nagaraja [16] who applied
the Schwarz inequality for getting sharp bounds on the expectations of the clas-
sic record values expressed in terms of the mean µ and standard deviation σ2 of
the parent distribution. Raqab [19] used the Hölder inequality in order to receive
bounds expressed in terms of other scale units σp, p ­ 1. He also derived refined es-
timates of the records coming from symmetric populations. Rychlik [24] evaluated
the expectations of record spacings E(Rn,1 − Rn−1,1) in the general populations
as well as under the restrictions to the distributions with increasing density and
increasing failure rate. Danielak [4] generalized these results to arbitrary record
increments E(Rn,1 −Rm,1), n > m.

For general kth records, Grudzień and Szynal [10] obtained non-optimal eval-
uations in terms of µ and σ2 by direct use of the Schwarz inequality. Raqab [18]
applied a modification of the Schwarz inequality proposed by Moriguti [15] in or-
der to get optimal bounds. Raqab and Rychlik [22] used both the Moriguti and
Hölder inequalities and calculated the bounds measured in various σp units. Simi-
lar results for the differences of adjacent and non-adjacent kth records were derived
by Raqab [20], and Danielak and Raqab [5], respectively. Goroncy and Rychlik [9]
determined the lower bounds on the expectations of centered values of kth records,
and their differences expressed in σp units.

Raqab and Rychlik [23] calculated optimal evaluations for the second record
values coming from symmetric populations. Gajek and Okolewski [8] provided
the sharp bounds on the expectations of kth records coming from the decreasing
density and failure rate populations expressed in the population second raw mo-
ments. Optimal mean-variance inequalities for the expected kth record spacings
from the above models were presented in Danielak and Raqab [6]. Second record
non-adjacent differences coming from populations with decreasing density func-
tions were studied in Raqab [21]. Tight upper bounds for the kth record values
from the decreasing generalized failure rate populations were established by Bie-
niek [2]. Klimczak [13] calculated sharp bounds on the expectations of kth records
and their differences coming from bounded populations. They were expressed in
the scale units amounting to the lengths of the population support intervals.

The distribution function of the nth value of the kth record coming from the
standard uniform distribution is of the form

Gn,k(u) = 1− (1− u)k
n−1∑
i=0

[−k ln(1− u)]i

i!
,(1.1)

where k, n ∈ N and u ∈ (0, 1). If X1, X2, . . . have a continuous distribution func-
tion F , then the composition Gn,k ◦ F is the distribution function of the nth value
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of the kth record. In the sequel we use the following notions:

ψn,k(u) = (1− u)k−1
n−1∑
i=0

[−k ln(1− u)]i

i!
− 1,(1.2)

Ψn,k(u) =
ψn,k(u)

2u
,(1.3)

ψc,k(u) =
n∑
i=1

ciψi,k(u) = (1− u)k−1
n−1∑
i=0

bi+1
[−k ln(1− u)]i

i!
− b1,(1.4)

Ψc,k(u) =
n∑
i=1

ciΨi,k(u) =
ψc,k(u)

2u
,(1.5)

where c = (c1, . . . , cn) ∈ Rn, and bi =
∑n

j=i cj , i = 1, . . . , n.

THEOREM 1.1. Let X1, X2, . . . be an i.i.d. sequence with a common contin-
uous distribution function, expectation µ = EX1 ∈ R, and Gini mean difference
∆ = E|X1 −X2|. Let R1,k, R2,k, . . . denote the respective sequence of kth upper
records, and assume that ERn,k <∞. Then, for arbitrary c = (c1, . . . , cn) ∈ Rn,
with the notation (1.2)–(1.5), we have

(1.6) inf
0<u<1

Ψc,k(u) ¬
E
[ n∑
i=1

ci(Ri,k − µ)
]

∆
¬ sup

0<u<1
Ψc,k(u).

Let Fm,a denote the distribution function of the uniform random variable on
the interval

[
a− 1

m , a
]
. If the supremum (infimum) in (1.6) is attained at some

0 < u1 < 1, then the upper (lower) bound in (1.6) is attained in the limit by the
sequence of parent distribution functions Fm = u1Fm,a + (1 − u1)Fm,b for ar-
bitrary a < b. If the supremum (infimum) is attained there in the limit as u ↘ 0
(u↗ 1), then the upper (lower) bound is attained in the limit by any sequence of
distribution functions Fm = umFm,a + (1 − um)Fm,b as m → ∞ and um ↘ 0
(um ↗ 1, respectively) whereas a < b.

P r o o f. We start with a useful representation of the expectations of record
spacings. For 1 ¬ i ¬ n− 1 , we have

E(Ri+1,k −Ri,k) =
∞∫
−∞

xGi+1,k

(
F (dx)

)
−
∞∫
−∞

xGi,k
(
F (dx)

)
=
∞∫
−∞

x
(
(Gi+1,k −Gi,k) ◦ F

)
(dx).

Integrating by parts, we obtain

E(Ri+1,k −Ri,k) = x
[
Gi+1,k

(
F (x)

)
−Gi,k

(
F (x)

)]∣∣∞
−∞

−
∞∫
−∞

(
Gi+1,k

(
F (x)

)
−Gi,k

(
F (x)

))
dx.
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Since E(|Ri,k|) <∞, i = 0, . . . , n, the first element of the above sum is equal to
zero (note that for x↗∞ the difference of distribution functions can be treated as
the negative of the difference of respective survival functions). Thus, by (1.1), we
have

(1.7) E(Ri+1,k −Ri,k) =
∞∫
−∞

[1− F (x)]k
[
− k ln

(
1− F (x)

)]i
i!

dx.

We also note thatR1,k = X1:k and µ = E
(
1
k

∑k
j=1Xj

)
= E

(
1
k

∑k
j=1Xj:k

)
. The-

refore,

E(Rn,k − µ) = E
[ n−1∑
i=1

(Ri+1,k −Ri,k)−
1

k

k∑
j=1

(Xj:k −X1:k)

]

= E
[ n−1∑
i=1

(Ri+1,k −Ri,k)−
1

k

k∑
j=2

j−1∑
l=1

(Xl+1:k −Xl:k)

]

= E
[ n−1∑
i=1

(Ri+1,k −Ri,k)−
k−1∑
l=1

k − l
k

(Xl+1:k −Xl:k)

]
.

We further use integral representations of the expected spacings

(1.8) E(Xl+1:k −Xl:k) =
∞∫
−∞

(
k

l

)
F l(x)[1− F (x)]k−ldx, l = 1, . . . , k − 1,

due to Pearson [17] (see also Jones and Balakrishnan [11], formula (3.1)). In par-
ticular, we have

(1.9) ∆ = E|X1 −X2| = E(X2:2 −X1:2) = 2
∞∫
−∞

F (x)[1− F (x)]dx.

Combining (1.7) and (1.8), we write

E(Rn,k − µ) =
∞∫
−∞

{
[1− F (x)]k

n−1∑
i=1

[
− k ln

(
1− F (x)

)]i
i!

−
k−1∑
i=1

k − i
k

(
k

i

)
F i(x)[1− F (x)]k−i

}
dx

=
∞∫
−∞

2F (x)[1− F (x)]Ψn,k

(
F (x)

)
dx,
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where

Ψn,k(u) =
(1− u)k−1

2u

n−1∑
i=1

[−k ln(1− u)]i

i!
− 1

2u

k−1∑
i=1

(
k−1
i

)
ui(1− u)k−1−i

=
(1− u)k−1

2u

n−1∑
i=1

[−k ln(1− u)]i

i!
− 1− (1− u)k−1

2u

=

(1− u)k−1
n−1∑
i=0

[−k ln(1−u)]i

i! − 1

2u

(cf. (1.3)). Finally, for arbitrary c ∈ Rn, we get

(1.10) E
[ n∑
i=1

ci(Ri,k − µ)
]
=
∞∫
−∞

2F (x)[1− F (x)]Ψc,k

(
F (x)

)
dx,

with

Ψc,k(u) =
n∑
i=1

ciΨi,k(u) =

(1− u)k−1
n∑
i=1

ci
i−1∑
j=0

[−k ln(1−u)]j

j! −
n∑
i=1

ci

2u

=

(1− u)k−1
n−1∑
j=0

( n∑
i=j+1

ci
) [−k ln(1−u)]j

j! −
n∑
i=1

ci

2u
=
ψc,k(u)

2u

(cf. (1.5)), and ψc,k(u) is defined by (1.4). Inequalities (1.6) are immediate conse-
quences of (1.9) and (1.10).

Now we verify the conditions of getting the equality in the right-hand side
inequality of (1.6). The arguments justifying the lower bounds attainability are
similar. Suppose first that Ψc,k(u1) = sup0<u<1Ψc,k(u) for some 0 < u1 < 1.
The equality
(1.11)
∞∫
−∞

2F (x)[1− F (x)]Ψc,k

(
F (x)

)
dx = sup

0<u<1
Ψc,k(u)

∞∫
−∞

2F (x)[1− F (x)]dx

holds iff either F (x) = 0 or F (x) = 1 or Ψc,k

(
F (x)

)
= Ψc,k(u1) for almost all

x ∈ R. The conditions are satisfied by any two-point distribution function

Fu1(x) =


0, x < a,

u1, a ¬ x < b,

1, x ­ b,
a < b,
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that assigns probability u1 to the smaller point a of its support. We have

EmRi,k =
∞∫
−∞

xGi,k
(
Fm(dx)

)
↗ Eu1Ri,k =

∞∫
−∞

xGi,k
(
Fu1(dx)

)
<∞,

EmX1 =
∞∫
−∞

xFm(dx) ↗ Eu1X1 =
∞∫
−∞

xFu1(dx) <∞,

EmXi:2 =
∞∫
−∞

xHi:2

(
Fm(dx)

)
↗ Eu1Xi:2 =

∞∫
−∞

xHi:2

(
Fu1(dx)

)
<∞,

i = 1, 2, asm→∞, where Em and Eu1 denote the expectations of various random
functions in the cases when Fm and Fu1 , respectively, are the parent distribution
functions, and H1:2(u) = 1 − (1 − u)2 and H2:2(u) = u2, 0 < u < 1, are the
distribution functions of the minimum and maximum of two i.i.d. standard uniform
random variables. Therefore,

lim
m→∞

Em
n∑
i=1

ci(Ri,k −X1)

Em(X2:2 −X1:2)
=

Eu1
n∑
i=1

ci(Ri,k −X1)

Eu1(X2:2 −X1:2)

=
1

∆u1

∞∫
−∞

2Fu1(x)[1− Fu1(x)]Ψc,k

(
Fu1(x)

)
dx

= sup
0<u<1

Ψc,k(u)

(cf. (1.9) and (1.10)), as claimed.
Assume now that sup0<u<1Ψc,k(u) = limu↘0Ψc,k(u). Replacing u1 of

the previous paragraph by arbitrary 0 < u < 1, and setting Fu,m = uFm,a +
(1 − u)Fm,b with Eu,m standing for the respective expectation functional, we get

Eu,m
n∑
i=1

ci(Ri,k − µ)→ Ψc,k(u)
∞∫
−∞

2Fu(x)[1− Fu(x)]dx.

Replacing fixed u by elements of a sequence um ↘ 0, we finally obtain

Eum,m
n∑
i=1

ci(Ri,k − µ)

∆um,m
↗ sup

0<u<1
Ψc,k(u).

We proceed in a similar way if sup0<u<1Ψc,k(u) = limu↗1Φc,k(u). �

REMARK 1.1. It is natural to assume that cn ̸= 0. Then, for k = 1 and n ­ 2,
the function ψc,k is unbounded in the left neighborhood of one. It tends either to
+∞ or to−∞ there, and the sign coincides with the sign of bn = cn. It is clear that
E|X1| <∞ implies ∆ = E(X2:2 −X1:2) <∞. Nagaraja [16] (see also Arnold et
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al. [1], p. 29) constructed parent distribution functions such that E|X1| <∞ and
ERn−1,1 < ∞, but ERn,1 = +∞. This justifies the claim that in the case of the
first records, there is no finite upper (lower) bound for E

∑n
i=1 ci(Ri,k − µ)/∆

when cn > 0 (cn < 0, respectively). However, it may be surprising that we can get
an arbitrarily large value (a positive or negative one) even if we restrict ourselves
to very simple parent distributions with arbitrarily small supports.

If k > 1, finiteness of the population mean implies that of all kth records. Note
that our bounds are also finite under the assumption.

REMARK 1.2. There are many possibilities of modifying the sequences of dis-
tributions attaining the bounds. In the construction Fu1,m=u1Fm,a+(1−u1)Fm,b,
the sequences of uniform distribution functions Fm,a, Fm,b, m ∈ N, can be substi-
tuted with any sequences of continuous distribution functions converging weakly
to degenerate ones Fa, Fb concentrated at a and b, respectively. Also, fixed u1, a, b
can be replaced by sequences um, am, bm, with the only restrictions that un → u1
and am < bm. Moreover, particular Φc,k may have multiple extremes. For instance,
if 0 < u1 < . . . < ur < 1 are some arguments maximizing Φc,k (not necessarily
all), then the equality in (1.11) holds for F = u1Fa0 +

∑r−1
i=1 (ui+1 − ui)Fai +

(1− ur)Far for some a0 < . . . < ar. In consequence, the upper bound is also at-
tained for any sequence of continuous parent distribution functions tending weakly
to the above (r + 1)-point distribution function. Similar modifications can be used
if the extremes of (1.5) are attained in the limit.

2. SPECIAL CASES

In this section we specify sharp bounds of Theorem 1.1 for the most practi-
cally important cases of single kth record values and the differences of various kth
records. By the theorem, the bounds in the first case coincide with extreme values
of functions (1.3). Note that their derivatives vanish iff

(2.1) χn,k(u) = 2u2Ψ′n,k(u) = uψ′n,k(u)− ψn,k(u)

= u(1− u)k−2
[ n−2∑
i=0

[−k ln(1− u)]i

i!
− (k − 1)

[−k ln(1− u)]n−1

(n− 1)!

]
− (1− u)k−1

n−1∑
i=0

[−k ln(1− u)]i

i!
+ 1 = 0.

We do not treat here the first values of kth records R1,k, because they coincide
with the first order statistics X1:k, and the respective evaluations were presented in
Kozyra nad Rychlik [14].

PROPOSITION 2.1. Let X1, X2, . . . be i.i.d. and have a continuous distri-
bution function with finite expectation µ = EX1 and Gini mean difference ∆ =
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E|X1 −X2|. We also assume that E|Rn,k| <∞. Then, for various natural n ­ 2
and k ­ 1, we have the following sharp bounds:

(i) For n ­ 2 and k = 1,

1

2
= Ψn,1(0+) ¬ E(Rn,1 − µ)

∆
¬ Ψn,1(1−) =∞.

(ii) If n = k = 2, then

−1
2
= Ψ2,2(1−) ¬

E(R2,2 − µ)
∆

¬ Ψ2,2(0+) =
1

2
.

(iii) For n ­ 3 and k = 2,

−1
2
= Ψn,2(1−) ¬

E(Rn,2 − µ)
∆

¬ Ψn,2(u1) >
1

2
,

where u1 ∈ (0, 1) is the unique solution to the particular version of equation (2.1)
with k = 2.

(iv) For n = 2 and k ­ 3,

−1
2
> Ψ2,k(u1) ¬

E(R2,k − µ)
∆

¬ Ψ2,k(0+) =
1

2
,

where u1 ∈ (0, 1) is the unique solution to the particular version of (2.1) with
n = 2.

(v) For k ­ 3 and n ­ 3,

−1
2
> Ψn,k(u2) ¬

E(Rn,k − µ)
∆

¬ Ψn,k(u1) >
1

2
,

with 0 < u1 < u2 < 1 being the only two solutions to (2.1).

For brevity of presentation, we do not describe precisely attainability condi-
tions. For example, writing that for some parameters n and k, the upper bound (or
the lower one) is equal to Ψn,k(u1) for some uniquely specified u1, we refer to The-
orem 1.1, where a sequence of mixtures Fm = u1Fm,a + (1− u1)Fm,b of uniform
distributions attaining the bound in the limit is described. Similarly, Ψn,k(0+) and
Ψn,k(1−) mean that the extreme values of Ψn,k are attained in the limit as u↘ 0
and u↗ 1, respectively, and the conditions of attainability can be found again in
Theorem 1.1. We also refer to Remark 1.2 for their possible relaxations. We adhere
to this convention later on as well.

Table 1 presents numerical values of upper bounds Ψn,k(u1) on expectations
of kth records for k = 2, 8 and n = 3, . . . , 11, and the values of lower bounds
Ψn,8(u2) on expectations of eighth records for n = 3, . . . , 11. They are accompa-
nied by respective arguments u1 = u1(n, k) for which Ψn,k attain their maxima,
and u2 = u2(n, k) for which Ψn,k attain the minima. The lower bounds on the
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Table 1. Upper bounds on expectations of nth values of second records, and
upper and lower bounds on expectations of eighth records for 3 ¬ n ¬ 11.

n u1(n, 2) Ψn,2(u1) u1(n, 8) Ψn,8

(
u1) u2(n, 8) Ψn,8

(
u2)

3 0.53864 0.67515 0.00612 0.50151 0.49172 −0.82907
4 0.85953 1.27417 0.05275 0.51740 0.63022 −0.69988
5 0.95425 2.48879 0.12728 0.54943 0.72995 −0.63051
6 0.98408 4.81797 0.21163 0.59439 0.80242 −0.58866
7 0.99425 9.23834 0.29654 0.65089 0.85534 −0.56167
8 0.99788 17.6289 0.37741 0.71872 0.89407 −0.54356
9 0.99921 33.6037 0.45206 0.79835 0.92244 −0.53108

10 0.99971 64.1276 0.51968 0.89066 0.94324 −0.52232
11 0.99989 122.652 0.58017 0.99688 0.95848 −0.51611

expectations of second records amount to Ψn,2(1−) = −1
2 . The arguments of the

extremes allow us to recover the distributions attaining the bounds. It is obvious
that Ψn,k(u1) and Ψn,8(u2) increase as n increases from 3 to 11 for both k = 2
and k = 8. It is worth noting that u1(n, k), u2(n, k) do so as well.

Let us now evaluate the expectations of differences of kth record values
E(Rn,k− Rm,k), 1 ¬ m < n. By Theorem 1.1, the problem boils down to find-
ing the extremes of functions

Ψm,n;k(u) = Ψn,k(u)−Ψm,k(u) =
ψn,k(u)− ψm,k(u)

2u
(2.2)

=
(1− u)k−1

2u

n−1∑
i=m

[−k ln(1− u)]i

i!
, 0 < u < 1.

The local extremes of the functions (if they exist) satisfy the equalities

(2.3)
χm,n;k(u)

(1− u)k−2
=
χn,k(u)− χm,k(u)

(1− u)k−2

=
2u2Ψ′m,n;k(u)

(1− u)k−2
=
u[ψ′n,k(u)−ψ′m,k(u)]−[ψn,k(u)−ψm,k(u)]

(1− u)k−2

= ku
[−k ln(1− u)]m−1

(m− 1)!
+ 2u

n−2∑
i=m

[−k ln(1− u)]i

i!

− (k − 2)u
[−k ln(1− u)]n−1

(n− 1)!
−

n−1∑
i=m

[−k ln(1− u)]i

i!
= 0.

PROPOSITION 2.2. Under the assumptions of Proposition 2.1, the following
statements hold true:
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(i) If k = m = 1 and n ­ 2, then

1

2
= Ψ1,n;1(0+) ¬ E(Rn,1 −R1,1)

∆
¬ Ψ1,n;1(1−) = +∞.

(ii) If k = 1 and 2 ¬ m < n, then

0 = Ψm,n;1(0+) ¬ E(Rn,1 −Rm,1)
∆

¬ Ψm,n;1(1−) = +∞.

(iii) If either k = n = 2 and m = 1, or k ­ 3, n = 2, 3, and m = 1, then

0 = Ψ1,n;k(1−) ¬
E(Rn,k −R1,k)

∆
¬ Ψ1,n;k(0+) =

k

2
.

(iv) If k = 2, 3, m = 1 and n ­ k + 1, then

0 = Ψ1,n;k(1−) ¬
E(Rn,k −R1,k)

∆
¬ Ψ1,n;k(u1) >

k

2
,

where u1 ∈ (0, 1) is only one solution of equation (2.3).
(v) For k = 2, 3 with 2 ¬ m < n, and for k ­ 4 with m ­ 2 and n =

m+ 1,m+ 2, we have

0 = Ψm,n;k(0+) = Ψm,n;k(1−) ¬
E(Rn,k −Rm,k)

∆
¬ Ψm,n;k(u1) > 0,

where u1 ∈ (0, 1) is the unique solution to (2.3).
(vi) For k ­ 4, m = 1 and n ­ 4, equation (2.3) has either no solutions in

(0, 1), and then

0 = Ψ1,n;k(1−) ¬
E(Rn,k −R1,k)

∆
¬ Ψ1,n;k(0+) =

k

2
,

or it has two solutions 0 < u1 < u2 < 1, and then

0 = Ψ1,n;k(1−) ¬
E(Rn,k −R1,k)

∆
¬ max

{
k

2
,Ψ1,n;k(u2)

}
= max {Ψ1,n;k(0+),Ψ1,n;k(u2)}.

(vii) For all k ­ 4, m ­ 2 and n ­ m+ 3, either (2.3) has a unique solution
u1 in (0, 1), and then

0 = Ψm,n;k(0+) = Ψm,n;k(1−) ¬
E(Rn,k −Rm,k)

∆
¬ Ψm,n;k(u1) > 0,

or it has three solutions u1 < u2 < u3 there, and, in consequence,

0 = Ψm,n;k(0+) = Ψm,n;k(1−) ¬
E(Rn,k −Rm,k)

∆
¬ max {Ψm,n;k(u1),Ψm,n;k(u3)}.
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The bounds for the most interesting subcase of record spacings Rm+1,k −
Rm,k for particular pairs of parameters k = m = 1, k = 1 < m, m = 1 < k and
k,m ­ 2 can be immediately concluded from points (i), (ii), (iii), and (v) of Propo-
sition 2.2, respectively.

Table 2. Upper bounds on E(Rn,k −R1,k)/∆ for k = 2, 3, 4 and n = 4, . . . , 11.

n u1(n, 2) Ψ1,n;2(u1) u1(n, 3) Ψ1,n;3(u1) u1(n, 4) Ψ1,n;4(u1)

4 0.85953 1.77417 0.24174 1.51047 0 2
5 0.95425 2.98879 0.59908 1.64906 0 2
6 0.98408 5.31797 0.78565 1.99633 0 2
7 0.99425 9.73834 0.88026 2.58914 0 2
8 0.99788 18.1289 0.93089 3.50031 0.77158 2.13923
9 0.99921 34.1037 0.95925 4.85335 0.84482 2.54721

10 0.99970 64.6276 0.97565 6.83793 0.89233 3.11471
11 0.99989 123.152 0.98532 9.73634 0.92438 3.87706

Table 3. Upper bounds on E(Rn,k − R2,k)/∆ for k = 2, 3 with n = 3, . . . , 11,
and for k = 10 with n = 13, . . . , 21.

n u1(n, 2) Ψ2,n;2(u1) u1(n, 3) Ψ2,n;3(u1) n ui(n, 10) Ψ2,n;10(ui)

3 0.79681 0.64761 0.47471 0.54207 13 0.26010 2.08544
4 0.90626 1.49438 0.60992 0.96579 14 0.26018 2.08548
5 0.96101 2.84937 0.72476 1.38507 15 0.26021 2.08549
6 0.98491 5.25240 0.81886 1.87945 16 0.26021 2.08549
7 0.99434 9.70871 0.88772 2.54006 17 0.69271 2.13547
8 0.99789 18.1159 0.93242 3.48013 18 0.72874 2.24568
9 0.99921 34.0981 0.95956 4.84509 19 0.75943 2.37671

10 0.99971 64.6252 0.97571 6.83455 20 0.78605 2.52859
11 0.99989 123.151 0.98533 9.73495 21 0.80936 2.70201

Table 2 contains numerical values of upper bounds Ψ1,n;k(u1) on the expec-
tations of the differences between the nth and first values of kth records together
with respective arguments u1 = u1(n, k) for which Ψ1,n;k attains its maximum.
We examine k = 2, 3, 4 and n = 4, . . . , 11. For calculating the bounds in cases
k = 2, 3, we applied Proposition 2.2(iv). For k = 4, Proposition 2.2(vi) was used.
Then the first subcase of no local extremes appeared for n = 4, . . . , 7, and the sin-
gle local extremes of Ψ1,n;4 were used for k = 8, . . . , 11. As one can expect, the
bounds decrease in rows, and increase in columns. The same tendency concerns
the arguments providing the maxima. However, it is quite surprising that as n in-
creases, the points attaining the fast increasing maxima approach very close the
point one, where the global infima, equal to zero, are attained.
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Table 4. Upper bounds on expectations of kth record spacings E(Rn+1,k − Rn,k)/∆
for k = 2, 3, 4 and n = 2, . . . , 11.

n u1(n, 2) Ψn,n+1;2(u1) u1(n, 3) Ψn,n+1;3

(
u1) u1(n, 4) Ψn,n+1;4

(
u1)

2 0.79681 0.64761 0.47471 0.54208 0.32620 0.58475
3 0.94048 0.94762 0.71317 0.50558 0.54156 0.45015
4 0.98017 1.59328 0.83871 0.58006 0.68538 0.43335
5 0.99302 2.82685 0.90731 0.72982 0.78244 0.46358
6 0.99748 5.15281 0.94588 0.96486 0.84858 0.52656
7 0.99908 9.54491 0.96804 1.31373 0.89404 0.62105
8 0.99966 17.8731 0.98097 1.82275 0.92550 0.75117
9 0.99988 33.7336 0.98860 2.56139 0.94743 0.92468

10 0.99995 64.0592 0.99315 3.63192 0.96278 1.15284
11 0.99998 122.245 0.99587 5.18426 0.97358 1.45096

Table 3 presents numerical values of upper bounds Ψ2,n;k(ui) on the expec-
tations of differences of nth and second values of kth records E(Rn,k − R2,k)/∆
with the arguments ui = ui(n, k), i = 1 or 3, providing the maxima of respec-
tive functions Ψ2,n;k. We considered parameters k = 2, 3 with n = 3, . . . , 11, and
k = 10 with n = 13, . . . , 21. Conclusions of Proposition 2.2 (v) and (vii) were
used for k = 2, 3 and k = 10, respectively. In the latter case, for n = 13, 14, the
function (2.2) has a unique maximum in (0, 1), and we use the first statement of
Proposition 2.2(vii). Otherwise, it has two local maxima and a minimum between
them. However, for n = 15, 16, the global maximum is attained at the first zero of
(2.3), and for the remaining n = 17, . . . , 21, the last zero provides the global maxi-
mum. This explains a significant jump from 0.26021 to 0.69271 in the penultimate
column of the table. The behavior of the bounds and parameters describing their
attainability conditions are analogous with those in Table 2.

Table 4 presents upper bounds Ψn,n+1;k(u1) on expectations of kth record
spacings Rn+1,k − Rn,k for k = 2, 3, 4 and n = 2, . . . , 11, and respective argu-
ments u1 = u1(n, k) for which Φn,n+1;k attains its maximum. They were estab-
lished by means of Proposition 2.2(v). We observe that except for k = 2, the
bounds first decrease and then increase as n increases. The lower bounds for the
differences of records presented in Tables 2–4 amount to zero.

3. PROOFS OF PROPOSITIONS 2.1 AND 2.2

We start with some auxiliary results. The first one is a classic variation dimin-
ishing property (VDP, for short) of linear combinations of logarithmic functions
used in our studies.
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LEMMA 3.1. The number of sign changes of the linear combination

n∑
i=1

ai[− ln(1− u)]αi , 0 < u < 1,

where
∑n

i=1 |ai| > 0, and −∞ < α1 < . . . < αn < +∞, does not exceed the
number of sign changes in the sequence (a1, . . . , an). Moreover, the signs of the
function in the right vicinity of zero and the left vicinity of one are identical with
the signs of the first and last elements of (a1, . . . , an), respectively.

P r o o f. The first claim can be easily deduced from the analogous property of
the family of power functions on the positive half-axis. It asserts that the number
of sign changes of the function x 7→

∑n
i=1 aix

αi in (0,+∞) is not greater than the
number of sign changes in (a1, . . . , an) (see, e.g., Karlin and Studden [12], Corol-
lary 1.4.4). Take the strictly increasing reversible function x = x(u) = − ln(1−u)
that transforms (0, 1) onto (0,+∞). This implies that the VDP is inherited by
the powers of functions u 7→ − ln(1 − u), 0 < u < 1. The latter statement of the
lemma is trivial. �

We also use the following elementary lemma.

LEMMA 3.2. Let ψ : (a, b)→R, 0 ¬ a<b, be a twice differentiable function,
Ψ(x) = ψ(x)/x, and χ(x) = x2Ψ′(x) = xψ′(x) − ψ(x) with χ′(x) = xψ′′(x).
We have the following.

(i) If ψ is positive and decreasing, then Ψ decreases.
(ii) If ψ is negative and increasing, then Ψ increases.

(iii) Assume that ψ is convex. Then:
(a) If limx↗b− χ(x) ¬ 0, then Ψ is decreasing.
(b) If limx↘a+ χ(x) ­ 0, then Ψ is increasing.
(c) If limx↘a+ χ(x) < 0 < limx↗b− χ(x), then there exists c ∈ (a, b) such

that Ψ decreases on (a, c] and increases on [c, b).
(iv) Suppose that ψ is concave. Then:
(a) If limx↘a+ χ(x) ¬ 0, then Ψ is decreasing.
(b) If limx↗b− χ(x) ­ 0, then Ψ is increasing.
(c) If limx↘a+ χ(x) > 0 > limx↗b− χ(x), then there exists c ∈ (a, b) such

that Ψ increases on (a, c] and decreases on [c, b).

The function Ψ(x) = ψ(x)/x represents the slope of the straight line passing
through the origin of the real plane, and the graph of ψ at x. This is increasing
(decreasing) there if the slope is less (greater) than that of the line tangent to ψ
at x. The function ψ is called starshaped (antistarshaped) if ψ(x)/x is nondecreas-
ing (nonincreasing, respectively).
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P r o o f o f L e m m a 3.2. (i) and (ii). By definition, sgn
(
Ψ′(x)

)
=

sgn
(
χ(x)

)
. Assume that ψ is positive and decreasing. Then χ(x) = xψ′(x) −

ψ(x) < 0 for all x ∈ (a, b), Ψ′(x) < 0, and Ψ decreases. Similarly, if ψ is neg-
ative and increasing, then χ(x) = ψ′(x)x− ψ(x) > 0, and hence Ψ increases.

(iii) We have χ′(x) = xψ′′(x) > 0. Under the assumption that ψ is convex,
the function χ(x) increases for all a < x < b. Thus, if limx↗b− χ(x) ¬ 0, then
χ(x) < 0 for all x ∈ (a, b), and so Ψ is decreasing. If limx↘a+ χ(x) ­ 0, then
χ(x) > 0 and Ψ is increasing. Finally, when limx↘a+ χ(x) < 0 < limx↗b− χ(x),
then by Darboux’s theorem, there exists a < c < b such that Ψ first decreases on
(a, c], and then increases on [c, b).

(iv) The proof is analogous to that of (iii). �

P r o o f o f P r o p o s i t i o n 2.1. By Theorem 1.1, it suffices to determine
the extremes of (1.3). We first examine variability of its numerator (1.2). We im-
mediately check that ψn,k(0+) = 0 for all k ­ 1 and n ­ 2 (and for n = 1 as well,
but we do not consider the case here). Also,

(3.1) ψn,k(1−) =

{
+∞, k = 1,

−1, k ­ 2,
n ­ 2.

We further have
(3.2)

ψ′n,k(u) = (1− u)k−2
[ n−2∑
i=0

[−k ln(1− u)]i

i!
− (k − 1)

[−k ln(1− u)]n−1

(n− 1)!

]
.

If k = 1, the last term in the square brackets vanishes, and so ψ′n,1(u) > 0. When
k ­ 2, due to Lemma 3.1, (3.2) is first positive, and then negative. In consequence,
for k ­ 2 the function (1.2) is first increasing, and ultimately decreasing. Note that
the function is necessarily concave about its maximum, because it is smooth.

The second derivative amounts to

(3.3) ψ′′n,k(u) = (1− u)k−3
[ n−3∑
i=0

2
[−k ln(1− u)]i

i!

− (k2 − 2)
[−k ln(1− u)]n−2

(n− 2)!
+ (k − 1)(k − 2)

[−k ln(1− u)]n−1

(n− 1)!

]
.

The sum in the brackets does not appear for n = 2. The middle term is positive for
k = 1, and negative otherwise. The last one vanishes for k = 1 and 2. Applying
Lemma 3.1, we obtain the following conclusions. The function (3.3) is positive
for k = 1 and n ­ 2, and negative for k = n = 2. It is first negative, and then
positive for n = 2 and k ­ 3. For k = 2 and n ­ 3, it is consecutively positive,
and negative. And finally, for k, n ­ 3, the sign order is + − +. Notice that the
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negative part cannot be dropped here, because ψn,k has a concavity region about
its global maximum.

Summing up, we arrived at the following conclusions. If k = 1 and n ­ 2,
the function (1.2) convexly increases from 0 at zero to +∞ at one. In all the other
cases, it vanishes at both interval end-points. For k = n = 2, (1.2) is increasing-
decreasing, and concave everywhere. When k = 2 and n ­ 3, it is first convex
increasing, then concave increasing, and finally concave decreasing. For n = 2 and
k ­ 3, it is concave increasing on the left, concave decreasing in the center, and
convex decreasing on the right. In all the remaining cases k, n ­ 3, the function
is consecutively convex increasing, concave increasing, concave decreasing, and
convex decreasing.

Now we are in a position to analyze variability of (1.3), which is our main
task. We start with calculating limit values of (1.3) at the end-points zero and one.
By the l’Hospital rule, for all n ­ 2,

Ψn;k(0+) = lim
u↗0

(1− u)k−1 − 1

2u
+
n−1∑
i=1

lim
u↗0

[−k ln(1− u)]i

2ui!

= lim
u↗0

(1− k)(1− u)k−2

2
+
n−2∑
i=0

lim
u↗0

k[−k ln(1− u)]i

2(1− u)i!
=

1− k
2

+
k

2
=

1

2
.

Also,

Ψn,k(1−) =

{
+∞, k = 1,

−1
2 , k ­ 2,

n ­ 2

(cf. (3.1)). Knowing the shapes of (1.2), and using Lemma 3.2 withψ(u)=ψn,k(u),
Ψ(u) = 2Ψn,k(u), χ(u) = χn,k(u) = 2u2Ψ′n,k(u) = uψ′n,k(u) − ψn,k(u), 0 <
u < 1, we are able to describe monotonicity properties of (1.3).

The analysis of the case k = 1 < n is the simplest one. We have χn,1(0+)
= 0, and the function ψn,1 convexly increases from ψn,1(0+) = 0 to ψn,1(1−)
= +∞. By Lemma 3.2(iiib), Ψn,1 increases from Ψn,1(0+) = 1

2 to Ψn,1(1−) =
+∞.

We proceed to k ­ 2 and consider the most sophisticated case with k, n ­ 3.
For the other ones, we refer to some arguments presented here. We assume that
ψn,k is convex increasing on (0, a), concave increasing on (a, b), concave de-
creasing on (b, c), and convex decreasing on (c, 1) for some 0 < a < b < c < 1,
and ψn,k(d) = 0 for some b < d < 1. Note that χn,k(0+) = limu↗0[uψ

′
n,k(u) −

ψn,k(u)]=0. By Lemma 3.2(iiib),Ψn,k is increasing on (0, a). We have χn,k(a)>0

because the line tangent to ψn,k at the inflexion point a runs below the line ψn,k(a)
a u

joining the origin point with
(
a, ψn,k(a)

)
on (0, a), and above on (a, 1), which

means that it has a greater slope. We also have χn,k(b) = −ψn,k(b) < 0 at the
maximum point b. Owing to Lemma 3.2(ivc), there is a point a < u1 < b such
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that Ψn,k increases on (a, u1) and decreases on (u1, b). By Lemma 3.2(i), Ψn,k de-
creases on (b, d). Suppose now that d < c. Then χn,k(d) = dψ′n,k(d) < 0, and so
Ψn,k still decreases on (d, c) by Lemma 3.2(iva). Comparing the slopes of straight
lines ψn,k(c) + ψ′n,k(c)(u − c) and ψn,k(c)

c u, we conclude that χn,k(c) < 0. We
also observe that χn,k(1−) = −ψn,k(1−) = 1 > 0. With the use of the last claim
of Lemma 3.2(iii), we conclude that Ψn,k decreases on (c, u2) and increases on
(u2, 1) for some c < u2 < 1. If d ­ c, we again recall the relations χn,k(d) <
0 < χn,k(1−) and Lemma 3.2(iiic) for deducing that there exists d < u2 < 1 such
that Ψn,k decreases on (d, u2) and increases on (u2, 1). Combining the above re-
sults, we arrive to the following conclusion: Ψn,k first increases from 1

2 at 0+ to
Ψn,k(u1) >

1
2 , and then decreases to Ψn,k(u2) < −1

2 , and finally increases to −1
2

at 1−. This implies that the global maximum and minimum are attained at u1 and
u2, respectively, which are the only local extremes of Ψn,k in (0, 1).

If k = 2 < n, the function ψn,2 does not have a decreasing convex part at the
left neighborhood of one. We can just put c = 1 > d > b, and repeat the above
reasoning omitting the analysis of the functions on the interval (c, 1) when d < c.
The case c ¬ d < 1 is impossible then. In consequence, we observe that Ψn,2

increases from Ψn,2(0+) = 1
2 to Ψn,2(u1) >

1
2 , and decreases to Ψn,2(1−) = −1

2 .
The global extremes are Ψn,2(u1) >

1
2 and Ψn,2(1−) = −1

2 .
For n = 2 < k, ψ2,k is deprived of the increasing convex part on the left.

However, then we still have χ2,k(0+) = 0, and we can use the argument of Lem-
ma 3.2(iva) to conclude that Ψ2,k is decreasing on (a, b) with a = 0. Then we
repeat the reasoning of the previous paragraph applied to studying the functions
ψn,k, χn,k, and Ψn,k on the interval (b, 1). Accordingly, we conclude that Ψ2,k

decreases from Ψ2,k(0+) = 1
2 to Ψ2,k(u1) < −1

2 , and increases to Ψ2,k(1−) =
−1

2 . This means that

−1
2
> Ψ2,k(u1) ¬ Ψ2,k(u) < Ψ2,k(0+) =

1

2
.

For k = n = 2, we can reduce the arguments as in the two above cases by
removing from analysis two convexity intervals of ψn,k appearing in both the ends
of the unit interval. As a result, we see that Ψ2,2 decreases from Ψ2,2(0+) = 1

2
to Ψ2,2(1−) = −1

2 , which are clearly the extreme values of the function. This
completes the proof of Proposition 2.1. �

P r o o f o f P r o p o s i t i o n 2.2. The idea is similar to the previous proof.
We first analyze the numerator

(3.4) ψm,n;k(u) = (1− u)k−1
n−1∑
i=m

[−k ln(1− u)]i

i!

of (2.2). We immediately check that ψm,n;k(0+) = 0 for all possible m, n, and k,
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and ψm,n;k(1−) = +∞ when k = 1, and 0 otherwise. Furthermore,

ψ′m,n;k(u) = (1− u)k−2
[
k
[−k ln(1− u)]m−1

(m− 1)!

+
n−2∑
i=m

[−k ln(1− u)]i

i!
− (k − 1)

[−k ln(1− u)]n−1

(n− 1)!

]
.

If k = 1, the last term vanishes, and (3.4) is increasing on the unit interval. By
the VDP of Lemma 3.1, the function is first increasing and then decreasing for all
k ­ 2.

The analysis of the second derivative

(3.5) ψ′′m,n;k(u) = (1− u)k−3
[
k2

[−k ln(1− u)]m−2

(m− 2)!

− k(k − 3)
[−k ln(1− u)]m−1

(m− 1)!
+

n−3∑
i=m

2
[−k ln(1− u)]i

i!

− (k2 − 2)
[−k ln(1−u)]n−2

(n− 2)!
+ (k − 1)(k − 2)

[−k ln(1−u)]n−1

(n− 1)!

]
is more complex. The coefficient of the first term vanishes for m = 1, and is pos-
itive for m ­ 2. That of the second one is positive for k = 1, 2, equal to zero for
k = 3, and negative for other k ­ 4. If n = m+ 1,m+ 2, the sum is dropped, and
its summands are positive otherwise. The penultimate ingredient has a positive co-
efficient for k = 1, and a negative one for k ­ 2. And that of the last one is either
zero when k = 1, 2 or positive otherwise.

Applying Lemma 3.1, and taking into account the fact that a smooth function
has to be concave about its local maximum, we arrive at the following conclu-
sions. If k = 1, then (3.5) is positive. Therefore, (3.4) convexly increases from
ψm,n;k(0+) = 0 to ψm,n;k(1−) = +∞. Otherwise, the function is increasing-
decreasing, and vanishes at zero and one.

If k = 2 and m = 1, n = 2, then ψm,n;k is concave in (0, 1). If k = 2 and
either m = 1 with n ­ 3 or n > m ­ 2, then (3.5) changes the sign from + to
−, which means that (3.4) is first convex increasing, then concave increasing, and
finally concave decreasing.

Suppose now that k = 3. Ifm = 1 and n = 2, 3, then (3.5) is negative-positive,
and so (3.4) is concave increasing, concave decreasing, and convex decreasing.
Otherwise, i.e., for m = 1 with n ­ 4, and n > m ­ 2, the sign sequence of (3.5)
is + − +. This implies that (3.4) is consecutively convex increasing, concave in-
creasing, concave decreasing, and convex decreasing at the right end.

Assume finally that k ­ 4. Then, for m = 1 and n = 2, 3, the second deriva-
tive (3.5) is negative-positive, and therefore the original function (3.4) is concave
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increasing, concave decreasing, and convex decreasing. If m = 1 and n ­ 4, the
sign order of the combination coefficients in (3.5) is − + −+. For the function
(3.5) itself, it may reduce to −+. Note that in the first case the maximum point
of (3.4) can belong to either of the two concavity regions. Consequently, we have
three possible behaviors of (3.4). Firstly, it may be concave increasing, concave
decreasing, and convex decreasing. Secondly, it may be concave increasing, and,
on the region of decrease, it may be consecutively concave, convex, and again con-
cave and convex. The last option is that (3.4) is consecutively concave, convex, and
concave on the interval of increase, and concave and convex in the decrease area. If
m ­ 2 and n = m+1,m+2, the function (3.5) is first positive, then negative, and
eventually positive. It follows that in this case (3.4) is convex increasing, concave
increasing and decreasing, and finally convex decreasing. Lastly, for m ­ 2 and
n ­ m + 3, the signs of the combination coefficients are ordered as + − + − +.
The analysis similar to that of the case k, n ­ 4 with m = 1 leads to analogous
conclusions. We have again three possibilities. The functions are similar, and the
only difference is that in each case one should add an interval of convex increase
at the beginning.

Now, we proceed to analyzing (2.2). We have

Ψm,n;k(0+) =

{
k
2 , m = 1,

0, m ­ 2,

and

Ψm,n;k(1−) =

{
+∞, k = 1,

0, k ­ 2.

Also, χm,n;k(0+) = 0 for all k,m, and n. This, together with Lemma 3.2(iiib), im-
plies that for k = 1, Ψm,n;1 strictly increases from k

2 when m = 1, and from 0 for
m ­ 2 at 0+ to +∞ at 1−, which gives statements (i) and (ii) of the proposition.

The remaining cases with k ­ 2 can be treated in much the same way. Func-
tions ψm,n;k are first increasing and then decreasing, and tend to zero as the argu-
ment tends to zero and one. Respective functions χm,n;k are negative at the max-
imum point. Functions Ψm,n;k are also positive on (0, 1), and vanish at the right
end-point. Accordingly, zero provides the sharp lower bound for the differences of
all kth records with k ­ 2, and they are attained as the parameter u converges to
one. Note that this trivial bound is attained for m ­ 2 if u↘ 0 as well.

We start with analysis of the most complex case with k ­ 4, m ­ 2 and
n ­ m + 3. The first option is that (3.4) is convex, concave, and convex, which
implies that the maximum point belongs to the concavity region. We examine it
together with another case that (3.4) has two concavity regions, and the maximum
is located in the first one. Let (0, a), (a, b), and (b, 1) denote the intervals of con-
vex increase, concave increase, and decrease of the function, respectively. We have
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χm,n;k(0+) = 0 < χm,n;k(a), and χm,n;k(b) < 0. By Lemma 3.2 (iiib) and (ivc),
the function (2.2) is increasing on (0, a), and increasing-decreasing on (a, b) with
a maximum point at a < u1 < b. By Lemma 3.2(i), it is also decreasing on (b, 1).
Therefore, the extreme values of the function are Ψm,n;k(0+) = Ψm,n;k(1−) = 0
and Ψm,n;k(u1) > 0.

Note that the analogous arguments are used for Ψm,n;k with parametersm,n, k
such that (3.4) is first convex increasing, then concave increasing, and ultimately
decreasing, i.e. for k = 2 with either m = 1 and n ­ 3 or m ­ 2, for k = 3 with
either m = 1, n ­ 4 or n > m ­ 2, and for k ­ 4 with m ­ 2 and n = m + 1,
m + 2, which cover cases (iv) and (v) of the proposition. The only difference be-
tween them is that for m = 1 the function (2.2) starts from k

2 , and then the ex-
treme values are Ψm,n;k(1−) = 0 and Ψm,n;k(u1) >

k
2 (see Proposition 2.2(iv)),

and otherwise Ψm,n;k(0+) = 0 is another possibility for the infimum, and then the
maximal value Ψm,n;k(u1) > 0 does not need to exceed k

2 (see Proposition 2.2(v)).
Let us come back to k ­ 4, m ­ 2 and n ­ m+ 3, and consider the last case

that there are two intervals of convex increase (0, a) and (b, c), say, and two in-
tervals of concave increase (a, b) and (c, d). We certainly have χm,n;k(0+) = 0,
χm,n;k(a) > 0, and χm,n;k(d) < 0. Lemma 3.2(iiib) implies that Ψm,n;k increases
on (0, a). Suppose first that χm,n;k(b) ­ 0. By Lemma 3.2 (ivb) and (iiib), the func-
tion (2.2) is increasing on both (a, b) and (b, c). The convexity of ψm,n;k on (b, c)
implies that χ′m,n;k(u) = uψ′′m,n;k(u) > 0 for b < u < c, and so χm,n;k(c) > 0 as
well. Lemma 3.2(ivb) assures that there is c < u1 < d such that (2.2) is increasing
on (c, u1) and decreasing on (u1, d). The final decrease of (2.2) on (d, 1) is im-
plied by Lemma 3.2(i). This means that the assumption χm,n;k(b) ­ 0 leads us to
the first statement of Proposition 2.2(vii).

Suppose now that χm,n;k(b) < 0. Then Ψm,n;k is increasing on (0, u1) and
decreasing on (u1, b) for some a < u1 < b by Lemma 3.2 (iiib) and (ivc). By
the convexity of ψm,n;k, χm,n;k is increasing on (b, c). It may happen that ei-
ther χm,n;k(c) ¬ 0 or χm,n;k(c) > 0. Suppose that the first case holds. Then (2.2)
decreases on (b, c), (c, d), and (d, 1) by Lemma 3.2 (iiia), (iva) and (i), respec-
tively. Again, we conclude that Ψm,n;k has one local maximum in (0, 1), and the
first claim of Proposition 2.2(vii) holds. The last possibility is that the condition
χm,n;k(b) < 0 is accompanied by χm,n;k(c) > 0. Then, except for the local maxi-
mum at a < u1 < b, we have a local minimum at b < u2 < c by Lemma 3.2(iiic),
and another local maximum at c < u3 < d by Lemma 3.2(ivc). This is obviously
decreasing on (d, 1) by Lemma 3.2(i). Note that Ψm,n;k(u2) > 0, because Ψm,n;k

is continuous and positive on (0, 1). Accordingly, the latter statement of Proposi-
tion 2.2(vii) holds.

The analysis of the penultimate case with k ­ 4, m = 1 and n ­ 4 is simi-
lar, and we merely outline the main steps of the proof. The only differences are
that there is no interval on convex increase in the right neighborhood of zero, and
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Ψ1,n;k(0+) = k
2 . We can treat together the cases when (2.2) is concave on the

whole interval of its increase, whereas the decrease region contains either one or
two intervals of convexity. Then Ψ1,n;k is decreasing on both intervals where ψ1,n;k

increases and decreases by Lemma 3.2 (iva) and (i), and the first claim of Propo-
sition 2.2(vi) is valid. Let us note that in the same way we can treat the cases of
Proposition 2.2(iii) and get the respective conclusion.

Suppose now that the interval of increase (0, d), say, contains one region
of convexity (b, c), and two regions of concavity (0, b) and (c, d) (we do not
use the letter a for the sake of consistency with the previous notation). We have
χ1,n;k(0+) = 0, χm,n;k(b) < 0, and χm,n;k(d) < 0. If χm,n;k(c) ¬ 0, Ψ1,n;k is
decreasing on the whole unit interval by Lemma 3.2 (iva), (iiia), again (iva), and
(i). If χ1,n;k(c) > 0, then (2.2) first decreases, then has a unique local minimum
at b < u1 < c, and a unique local maximum at c < u2 < d, and finally decreases
by Lemma 3.2 (ivc), (iiic), again (ivc), and (i). Now, we also have Ψ1,n;k(u1) >
Ψ1,n;k(1−) = 0, but we cannot settle either of two maxima Ψ1,n;k(0+) = k

2 , and
Ψ1,n;k(u2) is greater. This completes the proof of case (vi), and of the whole propo-
sition. �
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