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STRONG LAWS OF LARGE NUMBERS FOR THE SEQUENCE
OF THE MAXIMUM OF PARTIAL SUMS OF I.I.D. RANDOM VARIABLES
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Abstract. Let 0 < p ¬ 2, let {Xn; n ­ 1} be a sequence of inde-
pendent copies of a real-valued random variable X, and set Sn = X1 +

. . . + Xn, n ­ 1. Motivated by a theorem of Mikosch (1984), this note
is devoted to establishing a strong law of large numbers for the sequence
{max1¬k¬n |Sk| ; n ­ 1}. More specifically, necessary and sufficient con-
ditions are given for

lim
n→∞

( max
1¬k¬n

|Sk|)(logn)−1

= e
1/p a.s.,

where log x = loge max{e, x}, x ­ 0.
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1. A THEOREM OF MIKOSCH

Throughout this note, let {X,Xn; n ­ 1} be a sequence of independent and
identically distributed (i.i.d.) real-valued random variables defined on a probability
space (Ω,F ,P). As usual, let Sn =

∑n
k=1Xk, n ­ 1, denote their partial sums.

For a, b ∈ R = (−∞,∞), we denote max{a, b} by a ∨ b and min{a, b} by a ∧ b.
Write log x = loge(e ∨ x), x ­ 0. If 0 < p < 2, then

lim
n→∞

Sn

n1/p
= 0 almost surely (a.s.)
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if and only if

E|X|p <∞, where EX = 0 whenever p ­ 1.

This is the celebrated Kolmogorov–Marcinkiewicz–Zygmund strong law of large
numbers (SLLN); see Kolmogoroff [7] for p = 1 and Marcinkiewicz and Zygmund
[8] for p 6= 1. The origin of the current investigation is the following strong limit
theorem established by Mikosch [9] (see Addendum 7.5.16 of Petrov [10], p. 258)
which is related to the Kolmogorov–Marcinkiewicz–Zygmund SLLN.

THEOREM 1.1 (Mikosch [9]). Suppose that E|X|β <∞ for some β > 0 and
EX = 0 if β ­ 1. Let

β0 = sup{β > 0 : E|X|β <∞} and p = β0 ∧ 2.

Then

(1.1) lim sup
n→∞

∣∣∣∣ Sn

n1/p

∣∣∣∣(logn)−1

= 1 a.s.

REMARK 1.1. Since, for n ­ 3,

e−1/p |Sn|(logn)
−1

=

∣∣∣∣ Sn

n1/p

∣∣∣∣(logn)−1

,

(1.1) is equivalent to

(1.2) lim sup
n→∞

|Sn|(logn)
−1

= e1/p a.s.

REMARK 1.2. Recently Zou and Liu [11] proved for 0 < p ¬ 2 that (1.2)
holds if and only if

(1.3)



P(X = 0) < 1, EX = 0,

and sup{β ­ 0 : E|X|β <∞} ­ 2 if p = 2,

EX = 0 and sup{β ­ 0 : E|X|β <∞} = p if 1 < p < 2,

either sup{β ­ 0 : E|X|β <∞} = 1

or E|X| <∞ and EX 6= 0 if p = 1,

sup{β ­ 0 : E|X|β <∞} = p if 0 < p < 1.

We now look at the following two examples.
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EXAMPLE 1.1. Assume that {X, Xn; n ­ 1} is a Rademacher sequence;
that is, {X,Xn; n ­ 1} is a sequence of i.i.d. random variables with P(X = 1) =
P(X = −1) = 1/2. Then

EX = 0 and EX2 = 1,

and hence, by Theorem 1.1,

lim sup
n→∞

|Sn|(logn)
−1

= e1/2 a.s.

On the other hand, for this example, it is well known that

P (Sn = 0 infinitely often (i.o.)) = 1,

and hence
lim inf
n→∞

|Sn|(logn)
−1

= 0 a.s.

Thus, for this example,

lim
n→∞
|Sn|(logn)

−1

does not exist a.s.

EXAMPLE 1.2. Let {X, Xn; n ­ 1} be a sequence of i.i.d. real-valued ran-
dom variables with a symmetric distribution given by

P(X = k) = P(X = −k) = c1(log k)
2

k2
, k = 1, 2, 3, . . . ,

where c1 =
(
2
∑∞

k=1(log k)
2/k2

)−1. Then

sup{β ­ 0 : E|X|β <∞} = 1,

and hence, by Remark 1.2,

lim sup
n→∞

|Sn|(logn)
−1

= e a.s.

On the other hand, for this example, Kesten [6], pp. 1182–1183, showed that

lim inf
n→∞

|Sn|
nα

= 0 a.s. ∀ α > 0.

Thus

lim inf
n→∞

|Sn|(logn)
−1

= lim inf
n→∞

eα
∣∣∣∣Sn

nα

∣∣∣∣(logn)−1

¬ eα a.s. ∀ α > 0,

and hence
lim inf
n→∞

|Sn|(logn)
−1

¬ 1 a.s.

Thus, for this example,

lim
n→∞
|Sn|(logn)

−1

does not exist a.s.
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Motivated by the theorem of Mikosch [9] and two examples above, this note
is devoted to establishing an SLLN for the sequence {max1¬k¬n |Sk| ; n ­ 1} of
the maximum of partial sums of i.i.d. real-valued random variables. Necessary and
sufficient conditions are given for

lim
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= e1/p a.s., where 0 < p ¬ 2.

Our main results are Theorems 2.1–2.4 stated in Section 2. In regard to Exam-
ple 1.1 above, it follows from Theorem 2.1 that

lim
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= e1/2 a.s.,

and in regard to Example 1.2 above, it follows from Theorem 2.3 that

lim
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= e a.s.

2. THE SLLN FOR THE SEQUENCE OF THE MAXIMUM OF PARTIAL SUMS

We start with some notation. Let X be a given real-valued random variable.
Write

ρ1 = sup{r ­ 0 : lim
x→∞

xrP(|X| > x) = 0},

ρ2 = sup{r ­ 0 : lim inf
x→∞

xrP(|X| > x) = 0}.

Clearly, ρ1 and ρ2 are two parameters of the distribution of the random variable X
and satisfy

0 ¬ ρ1 ¬ ρ2 ¬ ∞.

We say that X is a symmetric random variable if

P(X ¬ x) = P(X ­ −x) ∀ x ∈ R.

Let {Xn; n ­ 1} be a sequence of independent copies of a real-valued random
variable X . Let 0 < p ¬ 2. In this section, the SLLN for {max1¬k¬n |Sk| ; n ­ 1}
is presented by the following Theorems 2.1–2.4.

THEOREM 2.1. The following three statements are equivalent:

(2.1) lim
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= e1/2 a.s.,

(2.2) 0 < lim sup
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1 ¬ e1/2 a.s.,

(2.3) P(X = 0) < 1, EX = 0, and ρ1 ­ 2.
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REMARK 2.1. It is easy to see that (2.1) holds for Example 1.1. Furthermore,
(2.1) holds for any real-valued random variable X satisfying

EX = 0 and 0 < EX2 <∞.

However, the converse is not true. Thus, we see that Theorem 2.1 is a kind of
supplement to the classical Hartman and Wintner [4] law of the iterated logarithm
(LIL) for the partial sums of i.i.d. random variables.

THEOREM 2.2. Let 1 < p < 2. Then

lim
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= e1/p a.s. if and only if EX = 0 and ρ1 = ρ2 = p.

THEOREM 2.3. (i) Let X be a real-valued random variable such that

(2.4) either E|X| <∞ and EX 6= 0 or ρ1 = ρ2 = 1.

Then

(2.5) lim
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= e a.s.

(ii) If X is a real-valued symmetric random variable, then

(2.5) holds if and only if ρ1 = ρ2 = 1.

REMARK 2.2. We now reconsider Example 1.2. Clearly, X is symmetric.
Since

∞∑
k=n

c1(log k)
2

k2
∼ c1(log n)

2

n
as n→∞,

we see that
ρ1 = ρ2 = 1,

and hence, by Theorem 2.3, (2.5) holds.

THEOREM 2.4. Let 0 < p < 1. Then

lim
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= e1/p a.s. if and only if ρ1 = ρ2 = p.

To prove Theorems 2.1–2.4, some preliminary lemmas will first be established
in Section 3. These lemmas may be of independent interest. Our main results will
then be proved in Section 4. We refer the reader to Chow and Teicher [1] for any
basic results in probability theory that are used in this note.
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3. PRELIMINARY LEMMAS

To prove the SLLN for the sequence of the maximum of partial sums, we use
the following preliminary lemmas.

LEMMA 3.1. Let {an; n ­ 1} be a nondecreasing sequence of positive real
numbers such that

lim
n→∞

an =∞.

Then, for any sequence {bn; n ­ 1} of real numbers such that supn­1 |bn| > 0,
we have

(3.1) lim sup
n→∞

( max
1¬k¬n

|bk|)1/an = 1 ∨ lim sup
n→∞

|bn|1/an .

P r o o f. Set γ = lim supn→∞ |bn|
1/an . Since supn­1 |bn| > 0, there exists

n0 ­ 1 such that |bn0 | > 0. Note that

( max
1¬k¬n

|bk|)1/an ­ |bn|1/an and ( max
1¬k¬n

|bk|)1/an ­ |bn0 |
1/an , n ­ n0.

We thus see that

lim sup
n→∞

( max
1¬k¬n

|bk|)1/an ­ lim sup
n→∞

|bn|1/an = γ,

and it follows from limn→∞ an =∞ that

lim sup
n→∞

( max
1¬k¬n

|bk|)1/an ­ lim sup
n→∞

|bn0 |
1/an = 1,

and hence

(3.2) lim sup
n→∞

( max
1¬k¬n

|bk|)1/an ­ 1 ∨ γ.

We now show that

(3.3) lim sup
n→∞

( max
1¬k¬n

|bk|)1/an ¬ 1 ∨ γ.

Clearly, (3.3) holds if γ =∞.
We now turn our attention to the case 0 ¬ γ < ∞. For given ϵ > 0, there

exists a positive integer nϵ ­ n0 such that

|bn|1/an ¬ γ + ϵ ∀ n ­ nϵ,

and hence
|bn| ¬ (γ + ϵ)an ¬

(
(1 ∨ γ) + ϵ

)an ∀ n ­ nϵ.
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Since {an; n ­ 1} is a nondecreasing sequence of positive real numbers and
(1 ∨ γ) + ϵ > 1, we see that

|bk| ¬
(
(1 ∨ γ) + ϵ

)an ∀ nϵ ¬ k ¬ n.

Thus we have

( max
1¬k¬n

|bk|)1/an ¬ ( max
1¬k¬nϵ

|bk|)1/an ∨ ( max
nϵ¬k¬n

|bk|)1/an

¬ ( max
1¬k¬nϵ

|bk|)1/an ∨
(
(1 ∨ γ) + ϵ

)
∀ n ­ nϵ.

Since limn→∞ an =∞, we get

lim sup
n→∞

( max
1¬k¬n

|bk|)1/an ¬ 1 ∨
(
(1 ∨ γ) + ϵ

)
= (1 ∨ γ) + ϵ.

Letting ϵ ↘ 0, we obtain (3.3), which together with (3.2) yields the conclusion
(3.1). The proof of Lemma 3.1 is now complete. �

Note that, for r > 0,

if lim
x→∞

xrP(|X| > x) = 0, then E|X|r1 <∞ ∀ 0 ¬ r1 < r,

and
if E|X|r <∞, then lim

x→∞
xr1P(|X| > x) = 0 ∀ 0 ¬ r1 ¬ r.

We thus infer that

ρ1 = sup{r ­ 0 : lim
x→∞

xrP(|X| > x) = 0} = sup{r ­ 0 : E|X|r <∞}.

Thus, by Lemma 3.1 and Remark 1.2, we have the following strong limit theo-
rem for the sequence of the maximum of partial sums of i.i.d. real-valued random
variables. This theorem will be used in the proofs of Theorems 2.1–2.4.

THEOREM 3.1. Let 0 < p ¬ 2. Let {Xn; n ­ 1} be a sequence of indepen-
dent copies of a real-valued random variable X . Then

lim sup
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= e1/p a.s.

if and only if
P(X = 0) < 1, EX = 0, and ρ1 ­ 2 if p = 2,
EX = 0 and ρ1 = p if 1 < p < 2,
either ρ1 = 1 or E|X| <∞ and EX 6= 0 if p = 1,
ρ1 = p if 0 < p < 1.
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The following lemma will be used in the proof of Theorem 2.1.

LEMMA 3.2. Let {Xn; n ­ 1} be a sequence of independent copies of a real-
valued nondegenerate random variable X . Then

(3.4) lim inf
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1 ­ e1/2 a.s.

P r o o f. If 0 < EX2 < ∞ and EX = 0, then it follows from the so-called
other LIL due to Chung [2] and Jain and Pruitt [5] that

(3.5) lim inf
n→∞

max1¬k¬n |Sk|√
n/ log log n

=
π√
8
(EX2)1/2 a.s.

If 0 < EX2 <∞ and EX 6= 0, then it follows from the Kolmogorov SLLN that

(3.6) lim inf
n→∞

max1¬k¬n |Sk|√
n/ log log n

­ lim
n→∞

n |Sn/n|√
n/ log log n

=∞ a.s.

If EX2 =∞, then it follows from Theorem 3.2 of Csáki [3] (see Addendum 7.5.19
of Petrov [10], p. 258) that

(3.7) lim
n→∞

max1¬k¬n |Sk|√
n/ log log n

=∞ a.s.

Thus, from (3.5)–(3.7) we obtain

lim inf
n→∞

max1¬k¬n |Sk|√
n/ log log n

> 0 a.s.,

which ensures that

lim inf
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= lim inf
n→∞

((√
n/ log log n

)(logn)−1
(
max1¬k¬n |Sk|√

n/ log log n

)(logn)−1)
­ e1/2 a.s.,

i.e., (3.4) holds. �

The following lemma will be used in the proofs of Theorems 2.2–2.4.

LEMMA 3.3. Let {Xn; n ­ 1} be a sequence of independent copies of a real-
valued random variable X such that 0 < ρ2 ¬ 2. Then

(3.8) lim inf
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1 ­ e1/ρ2 a.s.
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P r o o f. For given ρ2 < r < ∞, let r1 = (r + ρ2)/2 and τ = 1 − (r1/r).
Then ρ2 < r1 < r <∞ and τ > 0. By the definition of ρ2, we have

lim
x→∞

xr1P(|X| > x) =∞,

and hence for all sufficiently large x,

P(|X| > x) ­ x−r1 .

Thus, for all sufficiently large n,

nP(|X| > n1/r) ­ n(n1/r)−r1 = n1−(r1/r) = nτ ,

and hence

P( max
1¬k¬n

|Xk| ¬ n1/r) =
(
1− P(|X| > n1/r)

)n ¬ e−nP(|X|>n1/r) ¬ e−n
τ
.

Since
∞∑
n=1

e−n
τ
<∞,

by the Borel–Cantelli lemma, we have

P
(
( max
1¬k¬n

|Xk|)(logn)
−1 ¬ e1/r i.o.

)
= P( max

1¬k¬n
|Xk| ¬ n1/r i.o.) = 0,

which implies

(3.9) lim inf
n→∞

( max
1¬k¬n

|Xk|)(logn)
−1 ­ e1/r a.s.

Letting r ↘ ρ2, from (3.9) we obtain

(3.10) lim inf
n→∞

( max
1¬k¬n

|Xk|)(logn)
−1 ­ e1/ρ2 a.s.

Note that, for each n ­ 1,

|Xk| = |Sk − Sk−1| ¬ |Sk|+ |Sk−1| ∀ 1 ¬ k ¬ n.

Thus
max
1¬k¬n

|Xk| ¬ 2 max
1¬k¬n

|Sk| ∀ n ­ 1.

It thus follows from (3.10) that

lim inf
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

­ lim inf
n→∞

(
1

2

)(logn)−1

lim inf
n→∞

( max
1¬k¬n

|Xk|)(logn)
−1 ­ e1/ρ2 a.s.,

i.e., (3.8) holds. �
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The following lemma will be used in the proof of Theorem 2.2.

LEMMA 3.4. Let {Xn; n ­ 1} be a sequence of independent copies of a real-
valued random variable X such that

EX = 0 and 1 < ρ1 < 2 ∧ ρ2.

Then

(3.11) lim inf
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

< e1/ρ1 a.s.

P r o o f. Let h =
(
(2 ∧ ρ2)− ρ1

)
/4. Since 1 < ρ1 < 2 ∧ ρ2, we infer that

h > 0, ρ1 < ρ1 + 3h < 2 ∧ ρ2, and by the definition of ρ2,

lim inf
x→∞

xρ1+3hP(|X| > x) = 0.

Hence, by letting x = t1/(ρ1+2h), we obtain

lim inf
t→∞

t1+ηP(|X| > t1/b) = 0,

where
η =

h

ρ1 + 2h
> 0 and b = ρ1 + 2h ∈ (ρ1, 2 ∧ ρ2).

Then, proceeding inductively, we can choose an increasing sequence {nm; m ­ 1}
of positive integers such that n1 = 1 and

nm = min

{
k ­ 2m ∨ (nm−1 + 1) : P(|X| > k1/b) ¬ 1

k1+η

}
, m > 1.

Write, for (x, y) ∈ (0, 2)× (0, 2),

φ1(x, y) = 1 +
2

b
− x

b
− 2

y
and φ2(x, y) = −η +

1 + η

x
− 1

y
.

Since

lim
x↗ρ1
y↘ρ1

φ1(x, y) = 1 +
2

b
− ρ1

b
− 2

ρ1

=
ρ1b+ 2ρ1 − ρ21 − 2b

ρ1b
=

(ρ1 − 2) (b− ρ1)

ρ1b
< 0

and

lim
x↗ρ1
y↘ρ1

φ2(x, y) = −η +
1 + η

ρ1
− 1

ρ1
=

η(1− ρ1)

ρ1
< 0,
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we can choose r and q such that 1 < r < ρ1, ρ1 < q < b, and

φ1(r, q) = 1 +
2

b
− r

b
− 2

q
< 0, and φ2(r, q) = −η +

1 + η

r
− 1

q
< 0,

and hence

E|X|r <∞,
1

b
<

1

q
<

1

ρ1
, and P(|X| > n1/q

m ) ¬ 1

n1+η
m

, m ­ 1.

Write, for 1 ¬ i ¬ nm, m ­ 1,

µm = E
(
XI(|X| ¬ n1/q

m )
)
, Xm,i = XiI(|Xi| ¬ n1/q

m )− µm.

Note that

Sk = kµm +
k∑

i=1

Xm,i +
k∑

i=1

XiI(|Xi| > n1/q
m ), 1 ¬ k ¬ nm, m ­ 1.

We thus have
(3.12)

max
1¬k¬nm

|Sk| ¬ nm |µm|+ max
1¬k¬nm

∣∣ k∑
i=1

Xm,i

∣∣+ nm∑
i=1

|Xi| I(|Xi| > n1/q
m ), m ­ 1.

We now show that

(3.13) lim
m→∞

nm |µm|
n
1/q
m

= 0,

(3.14) lim
m→∞

max
1¬k¬nm

∣∣ k∑
i=1

Xm,i

∣∣
n
1/q
m

= 0 a.s.,

and

(3.15) lim
m→∞

nm∑
i=1
|Xi| I(|Xi| > n

1/q
m )

n
1/q
m

= 0 a.s.

To verify (3.13), let s = r/(r − 1). It follows from r > 1 that

s > 1 and
1

r
+

1

s
= 1.
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Since EX = 0 and E|X|r <∞, using Hölder’s inequality, we have

nm |µm|
n
1/q
m

=
nm

∣∣E(XI(|X| > n
1/q
m )

)∣∣
n
1/q
m

¬
nm(E|X|r)1/r

(
E
(
I(|X| > n

1/q
m )

)s)1/s
n
1/q
m

=
nm(E|X|r)1/r

(
P(|X| > n

1/q
m )

)1−1/r
n
1/q
m

¬ nm(E|X|r)1/r(n−1−ηm )1−1/r

n
1/q
m

= (E|X|r)1/rnφ2(r,q)
m , m ­ 1,

and hence, by recalling that φ2(r, q) < 0, (3.13) follows.
We now verify (3.14). Note that for each m ­ 1, Xm,i, 1 ¬ i ¬ nm, are i.i.d.

real-valued random variables such that EXm,i = 0, 1 ¬ i ¬ nm. Thus, using Kol-
mogrov’s inequality, we see that, for all ϵ > 0 and m ­ 1,

P
(

max
1¬k¬nm

∣∣ nm∑
i=1

Xm,i

∣∣ > ϵn1/q
m

)

¬
Var

( nm∑
i=1

Xm,i

)
ϵ2n

2/q
m

¬
nmE

(
X2I(|X| ¬ n

1/q
m )

)
ϵ2n

2/q
m

=
nmE

(
|X|r|X|2−rI(|X| ¬ n

1/b
m )

)
ϵ2n

2/q
m

+
nmE

(
X2I(n

1/b
m < |X| ¬ n

1/q
m )

)
ϵ2n

2/q
m

¬ (E|X|r)nmn
(2/b)−(r/b)
m

ϵ2n
2/q
m

+
nmn

2/q
m P(n1/b

m < |X| ¬ n
1/q
m )

ϵ2n
2/q
m

¬ (E|X|r/ϵ2)nφ1(r,q)
m + (1/ϵ2)

1

nη
m

¬ (E|X|r/ϵ2) (2m)φ1(r,q) + (1/ϵ2)
1

2ηm
= (E|X|r/ϵ2)λm + (1/ϵ2)

1

2ηm
,

where we let λ = 2φ1(r,q). Then 0 < λ < 1 since φ1(r, q) < 0. Hence

∞∑
m=1

P
(

max
1¬k¬nm

∣∣ k∑
i=1

Xm,i

∣∣ > ϵn1/q
m

)
¬ E|X|r

ϵ2

∞∑
m=1

λm +
1

ϵ2

∞∑
m=1

1

2ηm
<∞ ∀ ϵ > 0,

which, by applying the Borel–Cantelli lemma, yields (3.14).
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To verify (3.15), note that

∞∑
m=1

P
( nm∑
i=1

|Xi| I(|Xi| > n1/q
m ) 6= 0

)
=
∞∑

m=1

P( max
1¬i¬nm

|Xi| > n1/q
m )

¬
∞∑

m=1

nmP(|X| > n1/q
m ) ¬

∞∑
m=1

1

nη
m
¬
∞∑

m=1

1

2ηm
<∞.

Thus, applying the Borel–Cantelli lemma, we have

P
( nm∑
i=1

|Xi| I(|Xi| > n1/q
m ) 6= 0 i.o.

)
= 0,

which ensures (3.15).
It thus follows from (3.12)–(3.15) that

lim
m→∞

max1¬k¬nm |Sk|
n
1/q
m

= 0 a.s.,

and hence

lim inf
n→∞

max1¬k¬n |Sk|
n1/q

= 0 a.s.,

which ensures that

lim inf
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= lim inf
n→∞

e1/q
(
max1¬k¬n |Sk|

n1/q

)(logn)−1

¬ e1/q < e1/ρ1 a.s.,

where the first inequality follows from the observation that if 0 < anj → 0 and

0 < bj → 0, then a
bj
nj ¬ 1 for all large j. Thus (3.11) holds. �

The following Lemmas 3.5 and 3.6 will be used in the proofs of Theorems 2.3
and 2.4, respectively. Their proofs are similar to that of Lemma 3.4.

LEMMA 3.5. Let {Xn; n ­ 1} be a sequence of independent copies of a real-
valued symmetric random variable X such that ρ1 = 1 < ρ2. Then

(3.16) lim inf
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

< e a.s.

P r o o f. Let h =
(
(2 ∧ ρ2)− 1

)
/4, η = h/(1 + 2h), and b = 1 + 2h. Since

1 < ρ2, we have h > 0, η > 0, b ∈ (1, 2 ∧ ρ2), and by the definition of ρ2,

lim inf
t→∞

t1+ηP(|X| > t1/b) = 0.
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Then, proceeding inductively, we can choose an increasing sequence {nm; m ­ 1}
of positive integers such that n1 = 1 and

nm = min

{
k ­ 2m ∨ (nm−1 + 1) : P(|X| > k1/b) ¬ 1

k1+η

}
, m > 1.

Write

ϕ(x, y) = 1 +
2

b
− x

b
− 2

y
, (x, y) ∈ (0, 2)× (0, 2).

Since ρ1 = 0 and

lim
x↗ρ1
y↘ρ1

ϕ(x, y) = 1 +
2

b
− 1

b
− 2 =

1− b

b
< 0,

we can choose r and q such that

0 < r < 1 < q < b and φ(r, q) = 1 +
2

b
− r

b
− 2

q
< 0,

and hence

E|X|r <∞,
1

b
<

1

q
< 1, and P(|X| > n1/q

m ) ¬ 1

n1+η
m

, m ­ 1.

Since {Xn; n ­ 1} is a sequence of independent copies of the real-valued sym-
metric random variable X , using Lévy’s inequality and Chebyshev’s inequality, we
have for m ­ 1,

(3.17) P( max
1¬k¬nm

|Sk| > 2ϵn1/q
m ) ¬ 2P(|Snm | > 2ϵn1/q

m )

¬ 2P
(∣∣ nm∑

i=1

XiI(|Xi| ¬ n1/q
m )

∣∣ > ϵn1/q
m

)
+ 2P

(∣∣ nm∑
i=1

XiI(|Xi| > n1/q
m )

∣∣ > ϵn1/q
m

)
¬

(
2

ϵ2

)
nmE

(
X2I(|X| ¬ n

1/q
m )

)
n
2/q
m

+ 2nmP(|X| > n1/q
m ) ∀ ϵ > 0.
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Let ζ = 2φ(r,q). Then 0 < ζ < 1 (since φ(r, q) < 0). Note that

(3.18)
nmE

(
X2I(|X| ¬ n

1/q
m )

)
n
2/q
m

=
nmE

(
|X|r|X|2−rI(|X| ¬ n

1/b
m )

)
n
2/q
m

+
nmE

(
X2I(n

1/b
m < |X| ¬ n

1/q
m )

)
n
2/q
m

¬ (E|X|r) nmn
(2/b)−(r/b)
m

n
2/q
m

+
nmn

2/q
m P(n1/b

m < |X| ¬ n
1/q
m )

n
2/q
m

¬ (E|X|r)nφ(r,q)
m +

1

nη
m

¬ (E|X|r) (2m)φ(r,q) +
1

2ηm
= (E|X|r) ζm +

1

2ηm
∀m ­ 1

and

(3.19) nmP(|X| > n1/q
m ) ¬ 1

nη
m
¬ 1

2ηm
∀m ­ 1.

It thus follows from (3.17)–(3.19) that

(3.20)
∞∑

m=1

P( max
1¬k¬nm

|Sk| > 2ϵn1/q
m )

¬ 2

ϵ2

(
E|X|r

∞∑
m=1

ζm +
∞∑

m=1

1

2ηm

)
+ 2

∞∑
m=1

1

2ηm
<∞ ∀ ϵ > 0.

Applying the Borel–Cantelli lemma, we see that (3.20) implies

lim
m→∞

max1¬k¬nm |Sk|
n
1/q
m

= 0 a.s.,

which ensures that

lim inf
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= lim inf
n→∞

e1/q
(
max1¬k¬n |Sk|

n1/q

)(logn)−1

¬ e1/q < e a.s.,

i.e., (3.16) holds. �

LEMMA 3.6. Let {Xn; n ­ 1} be a sequence of independent copies of a real-
valued random variable X such that 0 < ρ1 < 1 ∧ ρ2. Then

(3.21) lim inf
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

< e1/ρ1 a.s.
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P r o o f. Let h =
(
(1 ∧ ρ2)− ρ1

)
/4, η = h/(ρ1 + 2h), and b = ρ1 + 2h.

Since 0 < ρ1 < 1 ∧ ρ2, we have h > 0, η > 0, b ∈ (ρ1, 1 ∧ ρ2), and by the defini-
tion of ρ2,

lim inf
t→∞

t1+ηP(|X| > t1/b) = 0.

Then, proceeding inductively, we can choose an increasing sequence {nm; m ­ 1}
of positive integers such that n1 = 1 and

nm = min

{
k ­ 2m ∨ (nm−1 + 1) : P(|X| > k1/b) ¬ 1

k1+η

}
, m > 1.

Write

ϕ(x, y) = 1 +
1

b
− x

b
− 1

y
, (x, y) ∈ (0, 1)× (0, 1).

Since

lim
x↗ρ1
y↘ρ1

ϕ(x, y) = 1+
1

b
− ρ1

b
− 1

ρ1
=

ρ1b+ ρ1 − ρ21 − b

ρ1b
=

(ρ1 − 1) (b− ρ1)

ρ1b
< 0,

we can choose r and q such that

0 < r < ρ1 < q < b and ϕ(r, q) = 1 +
1

b
− r

b
− 1

q
< 0,

and hence

E|X|r <∞,
1

b
<

1

q
<

1

ρ1
, and P(|X| > n1/q

m ) ¬ 1

n1+η
m

, m ­ 1.

Using Markov’s inequality, we have for m ­ 1,

(3.22) P( max
1¬k¬nm

|Sk| > 2ϵn1/q
m ) ¬ P

( nm∑
i=1

|Xi| > 2ϵn1/q
m

)
¬ P

( nm∑
i=1

|Xi|I(|Xi| ¬ n1/q
m ) > ϵn1/q

m

)
+ P

( nm∑
i=1

|Xi|I(|Xi| > n1/q
m ) > ϵn1/q

m

)
¬

(
1

ϵ

)
nmE

(
|X|I(|X| ¬ n

1/q
m )

)
n
1/q
m

+ nmP(|X| > n1/q
m ) ∀ ϵ > 0.
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Let τ = 2ϕ(r,q). Then 0 < τ < 1 (since ϕ(r, q) < 0). Note that

(3.23)
nmE

(
|X|I(|X| ¬ n

1/q
m )

)
n
1/q
m

=
nmE

(
|X|r|X|1−rI(|X| ¬ n

1/b
m )

)
n
1/q
m

+
nmE

(
|X|I(n1/b

m < |X| ¬ n
1/q
m )

)
n
1/q
m

¬ (E|X|r) nmn
(1/b)−(r/b)
m

n
1/q
m

+
nmn

1/q
m P(n1/b

m < |X| ¬ n
1/q
m )

n
1/q
m

¬ (E|X|r)nϕ(r,q)
m +

1

nη
m

¬ (E|X|r) (2m)ϕ(r,q) +
1

2ηm
= (E|X|r) τm +

1

2ηm
∀m ­ 1

and

(3.24) nmP(|X| > n1/q
m ) ¬ nmP(|X| > n1/b

m ) ¬ 1

2ηm
∀m ­ 1.

It thus follows from (3.22)–(3.24) that

∞∑
m=1

P( max
1¬k¬nm

|Sk| > 2ϵn1/q
m )

¬ 1

ϵ

(
E|X|r

∞∑
m=1

τm +
∞∑

m=1

1

2ηm

)
+
∞∑

m=1

1

2ηm
<∞ ∀ ϵ > 0,

which, by applying the Borel–Cantelli lemma, yields

lim
m→∞

max1¬k¬nm |Sk|
n
1/q
m

= 0 a.s.

Hence

lim inf
n→∞

max1¬k¬n |Sk|
n1/q

= 0 a.s.,

which ensures that

lim inf
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= lim inf
n→∞

e1/q
(
max1¬k¬n |Sk|

n1/q

)(logn)−1

¬ e1/q < e1/ρ1 a.s.,

i.e., (3.21) holds. �
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4. PROOFS OF THEOREMS 2.1–2.4

With the preliminary results provided in the previous sections, Theorems 2.1–
2.4 may be proved.

P r o o f o f T h e o r e m 2.1. By Theorem 3.1 with p = 2 and Lemma 3.2,
(2.1) and (2.3) are equivalent.

Clearly, (2.2) follows from (2.1).
It remains to show that (2.2) implies (2.1). It follows from (2.2) that X is

a nondegenerate random variable. By Lemma 3.2, (3.4) holds, and hence (2.1)
follows. �

P r o o f o f T h e o r e m 2.2. The “if” part follows from Theorem 3.1 with
1 < p < 2 and Lemma 3.3.

We now establish the “only if” part. Since 1 < p < 2, by Theorem 3.1, it
follows from

(4.1) lim
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= e1/p a.s.

that EX = 0 and ρ1 = p. If ρ2 6= p, then ρ1 < ρ2 (since ρ1 ¬ ρ2). By Lemma 3.4,
we have

lim inf
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

< e1/ρ1 = e1/p a.s.,

which contradicts (4.1). Thus (4.1) implies that EX = 0 and ρ1 = ρ2 = p. �

P r o o f o f T h e o r e m 2.3. (i) If ρ1 = ρ2 = 1, then (2.5) follows from The-
orem 3.1 with p = 1 and Lemma 3.3.

If E|X| <∞ and EX 6= 0, then, by the Kolmogorov SLLN,

lim
n→∞

max1¬k¬n |Sk|
n

= |EX| a.s.,

and hence

lim
n→∞

( max
1¬k¬n

|Sk|)(logn)
−1

= lim
n→∞

e

(
max1¬k¬n |Sk|

n

)(logn)−1

= e a.s.,

i.e., (2.5) holds.
(ii) From part (i), we only need to prove the “only if” part. Since X is a sym-

metric random variable, by Theorem 3.1 with p = 1 and Lemma 3.5, (2.5) implies
that ρ1 = ρ2 = 1. �
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REMARK 4.1. We now construct a counterexample to show that (2.4) is not
necessary for (2.5) to hold. In fact, for given 1 < ρ <∞, let X be a real-valued
random variable with probability distribution given by

P (X = dn) =
c2
dn

, n ­ 1,

where

dn = 2ρ
n
, n ­ 1, and c2 =

( ∞∑
n=1

1

dn

)−1
> 0.

Let {Xn; n ­ 1} be a sequence of independent copies of X . Then

EX =∞, ρ1 = 1, ρ2 = ρ > 1,

and (2.5) holds by Sn ­ nd1, n ­ 1, and Theorem 3.1 with p = ρ1 = 1.

P r o o f o f T h e o r e m 2.4. By using Theorem 3.1 with 0 < p < 1 and
Lemma 3.3, the “if” part follows.

Since 0 < p < 1, the “only if” part follows from Theorem 3.1 with 0 < p < 1
and Lemma 3.6. �
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