PROBABILITY AND MATHEMATICAL STATISTICS Vol. 39, Fasc. 2 (2019), pp. 441–458

A TWO-PARAMETER EXTENSION OF URBANIK'S PRODUCT CONVOLUTION SEMIGROUP

Christian Berg

Abstract: We prove that $s_n(a,b) = \Gamma(an+b)/\Gamma(b)$, $n = 0, 1, \ldots$, is an infinitely divisible Stieltjes moment sequence for arbitrary a, b > 0. Its powers $s_n(a,b)^c$, c > 0, are Stieltjes determinate if and only if $ac \leq 2$. The latter was conjectured in a paper by Lin (2019) in the case b = 1. We describe a product convolution semigroup $\tau_c(a,b)$, c > 0, of probability measures on the positive half-line with densities $e_c(a,b)$ and having the moments $s_n(a,b)^c$. We determine the asymptotic behavior of $e_c(a,b)(t)$ for $t \to 0$ and for $t \to \infty$, and the latter implies the Stieltjes indeterminacy when ac > 2. The results extend the previous work of the author and López (2015) and lead to a convolution semigroup of probability densities $(g_c(a,b)(x))_{c>0}$ on the real line. The special case $(g_c(a,1)(x))_{c>0}$ are the convolution roots of the Gumbel distribution with scale parameter a > 0. All the densities $g_c(a,b)(x)$ lead to determinate Hamburger moment problems.

2000 AMS Mathematics Subject Classification: Primary: 60E07; Secondary: 60B15, 44A60.

Keywords and phrases: Infinitely divisible Stieltjes moment sequence, product convolution semigroup, asymptotic approximation of integrals, Gumbel distribution.

THE FULL TEXT IS AVAILABLE HERE