
PROBABILITY
AND

MATHEMATICAL STATISTICS

Vol. 39, Fasc. 1 (2019), pp. 115–126
doi:10.19195/0208-4147.39.1.8

DATA DRIVEN EFFICIENT SCORE TESTS FOR POISSONITY
BY

TADEUSZ I N G L OT (WROCŁAW)

Abstract. New data driven score tests for testing goodness of fit of the
Poisson distribution are proposed. They are direct applications of the general
construction of data driven goodness-of-fit tests for composite hypotheses
developed in Inglot et al. (1997). By a simulation study it is shown that these
tests perform almost equally well as the best known solutions for standard
alternatives and outperform them for more difficult alternatives.
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1. INTRODUCTION

The Poisson distribution is often used in modelling discrete distributions. So,
testing goodness of fit of the Poisson family is an important problem in statistical
inference. Beginning from Fisher’s index of dispertion it has a large number of
solutions and takes a constant interest in the literature. For a nice overview of
existing tests we refer to Gürtler and Henze [3] and Best and Rayner [1]. Some
further constructions have been proposed more recently, e.g., by Thas and Rayner
[11], Meintanis and Nikitin [8], Frey [2] and Ledwina and Wyłupek [7].

In the present note we propose data driven efficient score tests for testing Pois-
sonity which are a direct application of the general construction of data driven
goodness-of-fit tests for composite hypotheses studied in Inglot et al. [5]. Our con-
struction is valid for any family of discrete distributions concentrated on nonneg-
ative integers. We focus on the most important case of testing for Poissonity to
show that this construction leads to omnibus tests being able to compete with the
best existing ones. Paying a little bit of sensitivity for simple alternatives, they
cover a much wider class of alternatives with stable and high power. An additional
advantage is that exact critical values for moderate sample sizes practically do not
depend on the nuisance parameter and therefore can be determined in advance.
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2. CONSTRUCTION OF THE TEST STATISTIC

Let X1, . . . , Xn be a sample from a discrete distribution P on the real line
taking values in the set {0, 1, 2, . . .}. Denote by Pλ the Poisson distribution with
parameter λ > 0, i.e. Pλ({j}) = πj(λ) = e−λλj/j! for j = 0, 1, 2, . . . The prob-
lem is to test the composite hypothesis

H0 : P ∈ {Pλ : λ > 0}.

Let U1, . . . , Un be independent random variables uniformly distributed over
the unit interval [0, 1] independent of Xi’s. Let us consider the randomized sample
Y1, . . . , Yn, where Yi = Xi+Ui. Then Yi’s have absolutely continuous distribution
P on the half line [0,∞) with a stepwise density constant on the intervals [j, j+1),
j ­ 0. Now, consider a family P of densities on [0,∞) defined by

(2.1) P =
{
f(y, λ) : f(y, λ) =

∞∑
j=0

πj(λ)1[j,j+1)(y), λ > 0
}
,

where 1A(y) denotes the indicator of a set A. Since Xi’s take integer values, we
can replace H0 by the equivalent hypothesis

(2.2) H ′0 : P ∈ P.

The cumulative distribution function of f(y, λ) from P takes the form

F (y, λ) =
j−1∑
r=0

πr(λ) + (y − j)πj(λ) for y ∈ [j, j + 1), j ­ 1,

and F (y, λ) = y π0(λ) for y ∈ [0, 1). Hence, to test H ′0 we can simply apply re-
sults of Inglot et al. [5].

To this end, let ψ1(t), ψ2(t), . . . be an orthonormal system of bounded func-
tions on [0, 1] with

∫ 1

0
ψj(t)dt = 0 and such that ∂ log f

(
F−1(t, λ), λ

)
/∂λ is lin-

early independent of ψ1(t), ψ2(t), . . . Let d(n) be a nondecreasing sequence of
natural numbers. Consider the nested sequence Gk, 1 ¬ k ¬ d(n), of exponential
families given by the densities

(2.3) gk(y, ϑ, λ) = ck(ϑ) exp
{ k∑

j=1

ϑjψj

(
F (y, λ)

)}
f(y, λ), y ∈ [0,∞),

where ϑ = (ϑ1, . . . , ϑk)
T ∈ Rk is a vector of parameters, vT stands for the trans-

position of the vector v and ck(ϑ) is the normalizing constant.
Fix k, 1 ¬ k ¬ d(n). We reduce H ′0 to H ′′0 : ϑ = 0 in Gk in the presence of

the nuisance parameter λ. By standard calculations we get the score vector for H ′′0
in Gk of the form

ℓ = (ℓTϑ , ℓλ)
T with ℓϑ(y) = ψ

(
F (y, λ)

)
, ℓλ(y) =

∂ log f(y, λ)

∂λ
,
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where ψ(t) =
(
ψ1(t), . . . , ψk(t)

)T is a vector of k first functions of the orthonor-
mal system. Consequently, the effective score vector for H ′′0 can be written as

(2.4) ℓ∗(y) = ψ
(
F (y, λ)

)
− IϑλI−1λλ ℓλ(y),

where

Iλλ =
∞∫
0

ℓ2λ(y)f(y, λ)dy =
∞∑
r=0

(
r

λ
− 1

)2

πr(λ) =
1

λ2
VarX =

1

λ

and

Iϑλ =
∞∫
0

ψ
(
F (y, λ)

)
ℓλ(y)f(y, λ)dy =

∞∑
r=0

r+1∫
r

ψ
(
F (y, λ)

)( r
λ
− 1

)
f(y, λ)dy

=
1

λ

∞∑
r=1

r
r+1∫
r

ψ
(
F (y, λ)

)
f(y, λ)dy =

1

λ
J.

Here the vector J = J(λ) can be expressed as

J =
∞∑
r=1

r
F (r+1,λ)∫
F (r,λ)

ψ(t)dt =
∞∑
r=1

r
[
Ψ
(
F (r + 1, λ)

)
−Ψ

(
F (r, λ)

)]
= −

∞∑
r=0

Ψ
(
π0(λ) + . . .+ πr(λ)

)
,

where Ψ(t) =
(
Ψ1(t), . . . ,Ψk(t)

)T is a vector of the functions

Ψj(t) =
t∫
0

ψj(u)du, t ∈ [0, 1].

The covariance matrix of the effective score vector has the usual form

I∗ = I − IϑλI−1λλ I
T
ϑλ = I − 1

λ
JJT ,

where I denotes the identity matrix. Its inverse can be written as (cf. formula (3.2)
in Inglot et al. [5])

(I∗)−1 = I + Iϑλ(Iλλ − ITϑλIϑλ)−1ITϑλ = I +
1

λ− JTJ
JJT .

In consequence, the effective score statistic for testing H ′′0 in Gk takes the form

Nk =

(
1√
n

n∑
i=1

ℓ∗(Yi)

)T

(I∗)−1
(

1√
n

n∑
i=1

ℓ∗(Yi)

)
.
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Since the natural estimator of the parameter λ is the sample mean λ̂ = X which
is the maximum likelihood estimator in the family P , the estimated effective score
vector has a simpler form, i.e. ℓ̂∗(y) = ψ

(
F (y, λ̂)

)
(cf. (3.5) in [5]).

Finally, the test statistic for H ′′0 in Gk takes the form

(2.5) N̂k =

(
1√
n

n∑
i=1

ψ
(
F (Yi, λ̂)

))T

(̂I∗)−1
(

1√
n

n∑
i=1

ψ
(
F (Yi, λ̂)

))
,

where

(2.6) (̂I∗)−1 = I +
1

λ̂− ĴT Ĵ
Ĵ ĴT

and Ĵ = −
∑∞

r=0Ψ
(
π0(λ̂) + . . .+ πr(λ̂)

)
. Easy calculations show that regularity

conditions (R1)–(R4) in [5] for P are satisfied. So, when ψj’s are twice differen-
tiable and

(2.7) sup
t∈[0,1]

|ψj(t)| ¬ cjm, sup
t∈[0,1]

(
|ψ′j(t)|+ |ψ′′j (t)|

)
¬ cjm+2, j ­ 1,

for some positive c and nonnegative m, it follows from Theorem 3.1 in [5] that un-
der H ′′0 , N̂k converges in distribution to the chi-square distribution with k degrees
of freedom.

It is well known that the choice of k among 1, . . . , d(n) is crucial to the per-
formance of a test based on the score statistic N̂k. Therefore, we propose a data
driven choice of k using a Schwarz type selection rule (cf., e.g., Inglot et al. [5],
Schwarz [10])

(2.8) S = min{1 ¬ k ¬ d(n) : N̂k − k log n = max
1¬j¬d(n)

(N̂j − j log n)}.

Taking into account promising results in Inglot and Janic [4], we consider
also another, less conservative, selection rule denoted by L. Choose two natural
numbers (not depending on n): a small one 1 ¬ D < d(n) and a big one K, K >
D, and set K(n) = min

(
K, d(n)

)
. Moreover, let δn be a small positive number.

Define the thresholds cjn, j = 1, . . . , D, to be the solutions of the equations

1− Φ(cjn) =
1

2

(
δnD

−1
(
K(n)
j

)−1)1/j

,

where Φ denotes the standard normal distribution function. Next, consider the
standardized random vector L =

(
(̂I∗)−1

)1/2( 1√
n

∑n
i=1 ψ

(
F (Yi, λ̂)

))
with K(n)

components, where (̂I∗)−1 is given by (2.6) with k = K(n) while(
(̂I∗)−1

)1/2
= I +

1

λ̂− ĴT Ĵ +

√
λ̂(λ̂− ĴT Ĵ)

Ĵ ĴT .
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Order the squares of its components from the smallest to the largest, obtaining
L2(1), . . . ,L

2
(K(n)), and consider the event

En = {L2(K(n)) ­ c
2
1n} ∪ . . . ∪ {L2(K(n)−D+1) ­ c

2
Dn}.

Then define the data dependent penalty

ρ(j, n) = j(log n · 1Ec
n
+ 2 · 1En),

where 1En denotes the indicator of the event En and Ec
n is the complement of En,

and define the corresponding selection rule L as

(2.9) L = min
{
1 ¬ k ¬ d(n) : N̂k − ρ(k, n) = max

1¬j¬d(n)

(
N̂j − ρ(j, n)

)}
.

By the definition, for n ­ e2 we have ρ(j, n) ¬ j log n a.s. Consequently, L ­ S
a.s. and N̂L ­ N̂S a.s.

Note that parameters D,K, δn were used only to define penalty ρ(j, n) for L.
In particular, introducing an upper bound K means that a choice of penalty for L
is based on a limited number of empirical Fourier coefficients with respect to the
system (ψj).

By using all the above considerations, N̂S and N̂L = N̂L(D,K, δn), where
N̂k is given by (2.5), can be applied as test statistics of upper-tailed tests for testing
H ′0 (or equivalently H0).

The asymptotic behavior of N̂S and N̂L is established in the following theo-
rem.

THEOREM 2.1. Suppose ψ1(t), ψ2(t), . . . is an orthonormal system satisfying
(2.7) and the maximal dimension d(n) of Gk in (2.3) satisfies the condition d(n) =
o
(
(n/ log n)1/(2m+4)

)
. Then

(2.10) N̂S
D→ χ2

1 under H0,

where χ2
k denotes a random variable with chi-square distribution with k degrees

of freedom.
If, in addition, δn → 0, then L− S → 0 in probability with respect to any null

distribution, and consequently

(2.11) N̂L
D→ χ2

1 under H0.

Since the assumption on d(n) in Theorem 2.1 implies (D1)–(D3) in Inglot
et al. [5], the assertion (2.10) follows from Theorem 4.1 in [5]. The assertion
L − S → 0 in probability under H0 is an easy and straightforward consequence
of the central limit theorem for the random vector L due to the boundedness of
K(n). We omit details.

From Theorems 2.6, 4.2 and 4.3 in [5] we immediately obtain a consistency
result for the tests based on N̂S and N̂L.
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THEOREM 2.2. Let d(n) → ∞ and the conditions of Theorem 2.1 be satis-
fied. Then for any alternative discrete distribution P concentrated on nonnegative
integers with probability mass function pr, r ­ 0, and the expected value λ > 0
such that for some j ­ 1

(2.12)
∞∑
r=0

pr
r+1∫
r

ψj

(
F (y, λ)

)
dy 6= 0

we have N̂S
P→ ∞ and N̂L

P→ ∞. Consequently, the tests based on N̂S and N̂L

are consistent against any P satisfying (2.12).

REMARK 2.1. When ψ1, ψ2, . . . form a complete orthonormal system of
bounded functions, then the assumption (2.12) is a weak one and is satisfied for
a large class of alternatives. For example, if pr ¬ Cπr(λ) for all r ­ 0 and some
positive constantC, where λ =

∑∞
r=1 rpr, then (2.12) holds. In particular, (2.12) is

satisfied for any distribution with finite support or with pr = πr(λ) except finitely
many r.

Now, we discuss two key choices needed for an implementation tests based on
ÑS and ÑL in Section 3.

Firstly, we discuss a choice of an orthonormal system (ψj). The most popu-
lar is the Legendre system on [0, 1], we shall denote by (bj). It satisfies (2.7) with
m = 1/2. For our particular family P of discontinuous densities this is rather not
an optimal choice. In spite of this we do apply it in our implementation. However,
for Pλ with small λ, high variation of bj’s near zero has nothing to do with large
values of the first few probabilities of Pλ and results in a less sensitive test. To
overcome simply this problem we define another orthonormal system (hj) with
hj(t) = b2j

(
(1 + t)/2

)
. The functions hj are smooth on the left end of [0, 1] with

high variation only on the right end of the unit interval. So, we shall use the system
(hj) for small λ, say for λ ¬ λ0, and the system (bj) otherwise. Since b1 and h1
are strongly correlated with ℓλ

(
F−1(t, λ), λ

)
, we remove them from the system.

Data driven tests usually attain the highest power for alternatives for which the sec-
ond empirical Fourier coefficient (under an actually applied orthonormal system)
is the largest one. For most typical alternatives to the Poisson family the largest
Fourier coefficient corresponds to b2 or h2. So, we order the both systems as fol-
lows: b3, b2, b4, b5, . . . and h3, h2, h4, h5, . . . Since λ is unknown, we shall use the
estimator λ̂ to decide which orthonormal system will be applied in the test statistic.
In effect, we define the orthonormal system (ψj) as follows:

ψ1(t) = h3(t) if λ̂ ¬ λ0 or ψ1(t) = b3(t) otherwise,
(2.13)

ψ2(t) = h2(t) if λ̂ ¬ λ0 or ψ2(t) = b2(t) otherwise,

ψj(t) = hj+1(t) if λ̂ ¬ λ0 or ψj(t) = bj+1(t) otherwise, j = 3, 4, . . .
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The test statistics N̂S and N̂L for such a switched over orthonormal system will
be denoted by MS and ML, respectively. The tests based on these statistics are
examples of data driven score tests with an orthonormal system depending on the
data. Since the system (hj) satisfies (2.7), Theorem 2.1 applies to (hj) and to MS

and ML as well. Also, after some small obvious reformulation, the statement of
Theorem 2.2 remains valid for both MS and ML.

Secondly, let us discuss a choice of the maximal dimension d(n). The as-
sumption of Theorem 2.1 as well as properties of our particular family P of the
Poisson distributions suggest to take a slowly increasing sequence d(n) = bcnrc
with r < 1/5. When ML is applied, the relation c ­ D seems to be reasonable.
Moreover, for moderate sample sizes d(n) < K (if K is not too small). Therefore,
a choice of K has practically no influence on the selection rule L for moderate
sample sizes. But, it allows for simplifying assumptions in Theorems 2.1 and 2.2.

The above specifications can be thought only as reasonable recommendations.
For example, at a cost of some loss in power for alternatives with small expecta-
tions λ, one can consider simply tests based on N̂S or N̂L for the Legendre system
(bj) without switching the orthonormal system.

We end this section by a brief comment how a randomization of a given sam-
ple X = (X1, . . . , Xn) by noise values U1, . . . , Un may influence the acceptance
or rejection decision of the null hypothesis. One may expect that when the sample
X , at hand, is “typical”, then the randomization will change the decision rarely. We
have roughly verified this statement by some empirical study taking n = 50 and
α = 0.05. We have observed that the distribution of conditional power β(n|X) for
our tests is strongly polarized, i.e. strongly concentrated near 0 and 1. Under null
distributions, β(n|X) belong to the interval [0, 0.1] for ca. 85–95% of samples X
while β(n|X) do not exceed the nominal significance level 0.05 for ca. 75–85%
of samples X . Under alternatives, β(n|X) lie outside the interval (0.1, 0.9) for ca.
70% of samples X and divide between [0, 0.1] and [0.9, 1] approximately propor-
tionally to the (unconditional) power β(n) attained by the test.

3. SIMULATION STUDY

The aim of this section is to study how our new tests based on MS and ML,
described in Section 2, perform empirically in comparison with some known tests
for Poissonity which proved to be powerful, particularly with the test T̃ = T̃n of
Klar [6].

We restrict our attention to a typical sample size n = 50 and standard sig-
nificance level α = 0.05. We take the orthonormal system (ψj) defined in (2.13)
and the maximal dimension of the exponential model d(n) = 5 for n = 50 which
roughly corresponds to the formula d(n) = b3n1/7c. For the selection rule L we
took D = 3, K = 20 and δn = 0.05. An analysis of values πr(λ) for small r and
different λ suggests to choose λ0 nearby 2. We took λ0 = 1.8.
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The behavior of all compared tests for other sample sizes is similar to that for
n = 50, so we do not report it here.

3.1. Critical values of MS and ML. Nowadays it is a strong evidence that,
for data driven tests, the convergence of MS and ML to the limiting null chi-
square distribution with one degree of freedom is slow. So, we have determined
the critical values empirically. The results are shown in Table 1. They practically
do not depend on the nuisance parameter λ. This is not surprising since our tests
are asymptotically distribution free. The results from Table 1 fully justify that aver-
age simulated critical values 5.910 for MS and 7.092 for ML may be used as fixed
critical values for the sample size n = 50.

Table 1. Empirical critical values of MS and ML for
several values of λ, n = 50, α = 0.05, 30,000 MC.

λ 0.2 0.5 1 2 5 10 30 Average

MS 5.874 5.877 5.892 5.964 5.818 5.907 6.036 5.910
ML 7.095 6.994 6.997 7.258 6.878 7.259 7.165 7.092

Under the same d(n), D,K, δn, λ0 and α, average critical values for the sam-
ple size n = 25 equal 6.842 for MS and 7.592 for ML; and similarly 5.416 and
6.789 for n = 100; 4.967 and 6.550 for n = 200; 4.288 and 6.342 for n = 500;
respectively.

3.2. Power comparisons. For easier comparisons with the results available in
the literature, we start our study with the list of 20 alternatives considered in the
recent paper by Ledwina and Wyłupek [7]. In most cases we apply the notation
from that paper or from Gürtler and Henze [3]. For completeness, we present de-
scription of all alternatives in the Appendix. We choose three tests for comparison
which proved to be powerful: the test T̃ (proposed by Klar [6] and in his notation),
the test I (proposed by Klar [6] in the notation of Gürtler and Henze [3]) and the
test V ∗ of Nakamura and Pérez-Abreu [9]. Detailed description of these tests is
also provided in the Appendix. For MS and ML we take critical values determined
in Section 3.1. The results are shown in Table 2.

In the upper part of Table 2 we collect ‘smooth’ alternatives, i.e. those for
which only one or two first Fourier coefficients (with respect to (ψj) given in
(2.13)) are significant, and in the lower part we put alternatives with wider spec-
trum. To some extent, ‘smoothness’ is related to a number and positions of changes
of sign for differences pr − πr(λ), where λ =

∑
r­1 rpr is the expectation of an

alternative. Since ML has been designed to be more sensitive for ‘less smooth’
alternatives, it can be seen that in the upper part of Table 2 MS is better than ML

while in the lower part an opposite relation occurs. Powers of T̃ , I and V ∗ have
been taken from Ledwina and Wyłupek [7].

The test I is unstable. For some cases it attains extremely high power (cf.
b(10, 0.5)) but for some others, poor power (e.g.U(5; 15) or TG(0.45)). The test T̃
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performs more stable than V ∗ and outperforms it in average. Data driven tests MS

and particularlyML are very stable and both perform equally well. For alternatives
presented in Table 2, T̃ outperforms MS and ML ca. 7% in average.

Table 2. Powers (in %) of MS ,ML, T̃ , I and V ∗ for
twenty alternatives, n = 50, α = 0.05, 10,000 MC.

Alternative MS ML T̃ I V ∗ λ

U(0; 1) 79 76 98 99 94 0.5
U(0; 2) 57 57 64 68 73 1
b(10, 0.5) 75 68 81 88 60 5
b(20, 0.35) 33 27 37 46 19 7
nb(2, 2/3) 28 28 42 45 48 1
Pδ(0.9, 3) 38 38 33 45 48 2.7
Pδ(0.7, 1.5) 45 42 59 59 52 1.05
GP (3,−0.24) 30 24 38 46 19 2.42
GPδ(4.59,−0.33, 0.025) 41 35 49 53 33 3.36
GH(0.5, 0.25) 42 41 57 58 53 1
PSS(1, 0.75) 56 55 77 78 74 0.75
TG(0.45) 83 85 86 47 73 2.22

Average 50.6 48.0 60.1 61.0 53.8

U(0; 4) 44 51 60 16 73 2
U(5; 15) 35 47 39 7 53 10
PP (0.1, 1.1, 6.9) 55 60 56 54 55 6.3
PP (0.1, 1.1, 6.1) 46 50 45 44 43 5.6
GPδ(4.59,−0.33, 0.127) 63 64 55 21 56 3
PBM(0.55, 10, 0.97) 95 96 97 94 93 9.7
BB(5, 1.6, 0.67) 94 95 99 96 99 3.5
BB(5, 1, 0.67) 83 88 93 48 96 3

Average 64.4 68.9 68.0 47.5 71.0

Total average 56.1 56.4 63.3 55.6 60.7

The alternatives considered in Table 2 are well-known families of discrete dis-
tributions and not necessarily represent typical departures from the Poisson family.
More realistically one may expect small changes of several probabilities πj of Pλ.
To see how our new tests are able to detect such contaminated Poisson distribu-
tions, we introduce three additional families of alternatives.

The first alternative is a modification of P0.5 and preserves its expectation 0.5.
We replace four first probabilities π0(0.5), π1(0.5), π2(0.5) and π3(0.5) by
π0(0.5) − u + a + 2b, π1(0.5) + v − 2a − 3b, a and b, respectively, with u =
π2(0.5) + 2π3(0.5) and v = 2u − π3(0.5), and keep the remaining probabilities
unchanged. Parameters a, b are nonnegative with 2a+3b not exceeding π1(0.5)+v.
We shall denote this alternative by A0.5

4 (a, b).
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The second alternative modifies Pλ with any λ and preserves its expecta-
tion λ. We replace four probabilities πj(λ), πj+1(λ), πj+2(λ) and πj+3(λ) by
πj(λ) + c, πj+1(λ) − c, πj+2(λ) − c, πj+3(λ) + c, respectively, and keep the re-
maining probabilities unchanged. The parameter j is a nonnegative integer while
c can take positive or negative values in such a way that all four obtained numbers
are nonnegative. We shall denote this alternative by A4(λ, j, c).

The third alternative modifies Pλ with any λ and also preserves its expec-
tation λ. We replace eight probabilities πj(λ), . . . , πj+7(λ) by πj(λ)+a+b+c,
πj+1(λ)−a−b−c, πj+2(λ)−a, πj+3(λ)+a, πj+4(λ)−b, πj+5(λ)+b, πj+6(λ)−c,
πj+7(λ)+c, respectively, and keep the remaining probabilities unchanged. The pa-
rameter j is a nonnegative integer while a, b, c are such that all resulting numbers
are nonnegative. We shall denote this alternative by A8(λ, j, a, b, c).

In Table 3 we show, by typical examples of new alternatives, empirical powers
of MS and ML compared with T̃ , the leader in Table 2. It can be observed that for
more difficult alternatives the new test ML performs essentially better than T̃ .

Table 3. Powers of MS ,ML and T̃ for seven selected alternatives.
n = 50, α = 0.05, 10,000 MC for MS and ML, and 5000 MC for T̃ .

Alternative MS ML T̃

A0.5
4 (0.05, 0.05) 22 24 33

A0.5
4 (0, 0.07) 33 45 39

A4(5, 1, 0.08) 49 62 28
A4(7, 7, 0.10) 27 45 27

A8(3, 0, 0.04,−0.09, 0.05) 33 46 38
A8(5, 3, 0.10,−0.05, 0.036) 54 71 49
A8(9, 9, 0.097,−0.02, 0.019) 18 30 23

Average 33.7 47.1 33.9

Table 4. Powers of MS ,ML and T̃ for three selected alternatives and different
sample sizes. α = 0.05, 10,000 MC for MS and ML, and 2000 MC for T̃ .

Alternative Test n = 25 n = 50 n = 100 n = 200

Pδ(0.7, 1.5) MS 23 45 76 98
The first group ML 22 42 74 97
in Table 2 T̃ 34 59 90 100

PP (0.1, 1.1, 6.1) MS 31 46 69 92
The second group ML 32 50 76 96
in Table 2 T̃ 30 46 72 95

A4(5, 1, 0.08) MS 29 49 81 99
A new alternative ML 33 62 94 100
from Table 3 T̃ 17 28 54 89
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To illustrate power curves of compared tests under increasing sample size we
have selected three alternatives, one from each group considered above. For all
sample sizes we took the same parameters d(n), D,K, δn, α, λ0 as for n = 50.
The results are shown in Table 4.

Concluding, one can say that the new tests perform comparable sensitivity to
T̃ as well as to I and V ∗ whileML preserves stable and high sensitivity for a much
wider class of various types of alternatives. So, if ‘less smooth’ departure from
Poissonity is expected, then the test ML may be recommended.

4. APPENDIX

Description of alternatives. Probability mass functions of distributions differ-
ent from Pλ will be denoted by pj for integer j ­ 0.

U(m; l), m < l – the uniform distribution on the set {m,m+ 1, . . . , l}.
b(m, p) – the binomial distribution with parameters m ∈ N and p ∈ (0, 1).
nb(m, p) – the negative binomial distribution with parametersm∈N and p∈(0, 1).
Pδ(ε, λ) – the mixture εPλ + (1 − ε)δ0 of the Poisson distribution and the Dirac

delta in zero.
PP (ε, λ1, λ2) – the mixture εPλ1 + (1− ε)Pλ2 of two Poisson distributions.
GP (λ, ϑ) – the generalized Poisson distribution with parametersλ>0,−λ<ϑ<0,

ϑ > −1 and probability mass function given by

pj =
λ(λ+ ϑj)j−1e−λ−ϑj

j!
, j = 0, 1, . . . , b−λ/ϑc.

GPδ(λ, ϑ, ε) – the mixture (1− ε)GP (λ, ϑ) + εδ0 of the generalized Poisson dis-
tribution and the Dirac delta in zero.

PBM(ε,m, p) – the mixture εPmp + (1 − ε)b(m, p) of the Poisson distribution
and the binomial distribution with the same mean.

GH(λ1, λ2) – the generalized Hermite distribution, i.e. the distribution of Y1 +
2Y2, where Y1, Y2 are independent random variables with Poisson distributions
Pλ1 , Pλ2 .

TG(p) – the geometric distribution with parameter p, i.e. with probability mass
function pj = p(1− p)j−1, j = 1, 2, . . .

BB(m, p, q) – the beta-binomial distribution with parameters m ∈ N, p, q > 0,
i.e. with probability mass function given by

pj =
1∫
0

(
m
j

)
xj(1− x)m−jBpq(x)dx, j = 0, 1, . . . ,m,

where Bpq(x) is the density of the beta distribution with parameters p, q.
PSS(λ1, λ2) – the Poisson-stopped-sum distribution, i.e. the distribution of the

sum
∑N

i=1 Yi, where N has Pλ1 distribution while Yi are i.i.d. with Poisson
Pλ2 distribution and N is independent of Yi’s.
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Tests for comparison. All tests described below reject the null hypothesis for
large values of the corresponding statistics.
• T̃ defined by the statistic T̃ =

√
n
[∑m

j=0

(
|Fn(j) − F (j,X)| + F (j,X)

)]
+
√
n(X − m − 1), where m = max1¬i¬nXi, Fn is the empirical distribution

function and F (k, λ) is the distribution function of Pλ (the notation as in Klar [6]).
• I defined by the statistic I=

√
nmax1¬k¬m

∣∣∑k
j=0

(
Fn(j)−F (j,X)

)∣∣, wherem,
Fn and F (k, λ) are as above (cf. Klar [6], the notation after Gürtler and Henze [3]).
• V ∗ defined by the statistic V = n−3X

−1.45∑2m−2
j=0 a2j , where

aj =
j+2∑
l=0

l(2l − j − 3)NlNj+2−l

while Nj is the number of observations equal to j (cf. Nakamura and Pérez-Abreu
[9]).

R code for tests proposed in the present paper is available at:
http://prac.im.pwr.wroc.pl/ inglot/badania.html
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