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Abstract. For a random sample of points in R, we consider the number
of pairs whose members are nearest neighbors (NNs) to each other and the
number of pairs sharing a common NN. The pairs of the first type are called
reflexive NNs, whereas the pairs of the latter type are called shared NNs. In
this article, we consider the case where the random sample of size n is from
the uniform distribution on an interval. We denote the number of reflexive
NN pairs and the number of shared NN pairs in the sample by Rn and
Qn, respectively. We derive the exact forms of the expected value and the
variance for both Rn and Qn, and derive a recurrence relation for Rn which
may also be used to compute the exact probability mass function (pmf) of
Rn. Our approach is a novel method for finding the pmf of Rn and agrees
with the results in the literature. We also present SLLN and CLT results for
both Rn and Qn as n goes to infinity.
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1. INTRODUCTION

The nearest neighbor (NN) relations and their properties have been extensively
studied in various fields, such as probability and statistics, computer science, and
ecology (see, e.g., [1], [13] and [7]). Based on the NN relations, NN graphs and
digraphs are constructed and related graph quantities/invariants are widely studied
(see, e.g., [13], [21] and [19]). We consider NN digraphs and quantities based on
their arcs (i.e., directed edges). In an NN digraph, D = (V,A), the vertices are
data points in Rd, and there is an arc from vertex u to vertex v (i.e., (u, v) ∈ A) if
v is an NN of u. We call a pair of vertices u, v a reflexive NN pair if v is an NN
of u and vice versa (i.e., {(u, v), (v, u)} ⊂ A) (see [8] and [9]). If both (u,w) and
(v, w) are in A for some w ∈ V (i.e., u and v share an NN), then (u,w) and (v, w)
are called shared NNs. Notice that although w is the shared vertex, arcs (u,w) and
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(v, w) are called shared NNs in the literature (see [11]). The vertices in a reflexive
NN pair are also called isolated NNs (see [22]), mutual NNs (see [25]) or biroot
(see [13]).

The NN digraph is also referred to as the NN graph in the literature (e.g., [13]);
but, since the NN relation is not symmetric, we opt to use “NN digraph”, which
reflects this asymmetry. Also, the underlying graph of an NN digraph (an underly-
ing graph of a digraph is obtained by replacing each arc with an (undirected) edge,
disallowing multiple edges between two vertices, see [5]) is sometimes referred
to as the NN graph (see, e.g., [14] and [21]). Since in any (undirected) graph the
relation defining the edges is symmetric (i.e., each edge is symmetric), reflexivity
is not an interesting property for undirected graphs.

The number of reflexive and shared NN pairs in an NN digraph is of impor-
tance in various fields. For example, in spatial data analysis, the distributions of the
tests based on nearest neighbor contingency tables depend on these two quantities
(see, e.g., [11] and [3]), when the underlying pattern of the points is from a spa-
tial distribution (e.g., from a homogeneous Poisson process or a binomial process).
Moreover, neighbor sharing type quantities such as Qn are also of interest for the
problem of estimating the intrinsic dimension of a data set (see [2]).

In our analysis, we consider the special case of d = 1 (i.e., one-dimensional
data), and study the case when the random sample of size n is obtained from uni-
form distribution over an interval. We denote the total number of reflexive and
shared NN pairs in the corresponding sample by Rn and Qn, respectively. The
quantity Rn could be of interest for inferential purposes as well, since it is a mea-
sure of mutual (symmetric) spatial dependence between points, which might in-
dicate a special and/or stronger form of clustering of data points. For instance, a
simple test based on the proportion of the number of reflexive pairs to the sample
size was presented by Dacey [10] to interpret the degree of regularity or cluster-
ing of the locations of towns alongside a river. However, the methodology of [10]
ignores the randomness (and hence uncertainty) in the value of Rn and hence is
not reliable. The exact distribution of Rn can be computed for finite values of n
and hence it would make it possible to use Rn in exact inference for testing such
one-dimensional clustering.

NN relations, such as reflexivity and neighbor sharing, are studied by many
authors. Enns et al. [12] provide E(Rn) = n/3 for n  3, Var(Rn) = 2n/45 for
n  5 and a recurrence relation, giving the exact probability mass function (pmf)
of Rn for finite n, whereas the results in Schilling [25] yield E(Qn)/n→ 1/4 as
n→∞. For the number of reflexive pairs, we approach to the problem in the same
way as in [12], but we drive the mean, the variance and the recurrence relation by
a different approach. Further, we obtain mean and variance of Qn and compute
the asymptotic distribution of both Rn and Qn, which are novel contributions of
this article to the literature. We provide preliminary results in Section 2 where
we convert our problems into random permutations by using interchangeability of
uniform spacings. We derive means and variances of Rn and Qn together with a
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recurrence relation, giving the exact pmf of Rn in Section 3. The asymptotic results
(such as SLLN and CLT) for Rn and Qn are presented in Section 4, and discussion
and conclusions are provided in Section 5.

2. PRELIMINARIES

The number of reflexive pairs and the number of shared neighbors in the data
is invariant under translation and scaling, since both depend only on the ordering
of the pairwise distances of the data points. Therefore, without loss of generality,
we may only consider the uniform distribution over the interval (0, 1) (denoted by
U(0, 1)).

An NN of a point is one of the “closest” points with respect to some distance or
dissimilarity measure. We will employ the usual Euclidean distance in our analysis.
Observe that under uniform distribution, the Lebesgue measure of the set of points
which have more than one NN is zero, and therefore we may assume that each
point has a unique NN with probability one. In a sample of size n from U(0, 1),
recall that a pair of points is called reflexive if each one is the NN of the other, and
we denote the total number of reflexive pairs by Rn, and a pair of points in the
sample is called a shared NN if they have the same NN (sharing the NN), and we
denote the total number of shared NNs by Qn.

Let {U1, U2, . . . , Un} be a random sample of size n from the uniform dis-
tribution U(0, 1). On the real line, there is a nice ordering structure for the data
which we exploit in our results. Let U(1), U(2), . . . , U(n) be the order statistics
of {U1, U2, . . . , Un}. Denote the spacings between the order statistics by Di :=
U(i+1) − U(i) for 1 ¬ i ¬ n− 1 with D0 := U(1).

LEMMA 2.1. For n  3,

Rn = 1{D1<D2} +
n−2∑
i=2

1{Di<min{Di+1,Di−1}} + 1{Dn−1<Dn−2},

and for n  4,

Qn = 1{D2<D3} +
n−3∑
i=2

1{Di<Di−1,Di+1<Di+2} + 1{Dn−2<Dn−3},

where 1A is the indicator for the event A.

P r o o f. First observe that the NNs of U(1) and U(n) are always U(2) and
U(n−1), respectively. Therefore, {U(1), U(2)} is a reflexive pair if and only if D1 <
D2 and, similarly, {U(n−1), U(n)} is reflexive if and only if Dn−1 < Dn−2. Also
note that, for each 2 ¬ i ¬ n − 1, the NN of U(i) is either U(i−1) (if Di−1 < Di)
or U(i+1) (if Di < Di−1). Thus, for 2 ¬ i, j ¬ n − 1, the pair {U(i), U(j)} with
i < j is reflexive if and only if j = i+ 1 and Di is less than both Di−1 and Di+1.
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So, we obtain the first identity in Lemma 2.1. For the representation of Qn, in
a similar manner, one can easily see that U(i) and U(j) (i < j) have the same NN
only if j = i+2 and the common NN is U(i+1), and therefore we obtain the desired
result. �

As the quantities Rn and Qn depend on the ordering of the spacings, we
focus on the distribution of the spacings. By elementary probability arguments
(e.g., the Jacobian density theorem) it follows that the joint density of the spacings
(D0, D1, . . . , Dn−1) is

(2.1) fS(d0, d1, . . . , dn−1) = n!1{d0+d1+···+dn−1<1}1{min{d0,d1,...,dn−1}>0}

with the understanding that {d0, d1, . . . , dn−1 > 0} = {d0 > 0, d1 > 0, . . . , dn−1
> 0}. By (2.1) it is clear that the spacings D1, . . . , Dn−1 are interchangeable and
hence P (Dσ(1) < . . . < Dσ(n−1)) = P (D1 < . . . < Dn−1) for any permutation
σ in Pn−1, where Pn−1 is the permutation group on {1, 2, . . . , n − 1}. In other
words, every ordering of the spacings D1, . . . , Dn−1 is equally likely to occur.

Let σ be chosen uniformly at random from Pn−1. Define the events A1 =
{σ(1) < σ(2)}, An−1 = {σ(n− 1) < σ(n− 2)}, Ai = {σ(i) < σ(i− 1), σ(i) <
σ(i + 1)} for all 2 ¬ i ¬ n − 2, and the events B1 = {σ(2) < σ(3)}, Bn−2 =
{σ(n− 2) < σ(n− 3)} and Bi = {σ(i) < σ(i− 1), σ(i+ 1) < σ(i+ 2)} for
every 2 ¬ i ¬ n− 3. Then, by Lemma 2.1 and the interchangeability of the spac-
ings, we have

Rn
d
=

n−1∑
i=1

1Ai and Qn
d
=

n−2∑
i=1

1Bi ,(2.2)

where d
= denotes equality in distribution. Therefore, throughout this paper, we con-

sider
∑n−1

i=1 1Ai and
∑n−2

i=1 1Bi for the probabilistic results for Rn and Qn, respec-
tively.

3. SOME PROBABILISTIC RESULTS FOR Rn AND Qn

In this section, we derive the means and variances of Rn and Qn, and present
a recurrence relation for the exact distribution of Rn.

3.1. Mean and variance of Rn. In a digraph D, a weakly connected component
is a maximal subdigraph of D in which there is a path from every vertex to every
other vertex in the underlying graph of D. Enns et al. [12] call a weakly connected
component of a digraph the society and examine the number of societies in a uni-
form data of size n in one dimension. By the simple observation that each society
contains exactly one reflexive pair, they convert the problem into the number of
reflexive pairs and focus on the ranking of the spacings. Considering the spacing
with the largest length, they derive a recurrence relation and obtain E(Rn) = n/3
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for n  3 and Var(Rn) = 2n/45 for n  5 by using generating functions. We
verify their results by following the idea in Romik [24].

We obtain the mean and variance of Rn by computing those of
∑n−1

i=1 1Ai . The
random variable

∑n−1
i=1 1Ai is closely related to the length of the longest alternating

subsequence in a random permutation (see, e.g., [24] and [18]). For a sequence of
pairwise distinct real numbers x1, . . . , xn, a subsequence xi1 , . . . , xik with 1 ¬
i1 < . . . < ik ¬ n is called alternating if it satisfies

xi1 > xi2 < xi3 > . . . < xik .

Note that there may be more than one alternating subsequence with the maximal
length. For instance, the sequence 6, 4, 1, 3, 5, 2 has seven longest alternating sub-
sequences, particularly (6, 1, 3, 2), (6, 1, 5, 2), (6, 4, 5, 2), (6, 3, 5, 2), (4, 1, 3, 2),
(4, 1, 5, 2) and (4, 3, 5, 2). Let the random variable Las

n be the maximal length of
an alternating subsequence of τ(1), . . . , τ(n), where τ is a uniformly random per-
mutation from Pn.

Also, for 2 ¬ k ¬ n − 1, xk is called a local minimum (resp. a local max-
imum) if xk < min{xk−1, xk+1} (resp. xk > max{xk−1, xk+1}), see [24]. Note
that the sum

∑n−2
i=2 1Ai is the number of local minima in σ(1), . . . , σ(n − 1),

where σ is a uniformly random permutation from Pn−1. Romik [24] shows that
Las
n is equal to 1+ 1{τ(1)>τ(2)} plus the number of local minima and local maxima

in a random permutation, and provides E(Las
n ) = 2n/3 + 1/6 and Var(Las

n ) =
8n/45 − 13/180 (which are also computed in [26] and [18] in different ways).
Notice that the number of local minima and the number of local maxima differ by
at most one, and hence the number of local minima is about half of Las

n . Therefore,
we have E(Rn)/n→ 1/3 and Var(Rn)/n→ 2/45 as n→∞. In fact, the limits
1/3 and 2/45 are actually attained for every n  5.

THEOREM 3.1. For a random sample of size n from U(0, 1), the mean and
the variance of the number of reflexive pairs, Rn, is n/3 for n  3, and 2n/45 for
n  5, respectively.

P r o o f. By (2.2) it suffices to derive the mean and the variance of
∑n−1

i=1 1Ai .
We first compute the mean. Clearly, E(1A1) = P (A1) = P

(
σ(2) < σ(1)

)
= 1/2

and similarly, by symmetry, E(1An−1) = 1/2. For 2 ¬ i ¬ n− 2, we easily get

E(1Ai) = P (Ai) = P
(
σ(i) < min{σ(i− 1), σ(i+ 1)}

)
=

1

3
.

Thus, for n  3 we obtain

E(Rn) = E
( n−1∑
i=1

1Ai

)
=

n−1∑
i=1

E(1Ai) =
1

2
+ (n− 3)

1

3
+

1

2
=

n

3
.
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For the variance of Rn, we derive the covariances of 1Ai’s given in the following
matrix

(
Cov(1Ai ,1Aj )

)n−1
i,j=1

:

1
4

−1
6

1
24 0 0 0 0 0 . . . 0

−1
6

2
9

−1
9

1
45 0 0 0 0 . . . 0

1
24

−1
9

2
9

−1
9

1
45 0 0 0 . . . 0

0 1
45

−1
9

2
9

−1
9

1
45 0 0 . . . 0

0 0 1
45

−1
9

2
9

−1
9

1
45 0 . . . 0

...
...

. . . . . . . . . . . . . . . . . . . . .
...

0 0 . . . 0 1
45

−1
9

2
9

−1
9

1
45 0

0 0 . . . 0 1
45

−1
9

2
9

−1
9

1
24

0 0 . . . 0 1
45

−1
9

2
9

−1
6

0 0 . . . 0 1
24

−1
6

1
4



.

First notice that the events Ai and Aj are independent whenever |i− j| > 2, since
each Ai only depends on the ordering of σ(i− 1), σ(i) and σ(i+ 1). Thus, we get
Cov(1Ai ,1Aj ) = 0 if |i − j| > 2. Remaining covariances on the diagonal strip
|i − j| ¬ 2 are computed as follows. By symmetry, assume i ¬ j. For i = j, one
can easily obtain

Cov(1Ai ,1Ai) = Var(1Ai) = P (Ai)
(
1− P (Ai)

)
=

{
1/4, i = 1 or n− 1,

2/9, 2 ¬ i ¬ n− 2.

Next, we compute the off diagonal terms on the strip |i − j| ¬ 2. For i = 1, we
have

Cov(1A1 ,1A2) = P (A1 ∩A2)−
1

2
· 1
3
= 0− 1

6
= −1

6

since the event A1 ∩ A2 = {σ(1) < σ(2), σ(2) < σ(1), σ(2) < σ(3)} cannot oc-
cur, and

Cov(1A1 ,1A3) = P (A1 ∩A3)−
1

2
· 1
3

= P
(
σ(1) < σ(2) > σ(3) < σ(4)

)
− 1

6
=

5

24
− 1

6
=

1

24
,

where 5/24 comes from the fact that there are 5 alternating permutations of order 4.
By symmetry, we have Cov(1An−2 ,1An−1) = −1/6 and Cov(1An−3 ,1An−1) =
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1/24 as well. When j = i+ 1, for each 2 ¬ i ¬ n− 3 we have

Cov(1Ai ,1Ai+1) = Cov(1A2 ,1A3) = P (A2 ∩A3)−
1

3
· 1
3
= −1

9
,

as the event A2 ∩ A3 = {σ(2) < σ(1), σ(2) < σ(3), σ(3) < σ(2), σ(3) < σ(4)}
cannot occur. And, finally, when j = i+ 2, for each 2 ¬ i ¬ n− 4 we obtain

Cov(1Ai ,1Ai+2) = Cov(1A2 ,1A4) = P (A2 ∩A4)−
1

3
· 1
3

= P
(
σ(1) > σ(2) < σ(3) > σ(4) < σ(5)

)
− 1

9
=

16

120
− 1

9

=
1

45
,

where 16/120 comes from the fact that there are 16 alternating permutations of
order 5. Therefore, for each n  5, we obtain

Var(Rn) = Var
( n−1∑
i=1

1Ai

)
=

n−1∑
i,j=1

Cov(1Ai ,1Aj )

= 2 · 1
4
+ (n− 3)

2

9
+ 4 · −1

6
+ 4 · 1

24
+ 2(n− 4)

−1
9

+ 2(n− 5)
1

45

=
2n

45
. �

3.2. Mean and variance of Qn. The mean and variance of Qn can be derived
in a similar manner.

THEOREM 3.2. For a random sample of size n from U(0, 1), the mean and
the variance of the number of shared NNs, Qn, is n/4 for n  4, and 19n/240 for
n  7, respectively.

P r o o f. Again by (2.2), we compute the mean and the variance of
∑n−2

i=1 1Bi .
Clearly,

E(1Bi) = P (Bi) =

{
1/2, i = 1 or n− 2,

1/4, 2 ¬ i ¬ n− 3,

and hence, for every n  4, we get

E(Qn) = E
( n−2∑
i=1

1Bi

)
=

n−2∑
i=1

E(1Bi) =
1

2
+ (n− 4)

1

4
+

1

2
=

n

4
.

For the variance, we compute the covariance matrix
(
Cov(1Bi ,1Bj )

)n−2
i,j=1

, which
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is of the form

1
4 0 −1

8
1
24 0 0 0 0 0 0 0 . . . 0

0 3
16

−1
80

−1
16

1
48 0 0 0 0 0 0 . . . 0

−1
8

−1
80

3
16

−1
80

−1
16

1
48 0 0 0 0 0 . . . 0

1
24

−1
16

−1
80

3
16

−1
80

−1
16

1
48 0 0 0 0 . . . 0

0 1
48

−1
16

−1
80

3
16

−1
80

−1
16

1
48 0 0 0 . . . 0

0 0 1
48

−1
16

−1
80

3
16

−1
80

−1
16

1
48 0 0 . . . 0

0 0 0 1
48

−1
16

−1
80

3
16

−1
80

−1
16

1
48 0 . . . 0

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 . . . 0 1
48

−1
16

−1
80

3
16

−1
80

−1
16

1
48 0

0 0 . . . 0 1
48

−1
16

−1
80

3
16

−1
80

−1
16

1
24

0 0 . . . 0 1
48

−1
16

−1
80

3
16

−1
80

−1
8

0 0 . . . 0 1
48

−1
16

−1
80

3
16 0

0 0 . . . 0 1
24

−1
8 0 1

4



.

Note that the events Bi and Bj are independent whenever |i− j| > 3, since each Bi

only depends on the ordering of σ(i− 1), σ(i), σ(i+ 1) and σ(i+ 2). Therefore,
we have Cov(1Bi ,1Bj ) = 0 if |i− j| > 3. Remaining covariances (i.e., the entries
in the diagonal strip |i− j| ¬ 3) are computed as follows. By symmetry, suppose
i ¬ j. When i = j, one can easily obtain the main diagonal terms

Cov(1Bi ,1Bi) = Var(1Bi) = P (Bi)
(
1− P (Bi)

)
=

{
1/4, i = 1 or n− 2,

3/16, 2 ¬ i ¬ n− 3.

We next compute the off diagonal terms on the strip. For i = 1, we have

Cov(1B1 ,1B2) = P (B1 ∩B2)−
1

2
· 1
4

= P
(
σ(2) < σ(3), σ(2) < σ(1), σ(3) < σ(4)

)
− 1

8

= P
(
σ(2) < min{σ(1), σ(3), σ(4)}, σ(3) < σ(4)

)
− 1

8

=
1

4
· 1
2
− 1

8
= 0,

Cov(1B1 ,1B3) = P (B1 ∩B3)−
1

2
· 1
4
= 0− 1

8
= −1

8
,
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since the event B1 ∩ B3 = {σ(2) < σ(3), σ(3) < σ(2), σ(4) < σ(5)} cannot oc-
cur, and

Cov(1B1 ,1B4) = P (B1 ∩B4)−
1

2
· 1
4

= P
(
σ(2) < σ(3), σ(4) < σ(3), σ(5) < σ(6)

)
− 1

8

= P
(
max{σ(2), σ(4)} < σ(3), σ(5) < σ(6)

)
− 1

8

=
1

3
· 1
2
− 1

8
=

1

24
.

By symmetry, we get Cov(1Bn−3 ,1Bn−2) = 0,Cov(1Bn−4 ,1Bn−2) = −1/8 and
Cov(1Bn−5 ,1Bn−2) = 1/24. In the case j = i+ 1 and 2 ¬ i ¬ n− 4, we have

Cov(1Bi ,1Bi+1) = Cov(1B2 ,1B3) = P (B2 ∩B3)−
1

4
· 1
4
=

1

20
− 1

16
=
−1
80

since

P (B2 ∩B3) = P
(
σ(2) < σ(1), σ(3) < σ(4), σ(3) < σ(2), σ(4) < σ(5)

)
= P

(
σ(3) < min{σ(1), σ(2), σ(4), σ(5)}, σ(2) < σ(1), σ(4) < σ(5)

)
=

1

5
· 1
2
· 1
2
=

1

20
.

Similarly, if j = i+ 2 and 2 ¬ i ¬ n− 5, we have

Cov(1Bi ,1Bi+2) = Cov(1B2 ,1B4) = P (B2 ∩B4)−
1

4
· 1
4
· 0− 1

16
=
−1
16

,

as the event B2 ∩ B4 = {σ(2) < σ(1), σ(3) < σ(4), σ(4) < σ(3), σ(5) < σ(6)}
cannot occur. Finally, for the case j = i+ 3 and 2 ¬ i ¬ n− 6, we get

Cov(1Bi ,1Bi+3) = Cov(1B2 ,1B5) = P (B2 ∩B5)−
1

4
· 1
4
=

1

12
− 1

16
=

1

48

since

P (B2 ∩B5) = P
(
σ(2) < σ(1), σ(3) < σ(4), σ(5) < σ(4), σ(6) < σ(7)

)
= P

(
max{σ(3), σ(5)} < σ(4), σ(2) < σ(1), σ(6) < σ(7)

)
=

1

3
· 1
2
· 1
2
=

1

12
.
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Therefore, for every n  7, we obtain

Var(Qn) = Var
( n−2∑
i=1

1Bi

)
=

n−2∑
i,j=1

Cov(1Bi ,1Bj )

= 2 · 1
4
+ (n− 4)

3

16
+ 4 · −1

8
+ 4 · 1

24
+ 2(n− 5)

−1
80

+ 2(n− 6)
−1
16

+ 2(n− 7)
1

48

=
19n

240
. �

3.3. A recurrence relation for the exact distribution of Rn. Recall that for a
sequence of pairwise distinct real numbers x1, . . . , xn, we say that xk is a local
minimum if xk is less than its neighbors (i.e., xk−1 and xk+1) for 2 ¬ k ¬ n− 1.
Let us also consider x1 (resp. xn) as a local minimum if x1 < x2 (resp. xn <
xn−1). Then, notice that

∑n−1
i=1 1Ai is exactly the number of local minima in a

uniformly random permutation from Pn−1. Let p(n, k) denote P (Rn = k) and
set p(1, 0) = p(2, 1) = 1. Also, let m(n, k) be the number of permutations in Pn

with exactly k local minima. Notice that p(n, k) = m(n − 1, k)/(n − 1)!. Since
the term 1 in the sequence is always a local minimum and any two local minima
are not adjacent, we see that p(n, 0) = 0 for n  2 and p(n, k) = 0 whenever
k > n/2.

Any permutation in Pn can be uniquely obtained by increasing each element
of a permutation in Pn−1 by one and inserting the element 1 in one of the possible
n places. In this process, inserting the element 1 into the sequence does not affect
the number of local minima if it is placed next to a local minimum, and otherwise,
increases the number of local minima by one. Therefore, we obtain

m(n, k) = 2k ·m(n− 1, k) +
(
n− 2(k − 1)

)
·m(n− 1, k − 1),

since any two local minima are not adjacent. Consequently, as m(n − 1, k) =
(n− 1)!p(n, k), we have

p(n+ 1, k) =
2k

n
p(n, k) +

n− 2k + 2

n
p(n, k − 1)(3.1)

for every n  2. Therefore, the exact pmf of Rn can be computed for any n  3
by using the recursion given in (3.1).

Enns et al. [12] consider the index of the spacing with the largest length (i.e.,
index i such that Di = max{D1, D2, . . . , Dn−1}) and derive the following recur-
rence relation:

p(n, k) =
2

n− 1
p(n− 1, k) +

n−2∑
i=2

k−1∑
j=1

p(i, j)p(n− i, k − j)

n− 1

for every n  4. Then, using generating functions, they obtain the relation in (3.1).
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4. ASYMPTOTIC RESULTS FOR Rn AND Qn

In this section, we prove SLLN results and CLTs for both Rn and Qn as
n→∞. Observe that neither 1A1 ,1A2 , . . . ,1An−1 nor 1B1 ,1B2 , . . . ,1Bn−2 is an
i.i.d. sequence. However, both have a nice structure which allows SLLN and CLT
results to follow.

DEFINITION 4.1. A sequence of random variables X1, X2, . . . , Xn is said to
be m-dependent if the random variables (X1, X2, . . . , Xi) and (Xj , Xj+1, . . . , Xn)
are independent whenever j − i > m.

Since each Ai (resp. Bi) only depends on the ordering of σ(i − 1), σ(i) and
σ(i+ 1) (resp. σ(i− 1), σ(i), σ(i+ 1) and σ(i+ 2)), it is clear to see that the se-
quence 1A1 ,1A2 , . . . ,1An−1 (resp. 1B1 ,1B2 , . . . ,1Bn−2) is two-dependent (resp.
three-dependent). For the asymptotic results, note that we can ignore the random
variables 1A1 and 1An−1 (resp. 1B1 and 1Bn−2), since their contribution to the
summand

∑n−1
i=1 1Ai (resp.

∑n−2
i=1 1Bi) is negligible in the limit as n goes to in-

finity. Therefore, to obtain asymptotic results for Rn (resp. Qn) it suffices to con-
sider

∑n−2
i=2 1Ai (resp.

∑n−3
i=2 1Bi) which is the sum of identically distributed two-

dependent (resp. three-dependent) indicator random variables with mean 1/3 (resp.
1/4).

For m-dependent identically distributed sequences, the SLLN extends in a
straightforward manner by just partitioning the summand into m+ 1 sums of i.i.d.
subsequences, and hence we obtain SLLN results for both Rn and Qn.

THEOREM 4.1 (SLLN for U(0, 1) data). For a random sample of size n from
U(0, 1), we have Rn/n

a.s.−−→ 1/3 and Qn/n
a.s.−−→ 1/4 as n → ∞, where a.s.−−→

means almost sure convergence.

The asymptotic normality of the random variables we consider is due to the
well-known results on the sequence of m-dependent identically distributed and
bounded random variables (e.g., see [17], [6]).

THEOREM 4.2 (CLT for U(0, 1) data). For a random sample of size n from
U(0, 1), we have

Rn − n/3√
2n/45

L−→ N (0, 1) and
Qn − n/4√
19n/240

L−→ N (0, 1),

as n→∞, where L−→ means the convergence in law, and N (0, 1) is the standard
normal distribution.

REMARK 4.1. Is Rn or Qn a U-statistic? At first glance (a scaled form of)
Rn and Qn might look like a U -statistic of degree two with symmetric kernels,
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since we can write them as

Rn =
∑

1¬i<j¬n
1A(i,j) and Qn =

∑
1¬i<j¬n

1B(i,j),

where A(i, j) is the event that {Xi, Xj} is a reflexive pair, and B(i, j) is the event
that Xi and Xj share an NN. If Rn and Qn were U -statistics, then asymptotic
normality of both would follow by the general CLT for U -statistics [16]. However,
the kernels (1A(i,j) and 1B(i,j)) do not only depend on Xi and Xj , but on all
data points. Hence, the kernels are not of degree two but of degree n. Although,
for U -statistics, the degree can be equal to the sample size, it should be a fixed
quantity, m. So m ¬ n allows m = n, but this would be for small samples, and
as n increases, m should stay fixed, which is not the case here. So, neither Rn nor
Qn is a U -statistic of finite (fixed) degree, hence this approach would not work in
proving the CLT for Rn and Qn.

REMARK 4.2. Asymptotic behavior of Rn and Qn in higher dimensions.
The results in [15] and [25] imply that E(Rn)/n→ r(d) and E(Qn)/n→ q(d) as
n→∞, where r(d) and q(d) are constants which only depend on the dimension
d, whenever the underlying distribution has an a.e. continuous density in Rd (i.e.,
r(d) and q(d) – somewhat unexpectedly – do not depend on the continuous dis-
tribution). We have r(1) = 1/3, r(2) = 3π/(8π + 3

√
3) ≈ 0.3108, r(3) = 8/27,

and, in general,

r(d) =


[
3 +

m∑
k=1

1 · 3 · . . . · (2k − 1)

2 · 4 · . . . · (2k)

(
3

4

)k ]−1
if d = 2m+ 1,[

8

3
+

√
3

π

(
1 +

m−1∑
k=1

2 · 4 · . . . · (2k)
3 · 5 · . . . · (2k + 1)

(
3

4

)k )]−1
if d = 2m

(see, e.g., [22]). On the other hand, the exact value of q(d) is known only for
d = 1, q(1) = 0.25. For d > 1, we only have empirical approximations, for exam-
ple, q(2) ≈ 0.315, q(3) ≈ 0.355, q(4) ≈ 0.38 and q(5) ≈ 0.4 (see [25]).

REMARK 4.3. Some other quantities based on the NN digraph are of interest
in the literature. Notice that even though each point has a unique NN, it is not nec-
essarily the NN of precisely one point. Let Qj,n be the number of points in the data
which are NNs of exactly j other points. The quantities Qj,n’s are used in tests
for spatial symmetry (see [4]). Also in [12], Q0,n, Q1,n and Q2,n correspond to the
number of lonely, normal and popular individuals in a population of size n, respec-
tively. Moreover, the fraction of points serving as NNs to precisely j other points
(i.e., Qj,n/n) is studied by many authors (e.g., see [8], [15] and [20]). Clearly, in
one dimension, a point is an NN to at most two other points, and so Qj,n = 0 for
every j  3. Double counting arguments for the number of vertices and the number
of arcs give n = Q0,n +Q1,n +Q2,n and n = 0 ·Q0,n + 1 ·Q1,n + 2 ·Q2,n, re-
spectively. On the other hand, one can easily see that Qn =

∑
j0

(
j
2

)
Qj,n = Q2,n



Reflexive and shared NN pairs 135

and obtain Qn = Q0,n = Q2,n = (n − Q1,n)/2. Thus, for each j = 0, 1, 2, we
have SLLN and CLT results for Qj,n together with the exact values of its mean and
variance using the results on Qn.

5. DISCUSSION AND CONCLUSIONS

In this article, we study the probabilistic behavior of the number of reflexive
nearest neighbors (NNs), denoted by Rn, and the number of shared NNs, denoted
by Qn, for one-dimensional uniform data. Rn and Qn can also be viewed as graph
invariants for the NN digraph with vertices being the data points, and arcs being
inserted from a point to its NN. In particular, we provide the means and variances of
both Rn and Qn, and derive SLLN and CLT results for both of the quantities under
the same settings. We also present a recursive relation for the pmf of Rn, which
can provide the exact distribution of Rn (by computation for finite n). Recall that
the results we obtain for Rn (the mean, the variance and the recurrence relation)
are in agreement with the ones in Enns et al. [12]. However, our derivation of the
results is different from theirs and their method is not applicable for Qn.

This work lays the foundation for the study of (the number of) reflexive NN
pairs, shared NN pairs related to invariants of NN digraphs in higher dimensions
which would be more challenging due to the lack of ordering of the data points
in multiple dimensions. Another potential research direction is that the results can
also be extended to data from non-uniform distributions in one or multiple dimen-
sions.

Our Monte Carlo simulations suggest that CLT results for both Rn and Qn

seem to hold and Var(Rn)/n and Var(Qn)/n converge to σ2
R(d) and σ2

Q(d),
respectively, whenever the underlying process is a distribution on Rd with an a.e.
continuous density, where σ2

R(d) and σ2
Q(d) are constants which only depend on

the dimension d. Expectations are handled in [15] and [25], see Remark 4.2. Notice
that even in the case d = 1, we cannot apply the method used in the paper when
the distribution of the sample is not uniform since we lose the interchangeability
of the spacings.

The number of reflexive NN pairs was also used in inferential statistics in the
literature. For example, Dacey [10] used it to test the clustering of river towns in the
US. However, the author ignored the uncertainty due to the randomness in Rn and
compared the observed Rn values to its expected value to declare clustering or reg-
ularity of the towns. This methodology was also criticized by Pinder and Witherick
[23] who proposed an alternative method based on the average NN distance (and
its empirical pdf) for the same type of inference. But, Rn can be employed in exact
inference using its exact pmf for testing such one-dimensional patterns for small
n (as the exact distribution depends on the distribution of the data). However, by
the above discussion on r(d) and σ2

R(d), for data from any continuous distribution,
Rn would converge to the same normal distribution as n goes to infinity. Hence,
testing spatial clustering/regularity based on the asymptotic approximation of Rn
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is not appropriate (hence not recommended), as it would have power equal to the
significance level of the test in the limit under any continuous alternative as well
as under the null pattern (i.e., under uniformity of the points). On the other hand,
if the convergence in probability of Rn/n and Qn/n to some constants (regardless
of the distribution of continuous data) is established in all dimensions, then this
would be a desirable property for removing the restrictions of NN tests which are
conditional on Rn and Qn (e.g., tests of [11]) in their asymptotic distribution. The
types of convergence for Rn/n and Qn/n for data in higher dimensions are topics
of ongoing research.
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