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Abstract. We prove that sy, (a,b) = I'(an + b)/T'(b),n = 0,1, ..., is
an infinitely divisible Stieltjes moment sequence for arbitrary a,b > 0. Its
powers sy (a,b)¢,c > 0, are Stieltjes determinate if and only if ac < 2.
The latter was conjectured in a paper by Lin (2019) in the case b = 1. We
describe a product convolution semigroup 7.(a,b), ¢ > 0, of probability
measures on the positive half-line with densities e.(a,b) and having the
moments s (a,b)®. We determine the asymptotic behavior of e.(a, b)(t)
for ¢t — 0 and for ¢ — oo, and the latter implies the Stieltjes indetermi-
nacy when ac > 2. The results extend the previous work of the author and
Lépez (2015) and lead to a convolution semigroup of probability densities
(9¢(a,b)(z)) .. o on the real line. The special case (gc(a,1)(z)),. , are the
convolution roots of the Gumbel distribution with scale parameter a > 0.
All the densities g.(a, b)(z) lead to determinate Hamburger moment prob-
lems.
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1. INTRODUCTION

A Stieltjes moment sequence is a sequence of non-negative numbers of the
form

(1.1 sn= [t"du(t), neNyg:=1{0,1,2,..1},
0

where 4 is a positive measure on [0,00) such that " € L(u) for all n € N.
The sequence (s, is called normalized if sy = ([0, 00)) = 1, and it is called S-
determinate (resp. S-indeterminate) if (1) has exactly one solution (resp. several
solutions) 4 as positive measures on [0, c0). All these concepts go back to the
fundamental memoir of Stieltjes [T9].



442 C. Berg

A Stieltjes moment sequence (sy,) is called infinitely divisible if (s¢) is a Stielt-
jes moment sequence for any ¢ > 0. These sequences were characterized in Tyan’s
Ph.D. thesis [2T] and again in [8] without the knowledge of [21]. An important ex-
ample of an infinitely divisible normalized Stieltjes moment sequence is s, = n!,
first established in Urbanik [?2]. He proved that e. in (I2) is a probability density
such that

1 [e.e]

1.2 Ne = [t"e.(t)dt, e.(t)=— [ =701 —iz)°dzx, ¢, t>0.
(1.2)  (n}) { ec(t) ec(t) 27Tfoo (1 —ix)dx, c,t>

Here T is Euler’s gamma function. The family (7;).>¢ with d7.(t) = e.(t)dt is a
convolution semigroup in the sense of [6] on the locally compact abelian group
G = (0, c0) under multiplication. It is called the Urbanik semigroup in [7]. It turns
out that the terminology “Urbanik semigroup” has been used in the literature for
certain semigroups of operators on Banach spaces with the precise name “Urbanik
decomposability semigroup”, see Section 2 in [I0]. We have therefore decided to
use the more precise name “Urbanik’s product convolution semigroup”.

By Carleman’s criterion for S-determinacy it is easy to prove that (n!)¢ is S-
determinate for ¢ < 2. That this estimate is sharp was first proved in [8], where it
was established that (n!)¢ is S-indeterminate for ¢ > 2 based on asymptotic results
of Skorokhod [[I&] about stable distributions, see [23]. Another proof of the S-
indeterminacy was given in [Z] based on the asymptotic behavior of e.(t),

or)(e=1)/2 exp —ctl/e _1/c
(1.3) eo(t) = ( )ﬁ t(cfl)/(QC))[lJrO(t Vo), t— oo

In the recent paper [T], Lin proposes the following conjecture:

CONJECTURE. Let a > 0 be a real constant and let s, = I'(na + 1),n € Ny.
Then:
(a) (sn) is an infinitely divisible Stieltjes moment sequence.

(b) For real ¢ > 0 the sequence (s5,) is S-determinate if and only if ac < 2.

(c) For0 < ¢ < 2/athe unique probability measure [i. corresponding to (s¢,)
has the Mellin transform

(o.¢]
[t°dpc(t) =T(as+ 1), s=>0.
0

When a = 1, the conjecture is true because of the known results about Ur-
banik’s product convolution semigroup, and for a € N, a > 2, the conjecture is
true because of Theorems 4 and 7 in [IT].

We shall prove that the conjecture is true, and it is a special case of similar
results for the following more general normalized Stieltjes moment sequence
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(1.4)
I'(an +b) 1 % bjae
w(a,b) = = ngb/a—1 — /ey gt =0,1,...
where a, b > 0 are arbitrary.
Defining
(1.5) e1(a,b)(t) = tb/a=1 exp(—t1/),

~ al'(b)

we get for Re z > —b/a and after a change of variable ¢ = s*
(1.6) [ t?e1(a,b)(t) dt =T (az + b)/T(b).
0

This leads to our first main result.

THEOREM 1.1. (i) (sn(a7 b)) is an infinitely divisible Stielties moment se-
quence.
(1) There exists a uniquely determined convolution semigroup (Tc(a, b))

c>0
of probability measures on the multiplicative group (0, 00) such that

17 [Fdn@b)) = [ +b)/TOF, Rez>—ba,
0

the moment sequence of 7.(a, b).

and, in particular, (sn(a, b)c) is
b)(t) dt on (0, 00), where

(iii) d7c(a, b)(t) = ec(a,

(18)  eula,b)(t) = % T 6"\ C(b — iaz)/TB) de, ¢ >0,

is a probability density belonging to C*°(0, c0).
(iv) (sn(a, b)c) is S-determinate if and only if ac < 2, hence independent of
b> 0.

Note that (I4) is a special case of (ICH).

The measure 71 (a,b) was considered in [20], where it was proved that the
measure is S-indeterminate if @ > max(2, 2b). This is a consequence of our result.
Note that 71 (a, 1) is called the Weibull distribution with shape parameter 1/a and
scale parameter one.

In (T2) and () we use that I'(z) is a non-vanishing holomorphic function in
the cut plane

(1.9) A=C\ (-00,0],
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so we can define
['(2)°:=exp (clogl'(2)), z€ A,

using the holomorphic branch of logI' which is zero for z = 1. This branch is
explicitly given in (B-l) below.

Let us recall a few facts about convolution semigroups of probability measures
on LCA groups, see [B] for details.

The continuous characters of the multiplicative group G' = (0,00) can be
given as t — ¢, where x € R is arbitrary, and in this way the dual group G of
G can be identified with the additive group of real numbers. The convolution be-
tween measures p and o on (0, 00), called a product convolution and denoted by
W< o, is defined as

f@)duoa(t)= | | f(ts)du(t)do(s)

S
o8
o8

for suitable classes of continuous functions f on (0,00), e.g. those of compact
support.

A family (u.)c>o of probability measures on the multiplicative group G =
(0, 00) is called a convolution semigroup if

Lhe © ftd = Metds ¢, d >0, and lir% e = €1 vaguely.
C—

Here ¢ is the Dirac measure with total mass one concentrated in the neutral ele-
ment one of the group. Given a convolution semigroup (i )c>0 on (0, 00), it is easy
to see that if u; has moments of order n, then all the measures u. have moments
of order n and

(Z)tn d,UJc(t) = ((Ztn dul(t))c, c> 0.

By [6], Theorem 8.3, there is a one-to-one correspondence between convo-
lution semigroups (i.)c~o of probability measures on G and continuous negative
definite functions p : R — C satisfying p(0) = 0 such that

oo

(1.10) [t dpc(t) = exp (—cp(z)), ¢>0,z €R.
0

By the inversion theorem of Fourier analysis for LCA groups, if exp(—cp) is
integrable on R, then dpu.(t) = f.(t) dt for a continuous function f.(t) (¢tf.(t) is
the density of y. with respect to Haar measure (1/t)dt on (0, 00)) given by

1 o0

(1.11) fe(t) = o i tLexp (—cp(z))dz, t>0.

—00

(Note that the dual Haar measure of (1/¢)dt on (0, 00) is 1/(27) dx on R.)
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PROPOSITION 1.1. Fora,b >0
(1.12) p(x) :=1log'(b) — log'(b — iax), =z € R,
is a continuous negative definite function on R satisfying p(0) = 0.

Proposition [ shows that there exists a uniquely determined product convo-
lution semigroup (7¢(a, b))c>0 satisfying

(1.13) Zot_m dre(a,b)(t) = exp [ — ¢(logI'(b) — log I'(b — iax))]

= [['(b—iax)/T(b)]¢, z€R.

Putting z = —ix in (ICH), we see by the uniqueness theorem for Fourier trans-
forms that dri(a,b)(t) = e1(a,b)(t) dt, and since e1(a, b)(t) has moments of any
order by (ICA), we infer that all the measures 7.(a, b) have moments of any order.
This implies that the integral

o0
[ t* dre(a,b)(t), Rez >0,
0

defines a continuous function of z in the half-plane Re z > 0 and holomorphic
in the interior Re z > 0. By (I'T3) this function equals [I'(b + az)/I'(b)]¢ on the
imaginary axis and hence on Re z > 0. As in the proof of [4], Lemma 2.1, it fol-
lows that this equality extends to the half-plane Re z > —b/a, i.e. (I"2) holds.

The function (I'(b — iax)/T'(b)) is a Schwartz function on R and in particular
integrable, so (IB) follows from (=), and e.(a, b) is C*° on (0, c0).

In this way we have established (i)—(iii) of Theorem . The proof of the more
difficult part (iv) as well as the proof of Proposition [T will be given in Section 3.

By Riemann-Lebesgue’s lemma we also see that te.(a,b)(t) tends to zero
for ¢t tending to zero and to infinity. Much more on the behavior near zero and
infinity will be given in Section 2, where we extend the work of [[] leading to
the asymptotic behavior of the densities e.(a,b)(t) for ¢ — 0 and ¢t — oco. The
behavior for ¢ — oo will lead to a proof of the S-indeterminacy for ac > 2 using
the Krein criterion.

The fact that 7.(a, b) ¢ 74(a,b) = 7.+4(a, b) can be written as

[e.9]

(1.14) ectd(a,b)(t) = {ec(a,b)(t/x)ed(a, b)(x) dg, c,d > 0.

In particular, for ¢ = d = 1 and the explicit formula for e (a, b) we get

1.15 b tb/a_l i —1/a41/a 1/a da
b/a—1
Kot

al’(b)?
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because the Macdonald function Kj is given by
1 dy
Ko(z) = 3 [exp (= /2%y —y) %,
0

cf. [8], 8.432(6); [14], Chapter 10, Section 25.
Except for a scaling this result is the same as Lemma 1 in [I2].

2. MAIN RESULTS

Our additional main results are the following:

THEOREM 2.1. For ¢ > 0 we have

(2m)(e=1/2 exp(—ctl/(a0)

(21) ec(aa b)(t) = a\/EF(b)c tl—(b—1/2+1/(20))/a

140 @), ¢t - .

THEOREM 2.2. The measure 1.(a,b) is S-indeterminate if and only if ac > 2.

THEOREM 2.3. Forc > 0and 0 < t < 1 we have

/a1 Jlog(1/0)°"!
@l ®F  T(e)

(2.2) ec(a,b)(t) = + Ot/ log(1/t)]°72), t— 0.

REMARK 2.1. Formula (Z2) shows that e.(a, b)(¢) tends to zero for ¢ — 0 if
b/a > 1, and to infinity if b/a < 1, independent of c. If b/a = 1, then e.(a, b)(t)
tends to zero for ¢ < 1 and to infinity as a power of log(1/t) when ¢ > 1.

3. PROOFS

Proof of Proposition M. From the Weierstrass product for the en-
tire function 1/I'(z) we get the following holomorphic branch in the cut plane .4,
cf. (C9):

(3.1) —logI'(z) =~vz+ Logz+ io: (Log(1+ z/k) — z/k), z€ A,
k=1

where Log denotes the principal logarithm, and -y is Euler’s constant.
Forn € Nand z € A define

pn(z) = vz + Log 2 +an: (Log(1 + z/k) — z/k),
=1
Ru(z)= > (Log(l+2/k) - 2/k),
k=n+1
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s0 limy, o pn(2) = —logI'(2), uniformly on compact subsets of .A. Furthermore,
we have
logT'(b) + pn(b) + R, (b) = 0,

and since log(1 + x) < x for x > 0, we see that R,,(b) < 0 and hence logI'(b) +
pn(b) > 0.

We claim that log I'(b) + p,, (b — iax) is a continuous negative definite func-
tion, and letting n — oo, we get the assertion of Proposition [Tl

To see the claim, we write

"ol
logI'(b n(b—iax) = logI'(b b—iax — —
1)+ pulb — i) = og(0) + (b —iax) (5 - 3 )

n b—i
+ Log(b —iax) + ) Log |1+ kmx)
k=1

log T'(b) + pn(b) — i 1) LS Lo (1-i-

=10 —1ax — - (6] —1

and the assertion follows since « + ¢Sz and Log(1 + iSz) are negative definite
functions when o > 0, 8 € R, see [B], [16]. =

Proof of Theorem . We modify the proof given in [[Z] and start by
applying Cauchy’s integral theorem to move the integration in (IC8) to a horizontal
line

(3.2) Hs:={z=z+41id : xeR}, &> —b/a.
LEMMA 3.1. With Hs as in (B2) we have

33) el b)(t) = % JE b as) Oz >0

Proof. Fort,c > 0 fixed, f(z) = t*~1[['(b — iaz)/T'(b)]¢ is holomorphic
in the simply connected domain C \ i(—o0, —b/al, so (B3) follows from Cauchy’s
integral theorem provided the integral

4
[ flz+iy)dy
0
tends to zero for x — +o00. We have
|f(x +iy)| =tV HD(b+ y — iaz) /T ()|,
and the result follows since
IT(u+ iv)| ~ v2re ™12y u=1/2 |y| — oo, uniformly for bounded real u,

cf. [M], p. 141, equation 5.11.9; [K], 8.328(1). =m
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In the following we will use Lemma B with the line of integration Hg, where
6 = (tY/(a9) — b) /a. Therefore,

eo(a, b)(t) =t (“’>/“—12i [ [0/ — jaz) /T (b)) da,
T

—00

and after the change of variable z = a~'#/(%?)y and putting A := (1/c+b—a)/a
we get
(3.4)
— ac ]. < ; - ac
ecla, b)(t) = tA=a T [ e O D 1/ (@0 (1)) /T(5)]° dus,

2ra

Binet’s formula for I" is ([§], 8.341(1))

(3.5) [(z) = V227" Y2721 Re(2) > 0,
where
°/1 1 1 e
. = ———+ ——| —dt, R .
(3.6) p(z) {(2 t+et_1> —dt, Re(z)>0

Notice that u(z) is the Laplace transform of a positive function, so we have the
estimates for z = r + is,r > 0, that is,

1
12r’
where the last inequality is a classical version of Stirling’s formula, thus showing

that the estimate is uniform in s € R.
Inserting this in (B4), we get after some simplification

(3.7) ()] < plr) <

(3.8)
or)e/2-t Q) —ctl/@e) F /(@) £y
ec(avb)(t) = (al—?(b)ctA 1/(2 )e 1 f e +1 f( )gc(u)M(U, t) du’
where

(3.9 f(u):=iu+ (1 —iu)Log(l —iu), geo(u):= (1 —iu) >
and
(3.10) M (u,t) == exp [cp () (1 — iu))].

From (B2) we get M (u,t) = 1+ O(t /(%)) for t — oo, uniformly in u. We shall
therefore consider the behavior for large z of the integral

(3.1D) f exf(“)gc(u) du, = ct'/@),



Urbanik’s semigroup 449

This is the same integral as was treated in [[], equation (28), leading to
(o)
[ e Wge(u)du = (2r/z)?[1 + O(x~")]
—00

by methods from [3].
For 2 = ct'/(%%) we find

_f exp (Ctl/(aC)f(u))gc(u)du = \%[1 + O(t—l/(ac))]’

hence

(277)(6_1)/2 eXp(_Ctl/(aC)) —1/(ac
ee(a, b)(t) = /e (b)° -1/ L T O /@))]. m

Proof of Theorem D2 We first prove that (s, (a, b)°) is S-determinate
for ac < 2 by Carleman’s criterion, cf. [['Z], p. 20. In fact, from Stirling’s formula
we have

5n(a, b)) = (T(na + b)/T(1))7 ~ (nafe)™2, n— oo,

50 > sn(a,b)~¢/?") = oo if and only if ac < 2.

Since Carleman’s criterion is only a sufficient condition for S-determinacy,
we need to prove that e.(a,b) is S-indeterminate for ac > 2. We apply the Krein
criterion for S-indeterminacy of probability densities concentrated on the half-line,
using a version due to H. L. Pedersen given in [9], Theorem 4. It states that if
 log ec(a, b)(t?) dt

(3.12) If( "

for some K > 0, then e.(a, b) is S-indeterminate. This version of the Krein crite-
rion is a simplification of a stronger version given in [I5]. We shall see that (B12)
holds for ac > 2.

From Theorem 1l we see that (B12) holds for sufficiently large K > 0 if and
only if

00 _ ~42/(ac)
T 0 o,
o Ltt

and the latter holds precisely for ac > 2. This shows that 7.(a, b) is S-indeterminate
forac> 2. =

Proof of Theorem [Z3. The proof uses the same ideas as in [[Z], but
since the proof is quite technical, we give the full proof with the necessary modifi-
cations. Since we are studying the behavior for ¢ — 0, we assume that 0 < ¢ < 1
so that A := log(1/t) > 0.
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We will need integration along vertical lines
(3.13) Vo ={a+iy|y=—o0...00}, a€R,

and we can therefore express (ICX) as

b/a—1
! / 790 (—2)°dz.
b

(3.14) ec(a,b)(t) = Irial (b)°
v

By the functional equation for I" we get

tb/afl
smiar)e | IPIPR)z,

(3.15) ec(a,b)(t) =

where we have defined

o(z) ==tT(1 —2)%, g(z):=(—2)"° = exp (— cLog(—2)).

Note that ¢ is holomorphic in C \ [1, 00), while g is holomorphic in C \ [0, c0).
For z > 0 we define

—ce:tiwc‘

qi 1 — 11111 (7 X :l: =X

We fix 0 < s < 1, choose 0 < € < min(s, b) and integrate g(z)y(z) over the
contour

C:={-b+iy|ly=00...0}U[-b,—c]U{ee? |§=7...0}
Ule,s]U{s+iy|y=0...00}

and get zero by the integral theorem of Cauchy. On the interval [e, s| we will use
9= 9+

Similarly, we get zero by integrating g(z)y(z) over the complex conjugate
contour C, and now we use g = g_ on the interval [g, s].

Subtracting the second contour integral from the first leads to

=] - [ 9@ d2+f90 )(9+(2) — g-(x)) dz =0,

Vs Vo |z|=¢
where the integral over the circle is with positive orientation. Note that the two
integrals over [—b, —¢] cancel. Since 0 < ¢ < 1, it is easy to see that the just men-
tioned integral converges to zero for ¢ — 0, and we finally get fore — 0

tb/a 1 tb/afl Sin(ﬂ'C) S

ec(a:b)(t) = 27ial (b)° fg 2)dz+ mal'(b)¢ {x_cw(l‘) o

=10 + .[2.
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We claim that I; is o(t(*%)/@=1) for t — 0. To see this, we insert the parametriza-
tion of V; and get

7fb/afl (9]

[ (—s— iy) TP (1 — s — iy)dy

L=——
' 2nal (b)e -

t(s+b)/a—1 oo iyA/a . .
:W(b)c fe YR (—s —iy) °T(1 — s — iy)° dy,

and the integral is o(1) for ¢t — 0 by Riemann-Lebesgue’s lemma because A :=
log(1/t) — oc.
The substitution u = x A in the integral in the term I5 leads to

B t¥/e=Lsin(rc)

sA
1 I = AT [ w1 — u/A)° du.
(3.16) 2 al (b {u e (1 —u/A)du

We split the integral in (B18) as
sA 00 ]

G17) [u e D1 —u/A)° — 1] du+ [u=e " du—~ [ u=e""/* du.
0 0 sA

Calling the three terms .J1, Jo, .J3, we have Jo = a'~°I'(1 — ¢) and
Js = —a'T'(1 — ¢,sM/a),
where I'(«, ) is the incomplete gamma function with the asymptotics

o0
D(a,z) = [ u* e du ~ 2% e,z — 00
x

(cf. [R], 8.357), hence
Jz = Ot /A7), t— 0.

Using the digamma function ¥ = IV /T, we get by the mean-value theorem
T(1—u/A)°—1= —%cm — Ou/A)°T(1 — Ou/A)

for some 0 < 6 < 1, but this implies that

ID(1—u/A)° —1] < %M(s), 0<u< sA,

where
M (s) := max{I'(x)|¥(z)| | 1l — s <z < 1},

soJ; = O(A™Y) fort — 0.
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This gives
tt/o=Vsin(we) 4 1 1
Iy = T\ pem A~ (1 — s/ap—c
2 al(b)° (O(A™) +a (1—c)+O(t )
75b/a—1Ac—1
_ - + (/)(tb/a—lAc—Q)7
(aI'(b))T(c)

where we have used Euler’s reflection formula for I'. Since finally
I = O(t(s—l—b)/a—l) _ O(tb/a_lAc_2),

we see that (ZZ2) holds.

Case 2. Assume 1 < ¢ < 2.
The gamma function decays so rapidly on vertical lines z = o + 1y, y — 00,
that we can integrate by parts in (B-13) to get
tb/afl (_Z)f(cfl) d

o« z/aF 1 )¢ )
2mial'(b)e /  c—1 dz (t (1= 2))dz

(3.18) ec(a,b)(t) = —

Defining

v1(z) == diz(tz/af(l —2)°) = /97 (1 — 2)°((1/a)logt — c¥(1 — z2))

and using the same contour technique as in Case 1 to the integral in (B-I8), where
now 0 < c—1 < 1, we get for 0 < s < 1 fixed the equality

th/a=1 _ B
cla,b)(t) = — I + Iv),
cela (1) = ~ e+ o)
where
[ J(= v1(2)dz, I~2:sm( 1) 2 Vo (z) da.
2772 c—1) V m(c—1) 0

We have I; = o(t*/*A) for t — 0 by Riemann—Lebesgue’s lemma, and the substi-
tution v = A in the second integral leads to

S
fx_(c_l)cpl(a:) dx
0
sA
=A% u Doy (u/A) du
0

sA sA
= —(1/a)AC*1< 1l u e emu/e gy 4 i u~ (e Demu/a (D(1 —u/A)—1) du>
0 0
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sA
_ A2 f u—(c—l)e—u/ar(l —u/N)U(1 —u/A)du
0
— 7a1—cAc—1F(2 . C) + O(Ac_2).
Using the equality

sin (m(c — 1))
(c—D)m

A 1

_al—c c—1 —¢)) = _al—ci

obtained by Euler’s reflection formula, we see that (ZZ2) holds.

Case 3. Assume c > 2.
We perform the change of variable w = (1/a)Az in (B13) and assume that
A > a. This gives

th/a=1pc=1 1
(@D = reF 2w,

(b/a)A

(—w) % “I'(1 — aw/A)° dw.

Using Cauchy’s integral theorem, we can shift the contour V_;/,)5 to V_; as the
integrand is holomorphic in the vertical strip between both paths and exponentially
small at both extremes of that vertical strip. For the holomorphic function h(z) =
I'(1 — 2)¢ in the domain G = C \ [1, 00), which is star-shaped with respect to zero,
we have

h(z) = h(0) + z [ W (uz)du, z€QG,
hence

1
3.19) T'(l—-aw/AN)°=1- caw J (1 = uaw/A) ¥ (1 — uaw/A) du.
0

A
Defining
R(w) = }F(l —uaw/AN)°¥(1 — uaw/A) du,
we get 0
% V{(—w)_ce_wf(l —aw/A)° dw
= 2%” V{l(—w)_ce_wdw + a;{;& V{I(—w)l_ce_wR(w)dw.

For any w € V_1,0 < u < 1 and for A > a it follows that 1 — uaw/A belongs
to the closed vertical strip located between the vertical lines V7 and V5. Because
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['(2)°¥(z) is continuous and bounded in this strip, R(w) is bounded for w € V_;
by a constant independent of A > a. Furthermore, (—w)'~“e~" is integrable over
V_1 because ¢ > 2.

On the other hand, in the integral

1

— | (—w) ‘e Ydw
27y

the contour V_; may be deformed to a Hankel contour

H={z—i|lz=00...00U{e? |0 =—71/2...—3n/2}
U{z+ilx=0...00}

surrounding [0, 00), and the integral over H is Hankel’s integral representation of
the reciprocal gamma function:

1 1
_ —C —wd — .
(—w) e Ydw e

['(c)

Therefore, when we join everything, we obtain for ¢ > 2:

27 M

_ #1 log(1/p)e!
R N O e

+ Ot log(1/t)]7%), t— 0.

Case 4.c=1,c=2.
These cases are easy since ej (a, b)(t) is explicitly given by (I3) and ex(a, b) ()
by (C13). The asymptotics of K is known:

Ko(t) = log(2/t) + O(1), t—0. =

REMARK 3.1. The behavior of e.(a,b)(t) for ¢t — 0 can be obtained from
(BT3) by using the residue theorem when c is a natural number. In fact, in this case
I'(—2)€ has a pole of order ¢ at z = 0, and a shift of the contour V_; to V5, where
0 < s < 1, has to be compensated by a residue, which will give the behavior for
t— 0.

When c is a natural number, one can actually express e.(a,b)(t) in terms of
Meijer’s G-function:

tb/(l—l C,O 1/a — —
€c(a7b)(t) = aF(b)cGO,c t | 0O --- 0 ?

cf. Section 9.3 in [K].
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4. ONE-PARAMETER EXTENSION OF THE GUMBEL DISTRIBUTIONS

The group isomorphism = = log(1/t) of the multiplicative group (0, co) onto
the additive group R transforms the convolution semigroup (Tc(a, b))c>0 into an
ordinary convolution semigroup (Gc(a, b))c>0 of probability measures on R with
densities given by

4.1) ge(a,b)(x) = e "ec(a,b)(e™™), = €R,

and a, b, ¢ > 0 are arbitrary. For ¢ = 1 we have

(4.2) g1(a,b)(x) = exp(—bz/a —e %), xeR.

1
al'(b)
This density is infinitely divisible and the uniquely determined convolution roots
are given by (E&).

The special density gi(a, 1)(z) is the Gumbel density with scale parameter
a > 0, and the basic case a = 1 is discussed in [[]. From the asymptotic behavior
of ec(a,b) in Theorems I-T and Z3 we can obtain the asymptotic behavior of the
convolution roots g.(a, b):

(4.3)
(2)(e=1)/2 exp(—ce~/(a0))

0D = e e - L/2 T 1/ a) [1+0(exp (v/(a0)) )|

for x — —o0, and

exp(—bx/a)xc~!
@9 0D = SRR + O (el -bafa) w00

THEOREM 4.1. All densities g.(a,b) belong to determinate Hamburger mo-
ment problems.

Proof. We first prove that g;(a, b) is determinate, and for this it suffices to
verify that the moments

oo

4.5) Sp = f z"g1(a,b)(x) dx
satisfy Carleman’s condition ZZO:O 32_,11/(2") = oo (cf. [IZ], p. 19). From (EX)
we get
Sop = L Ofo(log £)2n b/ o exp(—tY/%) dt = 1 Ofo(alog s)2nst=te™5 ds
al’'(b) L) 5
a2n 1 00
< ( [(log s)2sb=tds + i s2HhTlems ds).
L)y 1
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By changing variables we see that

z(log s)2nst~lds = 522:;)1 ,
and
782"'“’_16_5 ds <T'(2n +b),
1
hence Lo
SZL(%L) < F(b)cll/(Zn) |:<[§221:L—21> " + F(2n + b)l/(Qn) )

and the Carleman condition follows from Stirling’s formula, which shows that the
right-hand side is bounded by K'n for sufficiently large K > 0. We next use Corol-
lary 3.3 in [2] to infer that the Carleman condition also holds for all convolution
roots g.(a,b). m

Concerning the moments

(4.6) sn(c) = Ofo z"gc(a,b)(z)dx, n € Ny,

of the convolution roots we have the following result:

THEOREM 4.2. The moment sy(c) of (B8) is a polynomial
n
4.7 sp(c) = > amkck, n>1,
k=1

of degree at most n in the variable c. The coefficients a,, j, are given below.

Proof. From (I2) we get
T e dGiufa,b)(@) = | tec(a,b)(t) dt = [D(b+ iay) /L)
—00 0

which shows that the negative definite function p corresponding to the convolution
semigroup (G.(a, b))c>0 is

p(y) =log'(b) —logI'(b +iay), yeR.
The derivatives of p can be expressed in terms of the digamma function ¥, namely

p(n+1)(y) _ _(ia)n+1\11(n) (b + iay), n € Ny,
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so if for n € Ny we define (cf. [3], equation (2.7))

o= =" (0) = (—a) WO ),

we find

O'OZCL’)’—F* abz

b b+k)

> 1
Op = an+1n! Z W = an""ln!C(n + 1, b), n e N,
=0

where ((z, q) is Hurwitz’ zeta function (cf. [8], 9.521).
According to [B] we have s1(c) = ogc, s2(c) = o1c + 03c? and in general
sp(c) is given by (B71), where the coefficients a, ;, are determined by the recursion

n n
Ant 1kl = D Gjk (j On—j, n=k=>0.
j=k

It is easy to see that

n
n—2 n
Gnp1 = On—1, GAQnpn-1= < >0'0 01, Qpn =0p. W
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