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Abstract. We investigate limit properties of discrete time branching
processes with application of the theory of regularly varying functions in
the sense of Karamata. In the critical situation we suppose that the offspring
probability generating function has an infinite second moment but its tail
regularly varies. In the noncritical case, the finite moment of type E[x ln x]

is required. The lemma on the asymptotic representation of the generating
function of the process and its differential analogue will underlie our con-
clusions.
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1. INTRODUCTION

Let {Zn, n ∈ N0} be the Galton–Watson (G–W) branching process with off-
spring probability generating function (GF) F (s) =

∑
j∈N0

pjs
j , where p0 > 0,

p1 > 0, p0 + p1 < 1, N0 = {0} ∪ N and N = {1, 2, . . .}. The process evolution
is characterized by transition probabilities Pij(n) = Pi{Zn = j} for i ∈ N, where
Pi{∗} := P {∗ |Z0 = i}. Further, where required, we will write P{∗} instead of
P1{∗}. In this interpretation, pk = P {Z1 = k} and m = F ′(1−) is a mean per
capita offspring number. The process {Zn} is said to be subcritical, critical and
supercritical if m < 1, m = 1 and m > 1, respectively. A GF Fn(s) =∑

j∈N0
P1j(n)s

j is the n-fold iteration of F (s), see [2].
Let H = min {n : Zn = 0} be the time to extinction of the G–W process.

The variable q = inf {s ∈ (0, 1] : F (s) = s} is the probability of extinction of our
process. By the classical extinction theorem we know that Pi {H <∞} = qi and
that q = 1 if m ¬ 1, and q < 1 if m > 1.
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Our reasoning is involved with elements of the theory of regularly varying
functions in sense of Karamata, see [8]. Let us recall that a real-valued, positive
and measurable function ℓ(x) is said to be slowly varying at α if it belongs to a
class

Sα :=

{
ℓ(x) ∈ R+ : lim

x→α

ℓ(λx)

ℓ(x)
= 1 for each λ ∈ R+

}
,

where and in the sequel R+ is the set of positive real numbers. A function V(x)
is said to be regularly varying at α with index of regular variation ρ ∈ R+ if it
takes the form V(x) = xρℓ(x), where ℓ(x) ∈ Sα. We denote by Rρ

α the class of
regularly varying functions. It is obvious that Sα ≡ R0

α, see [11].
The approach to applications of regularly varying functions in the theory of

branching processes was first made by Zolotarev [16] in the continuous time case.
In the discrete time case, earlier researches belong to Slack [15], [14] and Seneta
[13], [12], [10]. The detailed results connected with applications of regularly vary-
ing functions in the theory of branching processes can be found in the monographs
[1] and [3].

In the noncritical situation, positive numbers{
νk := lim

n→∞
Pi{Zn = k |n < H <∞}

}
are an invariant distribution with respect to transition probabilities {Pij(n)}. More-
over, the limiting GF V(s) =

∑
j∈N νjs

j satisfies the Schröder equation

(1.1) 1− V
(
F̂ (s)

)
= β · [1− V(s)]

for all 0 ¬ s ¬ 1, where F̂ (s) = F (qs)/q and β = F ′(q). If in the case m < 1 we
have E [Z1 lnZ1] <∞, then V ′(1−) <∞ and

(1.2) P {H > n} ∼ 1

V ′(1−)
·mn

as n→∞; see, e.g., [13].
By the following theorem we see that the regular variation is implicitly present

in the equation (1.1) and the asymptote (1.2).

THEOREM S. The following assertions are true:
1. For m < 1 there exists ℓ(s) ∈ S0 such that ℓ(s) ↓ 1/V ′(1−) as s ↓ 0 and

(1.3) P {n < H <∞} = ℓ (mn) ·mn.

2. In the case m 6= 1 the GF V(s) is a unique solution of (1.1) and

1− V(1− s) ∈ R1
0.
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The first part of Theorem S was proved in [3], pp. 398–399; see also [13]. The
second part was proved in [1], pp. 60 and 84, separately for the cases m < 1 and
m > 1.

In the critical case we suppose that the GF F (s) has the following representa-
tion:

[<ν] F (s) = s+ (1− s)1+νL
(

1

1− s

)
for 0 ¬ s < 1, where 0 < ν < 1 and L(t) ∈ S∞. By the criticality of our process,
the second moment

F ′′(1−) = lim
s↑1

2
(
F (s)− s

)
(1− s)2

= lim
x↓0

2

x1−ν
L
(

1

x

)
=∞.

Our aim is to generalize the relation (1.3) for m 6= 1. For this we prove Lem-
ma 2.1 concerning the asymptote of the function Rn(s) = 1− Fn(qs)/q. Then we
obtain the asymptotic representations for ∂Rn(s)/∂s. These representations entail
local limit Theorems 2.1 and 2.2. In Section 3 we investigate the limit structure
of the G–W process where all our conclusions will be based on the statements of
Lemma 2.2.

2. BASIC LEMMA AND ITS DIFFERENTIAL ANALOGUE

We begin with a proof of the following basic lemma of the theory of G–W
branching processes (in the literature this name is usually used for a critical case).

LEMMA 2.1. The following assertions are true:
1. Let m 6= 1. Then

(2.1) Rn(s) = (1− s)Ln(1− s) · βn,

where Ln(0+) = 1 for all n ∈ N, Ln(1) = ℓa(β
n), with ℓa(s) ∈ S0 and Ln0(x)

=: L(x) ∈ S0 for each fixed n0 ∈ N. If E [Z1 lnZ1] < ∞, then Ln(1) ↓ 1/µ as
n→∞, where µ = V ′(1−) <∞.

2. Let m = 1. If the condition [<ν ] is satisfied, then

(2.2) Rn(s) =
N
(
n+M(s)

)
(νn)1/ν

·
[
1− Mn(s)

νn

]
,

where the function N (x) ∈ S∞ satisfies

(2.3) N (n) · L1/ν
(
(νn)1/ν

N (n)

)
→ 1 as n→∞,

and the function Mn(s) has the following properties:
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(i) Mn(s) =M(s)
(
1 + o(1)

)
as n→∞;

(ii) lims↑1Mn(s) = νn for each fixed n ∈ N;
(iii) Mn(0) = 0 for each fixed n ∈ N.

P r o o f. First we will prove the formula (2.1). We use essentially the same
method which was applied in the proof of the relation (1.3) in [13]. We rewrite the
equation (1.1) as follows:

(2.4) ϑ
(
ϕ(s)

)
= β · ϑ(s),

where ϑ(s) = 1− V(1− s) and ϕ(s) := R1(1− s). Putting ϕn(s) := Rn(1− s),
we arrive at the iteration ϕn+1(s) = ϕn

(
ϕ(s)

)
. Hence, from (2.4) it follows that

(2.5) ϑ
(
ϕn(s)

)
= βn · ϑ(s).

Denoting by a(y) the inverse of the function ϑ(x), we see from (2.5) that

ϕn(s) = a
(
ϑ(s) · βn

)
.

Therefore, we immediately obtain

(2.6) Rn(s) = a
(
ϑ(1− s) · βn

)
,

in accordance with our notation.
It has been shown in [13] that a(s) = sℓa(s), where the function ℓa(s) ∈ S0

actually is the same as in equality (1.3). In turn, as shown in Theorem S, ϑ(s)∈R1
0,

so ϑ(s) = sℓϑ(s), where ℓϑ(s) ∈ S0. Hence, the equality (2.6) can be written in
the form (2.1) where

Ln(x) = ℓϑ(x) · ℓa
(
xℓϑ(x)β

n
)
.

Since V(0) = 0, we have ℓϑ(1) = 1, and hence Ln(1) = ℓa (β
n). On the other

hand, according to our notation, it can be seen that a(0) = ϑ(0) = 0. Therefore,
by the property of the inverse functions,

ℓa(0+) = lim
x↓0

a(x)

x
= lim

x↓0

x

ϑ(x)
=

1

V ′(1−)
.

As noticed above, the GF V(s) satisfies the Schröder equation (1.1), where F̂ (s) =
F (qs)/q is the GF of the subcritical branching process. In this case, as mentioned
above, V(s) has the finite mean µ = V ′(1−) if and only if E [Z1 lnZ1] < ∞.
Hence Ln(1) = ℓa (β

n) ↓ 1/µ. Similarly, it is easy to see that

ℓϑ(0+) = lim
x↓0

ϑ(x)

x
= µ,

which implies that Ln(0+) = 1.
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Finally, by the property of slowly varying functions we see that the function
Ln0(x) =: L(x) ∈ S0 at any fixed n0 ∈ N. Thus, the proof of the first part of
Lemma 2.1 is completed.

Let us prove now the second part of the lemma. By analogy with the continu-
ous time Markov branching process (see [6], p. 111), it follows that the function

M(s) =
s∫
0

dx

F (x)− x

is a power series in s ∈ [0, 1) with nonnegative coefficients,M(s) =
∑

j∈N µjs
j ,

and {µj , j ∈ N} is an invariant measure for the G–W process. Using the condition
[<ν ] in the last integrand, we write the equality

(2.7) M(s) =
1/(1−s)∫

1

uν−1L−1(u)du.

Now we recall the following property of slowly varying functions. If the func-
tion ℓ(x) ∈ S∞ is locally bounded in [A; +∞) for some A ∈ R+, then

x∫
A

uλℓ(u)du ∼ 1

λ+ 1
xλ+1ℓ(x) as x→∞

for λ > −1; see [3], p. 26. Since the upper bound of the integral on the right-hand
side of (2.7) goes to infinity as s ↑ 1, we can use this property and get the following
asymptotic formula:

(2.8) M(s) =
1 + o(1)

ν (1− s)ν L
(
1/(1− s)

) as s ↑ 1.

Denoting by G(x) the inverse of the functionM(1− s) and using (2.8), we obtain

(2.9) G(x) =
N (x)

(νx)1/ν
,

where N (x) ∈ S∞ satisfies (2.3); see also [9].
On the other hand, it is known that the following Abel equation holds true (if

normalized so thatM (p0) = 1):

(2.10) M
(
Fn(s)

)
=M(s) + n for all n ∈ N;

see, e.g., [2], p. 68.
Combining the equations (2.9) and (2.10), we obtain

Rn(s) =
N
(
n+M(s)

)(
νn+ νM(s)

)1/ν =
N
(
n+M(s)

)
(νn)1/ν

· 1(
1 +M(s)/n

)1/ν .
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By the convergence of the integral (2.7), the second factor in this equality tends to
one as n→∞. Therefore, the equality can be written in the form

(2.11)
1(

1 +M(s)/n
)1/ν = 1− Mn(s)

νn
,

where Mn(s) is some function. Observe now some local and asymptotic properties
of the function Mn(s). It follows from equality (2.11) that

1− Mn(s)

νn
∼ 1− M(s)

νn
as n→∞.

Therefore, Mn(s) →M(s) as n → ∞. In turn, since M(1−) = ∞, it follows
from (2.11) that lims↑1Mn(s) = νn for each fixed n ∈ N. Finally, Mn(0) = 0
becauseM(0) = 0.

The lemma is proved completely. �

Note that the first part of Lemma 2.1 contains formula (1.3). In fact, setting
s = 0, from (2.1) we infer that for m 6= 1

P {n < H <∞} = q − Fn(0) = q · ℓ (βn) · βn.

The second part is a discrete analogue of a similar result from [5]. In particular,
putting s = 0 in (2.2), we obtain

P {H > n} = Rn(0) =
N (n)

(νn)1/ν
,

an extension probability of the critical G–W process.

LEMMA 2.2. The following assertions are true:
1. Let m 6= 1. Then

(2.12)
∂Rn(s)

∂s
= −Rn(s)

1− s
− (1− s)L′n(1− s) · βn as n→∞.

2. Let m = 1. If the condition [<ν ] is satisfied, then

(2.13)
∂Rn(s)

∂s
= −

(
Rn(s)

1− s

)1+ν L
(
1/Rn(s)

)
L
(
1/(1− s)

) .

P r o o f. As to the first part of the lemma, we previously noticed that due to
(2.1) we have

β−nRn(1− s) = sLn(s) ∈ R1
0 with respect to s,

for any fixed n ∈ N. And we see that the function rn(s) = sLn(s) has a derivative
r′n(s) = Ln(s) + sL′n(s). Hence, we obtain the formula (2.12).
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To prove the second part, we differentiate the equation (2.10):

(2.14) F ′n (s) =
M′(s)
M′
(
Fn(s)

) .

In turn, differentiating the formula (2.7) gives

(2.15) M′(s) = 1

(1− s)1+ν L
(
1/(1− s)

) .

Thus the equality (2.13) follows from (2.14) and (2.15).
The lemma is proved. �

Using Lemma 2.2, we directly obtain P11(n) = F ′n(0) the probability of re-
turn of the process to the initial state Z0 = 1 in time n. In the case of m 6= 1, it
follows from the form of Ln(x) = ℓϑ(x) · ℓa

(
xℓϑ(x)β

n
)

that

L′n(s) =
ℓ′ϑ(s)

ℓϑ(s)
· Ln(s) +O (βn) as n→∞.

Note that ℓ′ϑ(1) = V ′(0) − 1 because ℓϑ(s) = ϑ(s)/s. Hence, setting s = 0 in
(2.12), we obtain the following local limit theorem.

THEOREM 2.1. Let m 6= 1. Then the following relation holds true:

β−n · P11(n) = V ′(0) · ℓa (βn) +O (βn) as n→∞.

If E [Z1 lnZ1] <∞, then ℓa (β
n) ↓ 1/µ as n→∞, where µ = V ′(1−) <∞.

Similarly, from (2.13) we get the following theorem.

THEOREM 2.2. Let m = 1. If the condition [<ν ] holds, then

(νn)1+1/ν · P11(n) ∼
N (n)

p0
as n→∞,

where the function N (n) ∈ S∞ satisfies the relation (2.3).

At the end of the section we define the stochastic process {Z̃n} with transition
matrix P̃ij(n) = Pi{Zn = j |n < H <∞}. As noticed at the beginning, in the
noncritical case the limiting distribution {νj := limn→∞ P̃ij(n)} does not depend
on i∈N. So {Z̃(n), n∈N0} is the ergodic Markov chain. Thus, in the case m 6=1,
there exists an ergodic chain concerned with the process {Zn} such that its transi-
tion probabilities are

P̃ij(n) =
Pij(n)q

j∑
k∈N Pik(n)qk

.

Let V(i)n (s) =
∑

j∈N P̃ij(n)s
j . The following two theorems are corollaries of

Lemma 2.1 and the fact that V(i)n (s) ∼ 1−Rn(s)/Rn(0) as n→∞.
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THEOREM 2.3. If m 6= 1, then the limiting GF V(s) = limn→∞ V(i)n (s) con-
verges for 0 ¬ s ¬ 1 with V(0) = 0 and V(1) = 1. Furthermore,

1− V(i)n (s)

1− s
→ ℓ(1− s) as n→∞,

where ℓ(x) ∈ S0; moreover, if E [Z1 lnZ1] <∞, then ℓ(0+) = µ and ℓ(1) = 1.

THEOREM 2.4. Let m = 1. If the condition [<ν ] holds, then

νn · V(i)n (s) =M(s)
(
1 + o(1)

)
as n→∞,

whereM(s) =
∑

j∈N µjs
j satisfies the Abel functional equation (2.10). For prob-

abilities P̃ij(n) the following relation holds:

νn · P̃ij(n)→ µj as n→∞,

and
∑

j∈N µj =∞.

3. FURTHER APPLICATIONS OF LEMMA 2.2

The second part of Lemma 2.2 might be used in the proof of the following
theorem whose analogue for the case F (1− x)− (1− x) ∈ R1+ν

0 was established
by Slack [14]. In our case we give the proof based on the ideas of the Stein–
Tikhomirov method, see [7].

THEOREM 3.1. Let m = 1 and qn := P{H > n}. If the condition [<ν ] holds,
then

G(i)
n (x) := Pi{qnZn < x |H > n}

weakly converges to a limit law G(x) having the Laplace transform

Ψ(θ) :=
∫
R+

e−θsdG(s) = 1− θ

(1 + θν)1/ν
, θ ∈ R+.

P r o o f. Since 1 − F i
n(s) ∼ iRn(s) as n → ∞, it suffices to consider the

Laplace transform for i = 1:

(3.1) Ψn(θ) :=
∫
R+

e−θsdG(1)
n (s) = 1− Rn (θn)

qn
,

where θn = exp{−θqn}. Differentiating (3.1), we have

(3.2) Ψ′n(θ) = θnR
′
n(θn).
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By the definition of the slowly varying functions, it follows from the second part
of Lemma 2.1 and formula (2.13) that

(3.3) R′n (θn) ∼ −
(
Rn (θn)

1− θn

)1+ν

as n→∞.

From (3.1)–(3.3) it follows that

(3.4) Ψ′n(θ) ∼ −
(
1−Ψn(θ)

θ

)1+ν

as n→∞.

It is easy to check that Ψ(θ) is a solution of the equation

Ψ′(θ) = −
(
1−Ψ(θ)

θ

)1+ν

.

Hence, according to the Stein–Tikhomirov method, the equation (3.4) is equivalent
to the convergence Ψn(θ)→ Ψ(θ). Thus, the theorem is proved. �

Now consider a conditional distribution

PH(n+k)
i {∗} := Pi{∗ |n+ k < H <∞}.

In [2], p. 56, it was shown that the probability measure

(3.5) Qij(n) := lim
k→∞

PH(n+k)
i {Zn = j} = jqj−i

iβn
Pij(n)

defines the Markov chain {Wn, n ∈ N0} with state space E ⊂ N, called the Q-
process. By the definition,

Qij(n) = Pi{Zn = j |H =∞},

and the Q-process can be interpreted as the G–W process with non-degenerate
trajectory in the distant future. In terms of the generating functions, the equality
(3.5) can be written as follows:

(3.6) Y (i)
n (s) :=

∑
j∈E
Qij(n)s

j =

[
Fn(qs)

q

]i−1
Yn(s),

where the GF Yn(s) := Y
(1)
n (s) = E[sWn |W0 = 1] has the form

(3.7) Yn(s) = −s
R′n(s)

βn
for all n ∈ N,

and, as before, Rn(s) = 1− Fn(qs)/q.
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From (3.6) and (3.7) we get the following functional equation:

(3.8) Y
(i)
n+1(s) =

Y (s)

F̂ (s)
Y (i)
n

(
F̂ (s)

)
,

where Y (s) := Y1(s).

THEOREM 3.2. Let β < 1. If E [lnW1] <∞, then there exists a limit function
π(s) := limn→∞ Y

(i)
n (s) for 0 ¬ s < 1 and

(3.9) π(s) =
1

µ
sV ′(s),

where V(s) is the GF of the invariant measure of the G–W process {Zn} sat-
isfying the Schröder equation (1.1) and µ = V ′(1−). Moreover, the GF π(s) =∑

j∈E πjs
j generates an invariant distribution {πj , j ∈ E} for the Q-process.

P r o o f. Since Rn(s)→ 0 uniformly for 0 ¬ s < 1, it follows from (3.6) and
(3.7) that Qij(n)/Q1j(n)→ 1 as an infinite growth of the number of generations,
so it suffices to consider the case i = 1. From (2.1) and (2.12) we obtain

R′n(s = −[Ln(1− s) + (1− s)L′n(1− s)] · βn,

where Ln(x) = ℓϑ(x) · ℓa
(
xℓϑ(x)β

n
)
. Using this equality in formula (3.7) and

taking into account a derivative of the function Ln(x), we have

(3.10) Yn(s) = sLn(1− s) ·
[
1 + (1− s)

ℓ′ϑ(1− s)

ℓϑ(1− s)
+O (βn)

]
as n → ∞. By the definition of the Q-process, the condition E [lnW1] < ∞ is
equivalent to the assumption E [Z1 lnZ1] < ∞, which in turn is enough for the
existence of µ = V ′(1−). In the proof of the first part of Lemma 2.1 we have
shown that ℓa(0+) = 1/µ. In the relation (3.10), we use the form of the function
Ln(x) and properties of the function ℓϑ(s) = ϑ(s)/s ∈ S0, and consequently we
have

π(s) =
1

µ
sℓϑ(1− s)

[
1 + (1− s)

ℓ′ϑ(1− s)

ℓϑ(1− s)

]
=

1

µ
sℓϑ(1− s) +

1

µ
s[V ′(s)− ℓϑ(1− s)],

which implies the formula (3.9).
The equation (3.8) gives

π(s) =
Y (s)

F̂ (s)
· π
(
F̂ (s)

)
,



On a limit structure of the Galton–Watson processes 71

which is equivalent to the invariance property πj =
∑

i∈E πiQij(1) of the sets of
numbers {πj , j ∈ E} generated by π(s) =

∑
j∈E πjs

j . It is exactly a probability
distribution. In fact, it follows from (3.9) that π(1) =

∑
j∈E πj = 1. Thus, the

theorem is proved. �

THEOREM 3.3. Let β = 1. If the condition [<ν ] holds, then

(3.11)
(νn)1+1/ν

N (n)
· Y (i)

n (s) = U(s)
(
1 + o(1)

)
as n→∞

for all 0 ¬ s < 1. The limiting GF U(s) =
∑

j∈E υjs
j takes the form

(3.12) U(s) = s

(1− s)1+ν L
(
1/(1− s)

) .

The set of coefficients {υj , j ∈ E} is an invariant measure for the Q-process. More-
over,

(3.13)
n∑

j=1

υj ∼
1

Γ(2 + ν)
n1+νLυ(n) as n→∞,

where Γ(∗) is the Euler’s gamma function and Lυ(n) · L(n)→ 1 as n→∞.

P r o o f. As in Theorem 3.2 we consider the case i = 1 only. Combining the
relations (2.2), (2.13) and (3.7) yields

Yn(s) = s

(
N
(
n+M(s)

)
(νn)1/ν (1− s)

)1+ν
L
(
1/Rn(s)

)
L
(
1/(1− s)

) [1− Mn(s)

νn

]1+ν

.

Using (2.3) and the property of the slowly varying functions, we have

(3.14) Yn(s) =
N (n)

(νn)1+1/ν
· s

(1− s)1+νL
(
1/(1− s)

)(1 + o(1)
)

as n→∞, where we have used the properties of the function Mn(s). Multiplying
the both sides of (3.14) by (νn)1+1/ν

/
N (n), we obtain the convergence (3.11)

with limiting function of the form (3.12).
Taking the limit as n→∞ in (3.8) gives

U(s) = Y (s)

F (s)
· U
(
F (s)

)
,

which implies an invariance property of the numbers {υj , j ∈ E}. Finally, (3.13)
is a direct consequence of (3.12), according to the Hardy–Littlewood Tauberian
theorem for the GF; see [4], pp. 513–514. Thus, the theorem is proved. �
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Since lims↓0[Y
(i)
n (s)/s] = Qi1(n), the following local properties of the Q-

process follow from the last two theorems.

COROLLARY 3.1. Let β < 1. If E [lnW1] <∞, then

Qi1(n)→
V ′(0)
µ

as n→∞.

COROLLARY 3.2. Let β = 1. If the condition [<ν ] holds, then

(νn)1+1/ν ·Qi1(n) ∼
N (n)

p0
as n→∞,

where the function N (n) ∈ S∞ satisfies the relation (2.3).

Thus, two types of the Q-process depending on the value of the parameter β
can be seen. In the case β = 1, the trajectory of the Q-process goes to infinity with
probability one. Hence, the Markov chain {Wn} is transient if β = 1. It is positive
recurrent if β < 1.

Finally, continuing the reasoning in the proof of Theorem 3.1, we state the
following result whose analogue for the case F (1− s)− (1− s) ∈ R1+ν

0 has been
established in [9].

THEOREM 3.4. Let β = 1. If the condition [<ν ] holds, then P {qnWn < x}
weakly converges to a limiting distribution law with Laplace transform

1

(1 + θν)1+1/ν
.

P r o o f. According to (3.7), the Laplace transform of P {qnWn < x} is φn(θ)
= −Ψ′n(θ), where Ψ′n(θ) is defined in (3.2). Since, as it has been established in
Theorem 3.1,

Ψn(θ)→ 1− θ

(1 + θν)1/ν
as n→∞,

it follows from (3.4) that φn(θ) converges as n→∞ to the limit expression men-
tioned in the theorem. �
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