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Abstract. We prove that sn(a, b) = Γ(an + b)/Γ(b), n = 0, 1, . . ., is
an infinitely divisible Stieltjes moment sequence for arbitrary a, b > 0. Its
powers sn(a, b)

c, c > 0, are Stieltjes determinate if and only if ac ¬ 2.
The latter was conjectured in a paper by Lin (2019) in the case b = 1. We
describe a product convolution semigroup τc(a, b), c > 0, of probability
measures on the positive half-line with densities ec(a, b) and having the
moments sn(a, b)

c. We determine the asymptotic behavior of ec(a, b)(t)

for t → 0 and for t → ∞, and the latter implies the Stieltjes indetermi-
nacy when ac > 2. The results extend the previous work of the author and
López (2015) and lead to a convolution semigroup of probability densities(
gc(a, b)(x)

)
c>0

on the real line. The special case
(
gc(a, 1)(x)

)
c>0

are the
convolution roots of the Gumbel distribution with scale parameter a > 0.
All the densities gc(a, b)(x) lead to determinate Hamburger moment prob-
lems.
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1. INTRODUCTION

A Stieltjes moment sequence is a sequence of non-negative numbers of the
form

(1.1) sn =
∞∫
0

tn dµ(t), n ∈ N0 := {0, 1, 2, . . .},

where µ is a positive measure on [0,∞) such that tn ∈ L1(µ) for all n ∈ N0.
The sequence (sn) is called normalized if s0 = µ

(
[0,∞)

)
= 1, and it is called S-

determinate (resp. S-indeterminate) if (1.1) has exactly one solution (resp. several
solutions) µ as positive measures on [0,∞). All these concepts go back to the
fundamental memoir of Stieltjes [19].
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A Stieltjes moment sequence (sn) is called infinitely divisible if (scn) is a Stielt-
jes moment sequence for any c > 0. These sequences were characterized in Tyan’s
Ph.D. thesis [21] and again in [5] without the knowledge of [21]. An important ex-
ample of an infinitely divisible normalized Stieltjes moment sequence is sn = n!,
first established in Urbanik [22]. He proved that ec in (1.2) is a probability density
such that

(1.2) (n!)c =
∞∫
0

tnec(t) dt, ec(t) =
1

2π

∞∫
−∞

tix−1Γ(1− ix)c dx, c, t > 0.

Here Γ is Euler’s gamma function. The family (τc)c>0 with dτc(t) = ec(t)dt is a
convolution semigroup in the sense of [6] on the locally compact abelian group
G = (0,∞) under multiplication. It is called the Urbanik semigroup in [7]. It turns
out that the terminology “Urbanik semigroup” has been used in the literature for
certain semigroups of operators on Banach spaces with the precise name “Urbanik
decomposability semigroup”, see Section 2 in [10]. We have therefore decided to
use the more precise name “Urbanik’s product convolution semigroup”.

By Carleman’s criterion for S-determinacy it is easy to prove that (n!)c is S-
determinate for c ¬ 2. That this estimate is sharp was first proved in [4], where it
was established that (n!)c is S-indeterminate for c > 2 based on asymptotic results
of Skorokhod [18] about stable distributions, see [23]. Another proof of the S-
indeterminacy was given in [7] based on the asymptotic behavior of ec(t),

(1.3) ec(t) =
(2π)(c−1)/2√

c

exp(−ct1/c)
t(c−1)/(2c)

[1 +O(t−1/c)], t→∞.

In the recent paper [11], Lin proposes the following conjecture:

CONJECTURE. Let a > 0 be a real constant and let sn = Γ(na+ 1), n ∈ N0.
Then:

(a) (sn) is an infinitely divisible Stieltjes moment sequence.
(b) For real c > 0 the sequence (scn) is S-determinate if and only if ac ¬ 2.
(c) For 0 < c ¬ 2/a the unique probability measure µc corresponding to (scn)

has the Mellin transform

∞∫
0

ts dµc(t) = Γ(as+ 1)c, s  0.

When a = 1, the conjecture is true because of the known results about Ur-
banik’s product convolution semigroup, and for a ∈ N, a  2, the conjecture is
true because of Theorems 4 and 7 in [11].

We shall prove that the conjecture is true, and it is a special case of similar
results for the following more general normalized Stieltjes moment sequence
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(1.4)

sn(a, b) =
Γ(an+ b)

Γ(b)
=

1

aΓ(b)

∞∫
0

tntb/a−1 exp(−t1/a) dt, n = 0, 1, . . . ,

where a, b > 0 are arbitrary.
Defining

(1.5) e1(a, b)(t) =
1

aΓ(b)
tb/a−1 exp(−t1/a),

we get for Re z > −b/a and after a change of variable t = sa

(1.6)
∞∫
0

tze1(a, b)(t) dt = Γ(az + b)/Γ(b).

This leads to our first main result.

THEOREM 1.1. (i)
(
sn(a, b)

)
is an infinitely divisible Stieltjes moment se-

quence.
(ii) There exists a uniquely determined convolution semigroup

(
τc(a, b)

)
c>0

of probability measures on the multiplicative group (0,∞) such that

(1.7)
∞∫
0

tz dτc(a, b)(t) = [Γ(az + b)/Γ(b)]c, Re z > −b/a,

and, in particular,
(
sn(a, b)

c
)

is the moment sequence of τc(a, b).
(iii) dτc(a, b)(t) = ec(a, b)(t) dt on (0,∞), where

(1.8) ec(a, b)(t) =
1

2π

∞∫
−∞

tix−1[Γ(b− iax)/Γ(b)]c dx, t > 0,

is a probability density belonging to C∞(0,∞).
(iv)

(
sn(a, b)

c
)

is S-determinate if and only if ac ¬ 2, hence independent of
b > 0.

Note that (1.4) is a special case of (1.6).
The measure τ1(a, b) was considered in [20], where it was proved that the

measure is S-indeterminate if a > max(2, 2b). This is a consequence of our result.
Note that τ1(a, 1) is called the Weibull distribution with shape parameter 1/a and
scale parameter one.

In (1.7) and (1.8) we use that Γ(z) is a non-vanishing holomorphic function in
the cut plane

(1.9) A = C \ (−∞, 0],
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so we can define
Γ(z)c := exp

(
c log Γ(z)

)
, z ∈ A,

using the holomorphic branch of log Γ which is zero for z = 1. This branch is
explicitly given in (3.1) below.

Let us recall a few facts about convolution semigroups of probability measures
on LCA groups, see [6] for details.

The continuous characters of the multiplicative group G = (0,∞) can be
given as t → tix, where x ∈ R is arbitrary, and in this way the dual group Ĝ of
G can be identified with the additive group of real numbers. The convolution be-
tween measures µ and σ on (0,∞), called a product convolution and denoted by
µ � σ, is defined as

∞∫
0

f(t) dµ � σ(t) =
∞∫
0

∞∫
0

f(ts) dµ(t) dσ(s)

for suitable classes of continuous functions f on (0,∞), e.g. those of compact
support.

A family (µc)c>0 of probability measures on the multiplicative group G =
(0,∞) is called a convolution semigroup if

µc � µd = µc+d, c, d > 0, and lim
c→0

µc = ε1 vaguely.

Here ε1 is the Dirac measure with total mass one concentrated in the neutral ele-
ment one of the group. Given a convolution semigroup (µc)c>0 on (0,∞), it is easy
to see that if µ1 has moments of order n, then all the measures µc have moments
of order n and

∞∫
0

tn dµc(t) =
(∞∫

0

tn dµ1(t)
)c
, c > 0.

By [6], Theorem 8.3, there is a one-to-one correspondence between convo-
lution semigroups (µc)c>0 of probability measures on G and continuous negative
definite functions ρ : R→ C satisfying ρ(0) = 0 such that

(1.10)
∞∫
0

t−ix dµc(t) = exp
(
− cρ(x)

)
, c > 0, x ∈ R.

By the inversion theorem of Fourier analysis for LCA groups, if exp(−cρ) is
integrable on R, then dµc(t) = fc(t) dt for a continuous function fc(t) (tfc(t) is
the density of µc with respect to Haar measure (1/t)dt on (0,∞)) given by

(1.11) fc(t) =
1

2π

∞∫
−∞

tix−1 exp
(
− cρ(x)

)
dx, t > 0.

(Note that the dual Haar measure of (1/t)dt on (0,∞) is 1/(2π) dx on R.)
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PROPOSITION 1.1. For a, b > 0

(1.12) ρ(x) := log Γ(b)− log Γ(b− iax), x ∈ R,

is a continuous negative definite function on R satisfying ρ(0) = 0.

Proposition 1.1 shows that there exists a uniquely determined product convo-
lution semigroup

(
τc(a, b)

)
c>0

satisfying

∞∫
0

t−ix dτc(a, b)(t) = exp
[
− c

(
log Γ(b)− log Γ(b− iax)

)]
(1.13)

= [Γ(b− iax)/Γ(b)]c, x ∈ R.

Putting z = −ix in (1.6), we see by the uniqueness theorem for Fourier trans-
forms that dτ1(a, b)(t) = e1(a, b)(t) dt, and since e1(a, b)(t) has moments of any
order by (1.6), we infer that all the measures τc(a, b) have moments of any order.
This implies that the integral

∞∫
0

tz dτc(a, b)(t), Re z  0,

defines a continuous function of z in the half-plane Re z  0 and holomorphic
in the interior Re z > 0. By (1.13) this function equals [Γ(b + az)/Γ(b)]c on the
imaginary axis and hence on Re z  0. As in the proof of [4], Lemma 2.1, it fol-
lows that this equality extends to the half-plane Re z > −b/a, i.e. (1.7) holds.

The function
(
Γ(b− iax)/Γ(b)

)c is a Schwartz function on R and in particular
integrable, so (1.8) follows from (1.7), and ec(a, b) is C∞ on (0,∞).

In this way we have established (i)–(iii) of Theorem 1.1. The proof of the more
difficult part (iv) as well as the proof of Proposition 1.1 will be given in Section 3.

By Riemann–Lebesgue’s lemma we also see that tec(a, b)(t) tends to zero
for t tending to zero and to infinity. Much more on the behavior near zero and
infinity will be given in Section 2, where we extend the work of [7] leading to
the asymptotic behavior of the densities ec(a, b)(t) for t → 0 and t → ∞. The
behavior for t→∞ will lead to a proof of the S-indeterminacy for ac > 2 using
the Krein criterion.

The fact that τc(a, b) � τd(a, b) = τc+d(a, b) can be written as

(1.14) ec+d(a, b)(t) =
∞∫
0

ec(a, b)(t/x)ed(a, b)(x)
dx

x
, c, d > 0.

In particular, for c = d = 1 and the explicit formula for e1(a, b) we get

e2(a, b)(t) =
tb/a−1

[aΓ(b)]2

∞∫
0

exp(−x−1/at1/a − x1/a)
dx

x
(1.15)

=
2tb/a−1

aΓ(b)2
K0(2t

1/(2a)),
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because the Macdonald function K0 is given by

K0(z) =
1

2

∞∫
0

exp
(
− (z/2)2/y − y

)dy
y
,

cf. [8], 8.432(6); [14], Chapter 10, Section 25.
Except for a scaling this result is the same as Lemma 1 in [12].

2. MAIN RESULTS

Our additional main results are the following:

THEOREM 2.1. For c > 0 we have

(2.1) ec(a, b)(t) =
(2π)(c−1)/2

a
√
cΓ(b)c

exp(−ct1/(ac))
t1−(b−1/2+1/(2c))/a

[1 +O(t−1/(ac))], t→∞.

THEOREM 2.2. The measure τc(a, b) is S-indeterminate if and only if ac > 2.

THEOREM 2.3. For c > 0 and 0 < t < 1 we have

(2.2) ec(a, b)(t) =
tb/a−1

[aΓ(b)]c
[log(1/t)]c−1

Γ(c)
+O

(
tb/a−1[log(1/t)]c−2

)
, t→ 0.

REMARK 2.1. Formula (2.2) shows that ec(a, b)(t) tends to zero for t→ 0 if
b/a > 1, and to infinity if b/a < 1, independent of c. If b/a = 1, then ec(a, b)(t)
tends to zero for c < 1 and to infinity as a power of log(1/t) when c > 1.

3. PROOFS

P r o o f o f P r o p o s i t i o n 1.1. From the Weierstrass product for the en-
tire function 1/Γ(z) we get the following holomorphic branch in the cut plane A,
cf. (1.9):

(3.1) − log Γ(z) = γz + Log z +
∞∑
k=1

(
Log(1 + z/k)− z/k

)
, z ∈ A,

where Log denotes the principal logarithm, and γ is Euler’s constant.
For n ∈ N and z ∈ A define

ρn(z) = γz + Log z +
n∑

k=1

(
Log(1 + z/k)− z/k

)
,

Rn(z) =
∞∑

k=n+1

(
Log(1 + z/k)− z/k

)
,
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so limn→∞ ρn(z) = − log Γ(z), uniformly on compact subsets ofA. Furthermore,
we have

log Γ(b) + ρn(b) +Rn(b) = 0,

and since log(1 + x) < x for x > 0, we see that Rn(b) < 0 and hence log Γ(b) +
ρn(b) > 0.

We claim that log Γ(b) + ρn(b − iax) is a continuous negative definite func-
tion, and letting n→∞, we get the assertion of Proposition 1.1.

To see the claim, we write

log Γ(b) + ρn(b− iax) = log Γ(b) + (b− iax)

(
γ −

n∑
k=1

1

k

)
+ Log(b− iax) +

n∑
k=1

Log

(
1 +

b− iax

k

)
= log Γ(b) + ρn(b)− iax

(
γ −

n∑
k=1

1

k

)
+

n∑
k=0

Log

(
1− i

ax

b+ k

)
,

and the assertion follows since α + iβx and Log(1 + iβx) are negative definite
functions when α  0, β ∈ R, see [6], [16]. �

P r o o f o f T h e o r e m 2.1. We modify the proof given in [7] and start by
applying Cauchy’s integral theorem to move the integration in (1.8) to a horizontal
line

(3.2) Hδ := {z = x+ iδ : x ∈ R}, δ > −b/a.

LEMMA 3.1. With Hδ as in (3.2) we have

(3.3) ec(a, b)(t) =
1

2π

∫
Hδ

tiz−1[Γ(b− iaz)/Γ(b)]c dz, t > 0.

P r o o f. For t, c > 0 fixed, f(z) = tiz−1[Γ(b − iaz)/Γ(b)]c is holomorphic
in the simply connected domain C \ i(−∞,−b/a], so (3.3) follows from Cauchy’s
integral theorem provided the integral

δ∫
0

f(x+ iy) dy

tends to zero for x→ ±∞. We have

|f(x+ iy)| = t−y−1|Γ(b+ y − iax)/Γ(b)|c,

and the result follows since

|Γ(u+ iv)| ∼
√
2πe−π|v|/2|v|u−1/2, |v| → ∞, uniformly for bounded real u,

cf. [1], p. 141, equation 5.11.9; [8], 8.328(1). �
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In the following we will use Lemma 3.1 with the line of integration Hδ, where
δ = (t1/(ac) − b)/a. Therefore,

ec(a, b)(t) = t(b−t
1/(ac))/a−1 1

2π

∞∫
−∞

tix[Γ(t1/(ac) − iax)/Γ(b)]c dx,

and after the change of variable x = a−1t1/(ac)u and putting A := (1/c+ b− a)/a
we get
(3.4)

ec(a, b)(t) = tA−a
−1t1/(ac) 1

2πa

∞∫
−∞

tiua
−1t1/(ac)

[
Γ
(
t1/(ac)(1− iu)

)
/Γ(b)

]c
du.

Binet’s formula for Γ is ([8], 8.341(1))

(3.5) Γ(z) =
√
2πzz−1/2e−z+µ(z), Re (z) > 0,

where

(3.6) µ(z) =
∞∫
0

(
1

2
− 1

t
+

1

et − 1

)
e−zt

t
dt, Re (z) > 0.

Notice that µ(z) is the Laplace transform of a positive function, so we have the
estimates for z = r + is, r > 0, that is,

(3.7) |µ(z)| ¬ µ(r) ¬ 1

12r
,

where the last inequality is a classical version of Stirling’s formula, thus showing
that the estimate is uniform in s ∈ R.

Inserting this in (3.4), we get after some simplification
(3.8)

ec(a, b)(t) =
(2π)c/2−1

aΓ(b)c
tA−1/(2a)e−ct

1/(ac)
∞∫
−∞

ect
1/(ac)f(u)gc(u)M(u, t) du,

where

(3.9) f(u) := iu+ (1− iu) Log(1− iu), gc(u) := (1− iu)−c/2

and

(3.10) M(u, t) := exp
[
cµ

(
t1/(ac)(1− iu)

)]
.

From (3.7) we get M(u, t) = 1+O(t−1/(ac)) for t→∞, uniformly in u. We shall
therefore consider the behavior for large x of the integral

(3.11)
∞∫
−∞

exf(u)gc(u) du, x = ct1/(ac).
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This is the same integral as was treated in [7], equation (28), leading to

∞∫
−∞

exf(u)gc(u) du = (2π/x)1/2[1 +O(x−1)]

by methods from [13].
For x = ct1/(ac) we find

∞∫
−∞

exp
(
ct1/(ac)f(u)

)
gc(u)du =

√
2π

√
ct1/(2ac)

[1 +O(t−1/(ac))],

hence

ec(a, b)(t) =
(2π)(c−1)/2

a
√
cΓ(b)c

exp(−ct1/(ac))
t1−(b−1/2+1/(2c))/a

[1 +O(t−1/(ac))]. �

P r o o f o f T h e o r e m 2.2. We first prove that
(
sn(a, b)

c
)

is S-determinate
for ac ¬ 2 by Carleman’s criterion, cf. [17], p. 20. In fact, from Stirling’s formula
we have

sn(a, b)
c/(2n) =

(
Γ(na+ b)/Γ(b)

)c/(2n) ∼ (na/e)ac/2, n→∞,

so
∑

sn(a, b)
−c/(2n) =∞ if and only if ac ¬ 2.

Since Carleman’s criterion is only a sufficient condition for S-determinacy,
we need to prove that ec(a, b) is S-indeterminate for ac > 2. We apply the Krein
criterion for S-indeterminacy of probability densities concentrated on the half-line,
using a version due to H. L. Pedersen given in [9], Theorem 4. It states that if

(3.12)
∞∫
K

log ec(a, b)(t
2) dt

1 + t2
> −∞

for some K  0, then ec(a, b) is S-indeterminate. This version of the Krein crite-
rion is a simplification of a stronger version given in [15]. We shall see that (3.12)
holds for ac > 2.

From Theorem 2.1 we see that (3.12) holds for sufficiently large K > 0 if and
only if

∞∫
K

−ct2/(ac)

1 + t2
dt > −∞,

and the latter holds precisely for ac > 2. This shows that τc(a, b) is S-indeterminate
for ac > 2. �

P r o o f o f T h e o r e m 2.3. The proof uses the same ideas as in [7], but
since the proof is quite technical, we give the full proof with the necessary modifi-
cations. Since we are studying the behavior for t→ 0, we assume that 0 < t < 1
so that Λ := log(1/t) > 0.
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We will need integration along vertical lines

(3.13) Vα := {α+ iy | y = −∞ . . .∞}, α ∈ R,

and we can therefore express (1.8) as

(3.14) ec(a, b)(t) =
tb/a−1

2πiaΓ(b)c

∫
V−b

tz/aΓ(−z)cdz.

By the functional equation for Γ we get

(3.15) ec(a, b)(t) =
tb/a−1

2πiaΓ(b)c

∫
V−b

g(z)φ(z)dz,

where we have defined

φ(z) := tz/aΓ(1− z)c, g(z) := (−z)−c = exp
(
− cLog(−z)

)
.

Note that φ is holomorphic in C \ [1,∞), while g is holomorphic in C \ [0,∞).
For x > 0 we define

g±(x) := lim
ε→0+

g(x± iε) = x−ce±iπc.

C a s e 1. Assume 0 < c < 1.
We fix 0 < s < 1, choose 0 < ε < min(s, b) and integrate g(z)φ(z) over the

contour

C := {−b+ iy | y =∞ . . . 0} ∪ [−b,−ε] ∪ {εeiθ | θ = π . . . 0}
∪ [ε, s] ∪ {s+ iy | y = 0 . . .∞}

and get zero by the integral theorem of Cauchy. On the interval [ε, s] we will use
g = g+.

Similarly, we get zero by integrating g(z)φ(z) over the complex conjugate
contour C, and now we use g = g− on the interval [ε, s].

Subtracting the second contour integral from the first leads to∫
Vs

−
∫
V−b

−
∫
|z|=ε

g(z)φ(z) dz +
s∫
ε

φ(x)
(
g+(x)− g−(x)

)
dx = 0,

where the integral over the circle is with positive orientation. Note that the two
integrals over [−b,−ε] cancel. Since 0 < c < 1, it is easy to see that the just men-
tioned integral converges to zero for ε→ 0, and we finally get for ε→ 0

ec(a, b)(t) =
tb/a−1

2πiaΓ(b)c

∫
Vs

g(z)φ(z) dz +
tb/a−1 sin(πc)

πaΓ(b)c

s∫
0

x−cφ(x) dx

:= I1 + I2.
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We claim that I1 is o(t(s+b)/a−1) for t→ 0. To see this, we insert the parametriza-
tion of Vs and get

I1 =
tb/a−1

2πaΓ(b)c

∞∫
−∞

(−s− iy)−ct(s+iy)/aΓ(1− s− iy)c dy

=
t(s+b)/a−1

2πaΓ(b)c

∞∫
−∞

e−iyΛ/a(−s− iy)−cΓ(1− s− iy)c dy,

and the integral is o(1) for t → 0 by Riemann–Lebesgue’s lemma because Λ :=
log(1/t)→∞.

The substitution u = xΛ in the integral in the term I2 leads to

(3.16) I2 =
tb/a−1 sin(πc)

πaΓ(b)c
Λc−1

sΛ∫
0

u−ce−u/aΓ(1− u/Λ)c du.

We split the integral in (3.16) as

(3.17)
sΛ∫
0

u−ce−u/a [Γ(1− u/Λ)c − 1] du+
∞∫
0

u−ce−u/a du−
∞∫
sΛ

u−ce−u/a du.

Calling the three terms J1, J2, J3, we have J2 = a1−cΓ(1− c) and

J3 = −a1−cΓ(1− c, sΛ/a),

where Γ(α, x) is the incomplete gamma function with the asymptotics

Γ(α, x) =
∞∫
x

uα−1e−u du ∼ xα−1e−x, x→∞

(cf. [8], 8.357), hence
J3 = O(ts/aΛ−c), t→ 0.

Using the digamma function Ψ = Γ′/Γ, we get by the mean-value theorem

Γ(1− u/Λ)c − 1 = −u

Λ
cΓ(1− θu/Λ)cΨ(1− θu/Λ)

for some 0 < θ < 1, but this implies that

|Γ(1− u/Λ)c − 1| ¬ cu

Λ
M(s), 0 < u < sΛ,

where
M(s) := max{Γ(x)c|Ψ(x)| | 1− s ¬ x ¬ 1},

so J1 = O(Λ−1) for t→ 0.
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This gives

I2 =
tb/a−1 sin(πc)

πaΓ(b)c
Λc−1(O(Λ−1) + a1−cΓ(1− c) +O(ts/aΛ−c)

)
=

tb/a−1Λc−1(
aΓ(b)

)c
Γ(c)

+O(tb/a−1Λc−2),

where we have used Euler’s reflection formula for Γ. Since finally

I1 = o(t(s+b)/a−1) = O(tb/a−1Λc−2),

we see that (2.2) holds.

C a s e 2. Assume 1 < c < 2.
The gamma function decays so rapidly on vertical lines z = α+ iy, y → ±∞,

that we can integrate by parts in (3.15) to get

(3.18) ec(a, b)(t) = −
tb/a−1

2πiaΓ(b)c

∫
V−1

(−z)−(c−1)

c− 1

d

dz

(
tz/aΓ(1− z)c

)
dz.

Defining

φ1(z) :=
d

dz

(
tz/aΓ(1− z)c

)
= tz/aΓ(1− z)c

(
(1/a) log t− cΨ(1− z)

)
and using the same contour technique as in Case 1 to the integral in (3.18), where
now 0 < c− 1 < 1, we get for 0 < s < 1 fixed the equality

ec(a, b)(t) = −
tb/a−1

aΓ(b)c
(Ĩ1 + Ĩ2),

where

Ĩ1=
1

2πi(c− 1)

∫
Vs

(−z)−(c−1)φ1(z) dz, Ĩ2=
sin

(
π(c−1)

)
π(c− 1)

s∫
0

x−(c−1)φ1(x) dx.

We have Ĩ1 = o(ts/aΛ) for t→ 0 by Riemann–Lebesgue’s lemma, and the substi-
tution u = xΛ in the second integral leads to

s∫
0

x−(c−1)φ1(x) dx

= Λc−2
sΛ∫
0

u−(c−1)φ1(u/Λ) du

= −(1/a)Λc−1
( sΛ∫

0

u−(c−1)e−u/a du+
sΛ∫
0

u−(c−1)e−u/a
(
Γ(1− u/Λ)c − 1

)
du

)
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− cΛc−2
sΛ∫
0

u−(c−1)e−u/aΓ(1− u/Λ)cΨ(1− u/Λ) du

= −a1−cΛc−1Γ(2− c) +O(Λc−2).

Using the equality

sin
(
π(c− 1)

)
(c− 1)π

(
−a1−cΛc−1Γ(2− c)

)
= −a1−cΛ

c−1

Γ(c)

obtained by Euler’s reflection formula, we see that (2.2) holds.

C a s e 3. Assume c > 2.
We perform the change of variable w = (1/a)Λz in (3.15) and assume that

Λ > a. This gives

ec(a, b)(t) =
tb/a−1Λc−1

[aΓ(b)]c
1

2πi

∫
V−(b/a)Λ

(−w)−ce−wΓ(1− aw/Λ)c dw.

Using Cauchy’s integral theorem, we can shift the contour V−(b/a)Λ to V−1 as the
integrand is holomorphic in the vertical strip between both paths and exponentially
small at both extremes of that vertical strip. For the holomorphic function h(z) =
Γ(1− z)c in the domain G = C \ [1,∞), which is star-shaped with respect to zero,
we have

h(z) = h(0) + z
1∫
0

h′(uz) du, z ∈ G,

hence

(3.19) Γ(1− aw/Λ)c = 1− caw

Λ

1∫
0

Γ(1− uaw/Λ)cΨ(1− uaw/Λ) du.

Defining

R(w) =
1∫
0

Γ(1− uaw/Λ)cΨ(1− uaw/Λ) du,

we get

1

2πi

∫
V−1

(−w)−ce−wΓ(1− aw/Λ)c dw

=
1

2πi

∫
V−1

(−w)−ce−wdw +
ac/Λ

2πi

∫
V−1

(−w)1−ce−wR(w)dw.

For any w ∈ V−1, 0 ¬ u ¬ 1 and for Λ  a it follows that 1 − uaw/Λ belongs
to the closed vertical strip located between the vertical lines V1 and V2. Because
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Γ(z)cΨ(z) is continuous and bounded in this strip, R(w) is bounded for w ∈ V−1
by a constant independent of Λ  a. Furthermore, (−w)1−ce−w is integrable over
V−1 because c > 2.

On the other hand, in the integral

1

2πi

∫
V−1

(−w)−ce−wdw

the contour V−1 may be deformed to a Hankel contour

H := {x− i | x =∞ . . . 0} ∪ {eiθ | θ = −π/2 . . .− 3π/2}
∪ {x+ i | x = 0 . . .∞}

surrounding [0,∞), and the integral over H is Hankel’s integral representation of
the reciprocal gamma function:

1

2πi

∫
H
(−w)−ce−wdw =

1

Γ(c)
.

Therefore, when we join everything, we obtain for c > 2:

ec(a, b)(t) =
tb/a−1

[aΓ(b)]c
[log(1/t)]c−1

Γ(c)
+O

(
tb/a−1[log(1/t)]c−2

)
, t→ 0.

C a s e 4. c = 1, c = 2.
These cases are easy since e1(a, b)(t) is explicitly given by (1.5) and e2(a, b)(t)

by (1.15). The asymptotics of K0 is known:

K0(t) = log(2/t) +O(1), t→ 0. �

REMARK 3.1. The behavior of ec(a, b)(t) for t → 0 can be obtained from
(3.14) by using the residue theorem when c is a natural number. In fact, in this case
Γ(−z)c has a pole of order c at z = 0, and a shift of the contour V−1 to Vs, where
0 < s < 1, has to be compensated by a residue, which will give the behavior for
t→ 0.

When c is a natural number, one can actually express ec(a, b)(t) in terms of
Meijer’s G-function:

ec(a, b)(t) =
tb/a−1

aΓ(b)c
Gc,0

0,c

(
t1/a | − · · · −

0 · · · 0

)
,

cf. Section 9.3 in [8].
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4. ONE-PARAMETER EXTENSION OF THE GUMBEL DISTRIBUTIONS

The group isomorphism x = log(1/t) of the multiplicative group (0,∞) onto
the additive group R transforms the convolution semigroup

(
τc(a, b)

)
c>0

into an
ordinary convolution semigroup

(
Gc(a, b)

)
c>0

of probability measures on R with
densities given by

(4.1) gc(a, b)(x) = e−xec(a, b)(e
−x), x ∈ R,

and a, b, c > 0 are arbitrary. For c = 1 we have

(4.2) g1(a, b)(x) =
1

aΓ(b)
exp(−bx/a− e−x/a), x ∈ R.

This density is infinitely divisible and the uniquely determined convolution roots
are given by (4.1).

The special density g1(a, 1)(x) is the Gumbel density with scale parameter
a > 0, and the basic case a = 1 is discussed in [7]. From the asymptotic behavior
of ec(a, b) in Theorems 2.1 and 2.3 we can obtain the asymptotic behavior of the
convolution roots gc(a, b):
(4.3)

gc(a, b)(x)=
(2π)(c−1)/2

a
√
cΓ(b)c

exp(−ce−x/(ac))
exp

(
x
(
b− 1/2 + 1/(2c)

)
/a

)[1+O(exp (x/(ac)))]
for x→ −∞, and

(4.4) gc(a, b)(x) =
exp(−bx/a)xc−1

[aΓ(b)]cΓ(c)
+O

(
exp(−bx/a)xc−2

)
, x→∞.

THEOREM 4.1. All densities gc(a, b) belong to determinate Hamburger mo-
ment problems.

P r o o f. We first prove that g1(a, b) is determinate, and for this it suffices to
verify that the moments

(4.5) sn =
∞∫
−∞

xng1(a, b)(x) dx

satisfy Carleman’s condition
∑∞

n=0 s
−1/(2n)
2n = ∞ (cf. [17], p. 19). From (4.5)

we get

s2n =
1

aΓ(b)

∞∫
0

(log t)2ntb/a−1 exp(−t1/a) dt = 1

Γ(b)

∞∫
0

(a log s)2nsb−1e−s ds

<
a2n

Γ(b)

( 1∫
0

(log s)2nsb−1 ds+
∞∫
1

s2n+b−1e−s ds
)
.
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By changing variables we see that

1∫
0

(log s)2nsb−1 ds =
(2n)!

b2n+1
,

and
∞∫
1

s2n+b−1e−s ds < Γ(2n+ b),

hence

s
1/(2n)
2n <

a

Γ(b)1/(2n)

[(
(2n)!

b2n+1

)1/(2n)

+ Γ(2n+ b)1/(2n)
]
,

and the Carleman condition follows from Stirling’s formula, which shows that the
right-hand side is bounded by Kn for sufficiently large K > 0. We next use Corol-
lary 3.3 in [2] to infer that the Carleman condition also holds for all convolution
roots gc(a, b). �

Concerning the moments

(4.6) sn(c) =
∞∫
−∞

xngc(a, b)(x) dx, n ∈ N0,

of the convolution roots we have the following result:

THEOREM 4.2. The moment sn(c) of (4.6) is a polynomial

(4.7) sn(c) =
n∑

k=1

an,kc
k, n  1,

of degree at most n in the variable c. The coefficients an,k are given below.

P r o o f. From (1.7) we get

∞∫
−∞

e−ixy dGc(a, b)(x) =
∞∫
0

tiyec(a, b)(t) dt = [Γ(b+ iay)/Γ(b)]c,

which shows that the negative definite function ρ corresponding to the convolution
semigroup

(
Gc(a, b)

)
c>0

is

ρ(y) = log Γ(b)− log Γ(b+ iay), y ∈ R.

The derivatives of ρ can be expressed in terms of the digamma function Ψ, namely

ρ(n+1)(y) = −(ia)n+1Ψ(n)(b+ iay), n ∈ N0,
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so if for n ∈ N0 we define (cf. [3], equation (2.7))

σn := −in+1ρ(n+1)(0) = (−a)n+1Ψ(n)(b),

we find

σ0 = aγ +
a

b
− ab

∞∑
k=1

1

k(b+ k)
,

σn = an+1n!
∞∑
k=0

1

(b+ k)n+1
= an+1n!ζ(n+ 1, b), n ∈ N,

where ζ(z, q) is Hurwitz’ zeta function (cf. [8], 9.521).
According to [3] we have s1(c) = σ0c, s2(c) = σ1c + σ2

0c
2 and in general

sn(c) is given by (4.7), where the coefficients an,k are determined by the recursion

an+1,k+1 =
n∑

j=k

aj,k

(
n

j

)
σn−j , n  k  0.

It is easy to see that

an,1 = σn−1, an,n−1 =

(
n

2

)
σn−2
0 σ1, an,n = σn

0 . �
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