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ON THE EXACT DIMENSION OF MANDELBROT MEASURE
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Abstract. We develop, in the context of the boundary of a supercriti-
cal Galton—Watson tree, a uniform version of the argument used by Kahane
(1987) on homogeneous trees to estimate almost surely and simultaneously
the Hausdorff and packing dimensions of the Mandelbrot measure over a
suitable set 7. As an application, we compute, almost surely and simulta-
neously, the Hausdorff and packing dimensions of the level sets E(«) of
infinite branches of the boundary of the tree along which the averages of the
branching random walk have a given limit point.
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1. INTRODUCTION AND MAINS RESULTS

Let (N, Wy, Wha,...) be a random vector taking values in N x Rim. Then
consider {(Nyo, W1, Waa, . . '>}ueUn>o Ny »  family of independent copies of this
random vector indexed by the finite se/quences U=uy ... Up,n>=20,u eN* (n=0
corresponds to the empty sequence denoted by (). Let T be the Galton—Watson
tree with defining element {NV,,}: we have ) € T, and if w € T and 7 € N, then
ui, the concatenation of v and ¢, belongs to T if and only if 1 < ¢ < V,. Similarly,
for each u € Un>0 ", denote by T(u) the Galton—Watson tree rooted at u and
defined by { Ny}, v € [, N¥-

For each u € UnZO N’} we denote by |u| its length, i.e. the number of letters

of u, and by [u] the cylinder u - NT*, i.e. the set of t € Nﬁ* such that t1tg ... 1|,

= u. If t € N}*, we put |t| = oo, and the set of prefixes of ¢ consists of {0} u
{tita.. . tn :n > 1} U {t}. Alsowesett, =t1...t,if n > 1land t|y = 0.

The probability space over which the previous random variables are built is
denoted by (€2, .4, P), and the expectation with respect to IP is denoted by E.

We assume that E(/V) > 1 so that the Galton—Watson tree is supercritical.
Without loss of generality, we also assume that the probability of extinction equals
zero, so that P(N > 1) = 1.
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The boundary of T is the subset of N ﬁ* defined as

oT=1 U [u,

n>21ueT,

where T, = T N N} The set NT* is endowed with the standard ultrametric dis-
tance
dy : (s,t) — exp(—|s At]),

where s A ¢ stands for the longest common prefix of s and ¢, and with the conven-
tion that exp(—o0) = 0. The set T endowed with the induced distance is almost
surely (a.s.) compact.

For the sake of simplicity we will assume throughout that the logarithmic mo-
ment generating function

N
7(q) = log E( 2 W)

is finite over R. Then, we define, for u € Un>0 N’t, the random variable

Wy = NLE = Wie @,
E( = W)
i=1

1=

Consider the set

J={qeR: T(q)—QT'(q)>O}:{qER: T*(T'(q))>0},

where 77 is the Legendre transform of the function 7 defined, for all « € R, as

7 (a) = inf (r() — qa).

N
Q) =int{q:E[| Wi <o}, Q'= | Q@ and J=Jn0"
i=1 v€(1,2]

Then, forn > 1 and u € N}, we define the sequence (Yfp(q, u))p>1 as

Y;,(q, u) = Z H Wouws ..o
vETp(u) k=1

when u = (), this quantity will be denoted by Y,,(¢), and when n = 0, its value
equals one.
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Since, for all ¢ € J, we have
N

E(Y Wgi) =1,
i=1

N
E( > WgiElogWe,) =q7'(q) — 7(q) <0,
=1

N N
B((3 Wao)log™ (3 Wa) < oo,

it follows that (Y, (¢, u)) converges to a positive limit Y (¢, u) with probability one,
while the limit exists and vanishes if the condition is violated. This fact was proven
by Kahane in [T4] when N is constant and by Biggins in [S] in general. Then, we
can associate the Mandelbrot measure defined on the o-field C generated by the

cylinders of N Ijl* as

WouWaus - Wourwn Y (q,u)  ifue Ty,
0 otherwise,

(1.1) pq([u]) = {

and supported on OT. Moreover, under the property E(Y (q)log* Y (q)) < oo,
hence in particular when E(Y(q)h) < oo for some h > 1, where Y (q) = Y (q, (),

we have, following [14], [16], [&], for all ¢ € J, a.s., for p14-almost every ¢t € OT,

lim inf
n—oo

log 1g([t}n]) > 7(q) — a7'(a).

Hence, for all ¢ € 7, a.s., the lower Hausdorff dimension of /i, is

dim g > 7(q) = ¢7'(q),
see Section B for the definition.

The Mandelbrot measure 1, is naturally considered when studying the mul-
tifractal analysis of some random sets (see [10], [19], [T]-[B], [Z]). By exploiting
the simultaneous construction of the Mandelbrot measure 14, ¢ € J, and using a
uniform version of the argument applied by Kahane in [T3] on homogeneous trees,
we get the following result.

THEOREM 1.1. With probability one, for all ¢ € J, dim p14 > 7(q) — q7'(q).

As an application we study, for g € J, the set E(T’ (q)) associated with the
branching random walk with (X; = log(W;)), i< (see Section B). Since, with

probability one, for all ¢ € J, the set E (T’ (q)) is supported by 1, and its packing
dimension is smaller than 7*(7(q)) (see Proposition 2.7 in []), we get

a.s.,Vg € J, Dimpu, < 7(q) — q7'(q),

where Dim i, is the upper packing dimension of 1, (see Section B for the defini-
tion). As a consequence, we infer that the measures are exact dimensional.
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COROLLARY 1.1. With probability one, for all ¢ € 7,
dim yiq = Dim pg = 7(q) — a7'(q),

where dim pi, and Dim g denote the Hausdorff and packing dimensions of jiq,
respectively.

REMARK 1.1. These results are known (see [0, [B]). Using a uniform version
of a percolation argument, we will give a new proof of the sharp lower bounds for
the lower Hausdorff dimension of these measures.

2. PRELIMINARIES

Given an increasing sequence {.A,, },>1 of sub-o-fields of A and a sequence
of random functions { P,,(¢,w)}n>1 (t € OT) such that

1. P,(t) = P,(t,w) are non-negative and independent processes; P, (-,w) is
Borelian for almost all w; P, (t, -) is .A,,-mesurable for each ¢;

2. E(P,(t)) = 1forallt € T.
Such a sequence { P, } is called a sequence of weights adopted to { A, }. Let

On(t) = Qn(t,w) = kﬁl Pu(t,w).

For any n > 1 and any positive Radon measure o on 9T (we write 0 € M™(9T)),
we consider the random measures (,,0 defined as

Qno(A) = £Qn(t)da(t) (A € B(OT)),

where B(0T) is the Borel field on OT. For all A € B(9T), Q,0(A) is a positive
martingale so it converges almost surely. Also, for all o € M™(9T), the random
measure (),o converges weakly, almost surely, to the random measure QJo.

There are two possible extreme cases. The first one is that Q),,0(0T) converges
almost surely to zero, i.e. Qo = 0 a.s. In this case, we say that ) degenerates on
o or o is said to be Q-singular. The second one is that Q,c(9T) converges in L!
so that E(Qy,(0)(0T)) = o(dT). In this case we say that Q fully acts on o or o is
said to be Q-regular.

THEOREM 2.1. Let « be a positive number such that H*(0T) < oo, where
HY denotes the a-dimensional Hausdorff measure. Let 0 < h < 1 and C > 0.
Suppose

(2.1) sup (Qn(t)") < C|B|—M
teB

for all balls B and some n = n(B) depending on B. Then Q) is completely degene-
rate, that is, Qo = 0 a.s. for all 0 € M™(9T).
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This provides a good tool to verify the Q-singularity of ¢. Indeed, if a measure
is not killed, it means that it has a lower Hausdorff dimension at least «.

3. PROOF OF THEOREM 1.1

For each 3 € (0, 1], let W3 be a random variable taking the value 1/ with
probability 3 and the value 0 with probability 1 — 3. Then, let {Wps y }oe( LoN?

be a family of independent copies of 3. Denote by (£23,.A3,Pg) the probability
space on which this family is defined.

We naturally extend to (Q/g x QA3 ® AP ® IP’) the random variables Wy ,,
and the random vectors (N, Wy1,...) as

W u(wg,w) = Wau(wp)

and
(Nuo(wg, w), Wt (wg, w), ... ) = (Nuo(w), Wur(w), ... ),

so that the families {Wﬁv“}UEU@o Ny and {(Nuo, Waa, - . ')}UGUn>o ny are inde-
pendent.

The expectation with respect to Pg @ [P will also be denoted by E. For n > 1
and 8 € (0, 1], we set F,, = a((Nu, Wi, Wya,...) tu € UZ:O N]_fl) and Fg,,
= U((W@ul, Wau2,-..)tu € UZ:O N{fl). We denote by Fq and F3 g the trivial
o-field.

If SE(N) > 1, the random variables

Ny (w)
Ngu(ws,w) = > 1gg-13(Wpui(ws))
=1

define a new supercritical Galton—Watson process with which the trees Tg, C T,
and Tgp(u) C Tp(u),u € Un>0 Nt, n > 1, are associated, as well as the infinite
tree Tg C T and the boundary 0T g C OT conditional on non-extinction.

Foru € |J,5o Nt 1 <i < N(u), and ¢ € J we define

W/B7q7U/i = Wﬁﬂ'” Wqﬂl‘l :

Forge J,BE(N) > 1,n>0andu € |, -, N, we define

n
Yn(ﬂa q, ’LL) = Z H W/B,q,uml...vk .
V1.0 €Ty (u) k=1

When u = (), this quantity will be denoted by Y;,(3, ¢), and when n = 0, its value
equals one.
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3.1. A family of measures indexed by 7. For 3 € (E(N)*l, 1] and € > 0
we set

Tpe=1a€ T :7°(7'(q)) > —log 8 + ¢}

Notice that 7*(7/(g)) takes values between zero and 7(0) = log (E(N)) over 7.
Then

BE(E(N)-1,1,e>0
The following propositions will be established in Section B.

PROPOSITION 3.1. (1) For all u € Un>0
functions Yy, (-,u) converges uniformly, almost surely and in L' norm, to a pos-
itive limit Y (-, u) on J.

(2) With probability one, for all q € [J, the mapping

N, the sequence of continuous

(3.2) pig([u]) = (kﬁl Wou..ur )Y (4, 1)

defines a positive measure on 0T.

PROPOSITION 3.2. Let B € (0, 1] such that BE(N) > 1. Then, for all € € Q7 :

(1) the sequence of continuous functions Yy, (3, -) converges uniformly, almost
surely and in L' norm, to a positive limit Y (3, ) on J3 ¢;

(2) the sequence of continuous functions

¢ Y (B0) = 5 (1T Wonoos) ()
ueT, k=1

converges uniformly, almost surely and in L' norm, toward Y (83, -) on J3 e

3.2. Proof of Theorem 1.1. Let € € Q% and 3 € (0, 1] such that SE(N) > 1.
For every t € 0T and wg € Qg set

n

so that for ¢ € Jg., Y,,(8, q) is the total mass of the measure Qpn(t,wg) - dug (t).

Now, Proposition B2 claims that there exists a measurable subset A of 2 x {15
of full probability in the set of those (w,wg) such that (T4, )n>1 survives and for
all (w,wg) € A, forall ¢ € J3., Y,,(8, q) does not converge to zero. Moreover,
since the branching number of the tree T is P-almost surely equal to the constant
E(N) and SE(N) > 1, conditional on T, the Pg-probability of non-extinction of
(TBn)n>1 is positive ([T7], Theorem 6.2). Thus, the projection of A to € has
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[P-probability one and there exists a measurable subset (3, €) of Q such that
P(€(B,€)) = 1 and for all w € Q(, €), there exists Qf C Qg of positive prob-

ability such that for all w € Q(8,¢), for all ¢ € T3, for all wg € Q, }7”(5, q)
does not converge to zero. In terms of the multiplicative chaos theory developed in
[2], this means that for all w € €2(5,¢€) and ¢ € J3, the set of those wg such that
the multiplicative chaos (Q,g,n( ° w))n>1 has not killed j1, on the compact set 0T

has a positive Pg-probability. Now, the good property of (Q 8 (e w))n>1 is

h a(1—m o e
]Eg<sup (Qg}n(t)) > — en(1=h)log(B) _ (|B) (1—h)log(B)
teB

for any h € (0, 1) and any ball B of generation n in T, where | B| stands for the
diameter of B and Eg stands for the expectation with respect to [Pg. Thus, we can
apply Theorem 3 of [I2] and claim that for all w € (8, ¢€) and all ¢ € 3, no
piece of /i, is carried by a Borel set of Hausdorff dimension less than — log (/).
LetQ) = ﬂBE(E(N)*l,l}ﬂ@i,eer (B, €). This set is of P-probability one. Let

q € J. By (B), there exists a sequence of points (B, €,) € (E(N)™1, 1] x Q%
such that 7(q) — ¢7'(q) > —log(B,) + €, /2 for all n > 1, lim,, o, — log(B,) =
7(q) — q7'(q), lim,, o0 €, = 0 and g € ()5 J3,,e.- Consequently, the previous
paragraph implies that for all w € €/,

dim(yg') > limsup —log(8,) = 7(q) — ¢7'(q)-

n—00
4. APPLICATION

Let (N, X1, Xo, . ..) be a random vector taking values in N x (R)N+. Then
consider {(Ny, Xu1, Xu2, . - -)}ueu N7 @ family of independent copies of the

vector (N, X1, Xs,...) indexed by the set of finite words over the alphabet N .
We assume that E(N) > 1 and P(/V > 1) = 1. Suppose that, for all u € T, X,
is integrable and the sequences (Xu),¢| _ Ny are iid. Given ¢ € OT, by the

strong law of large numbers, we have lim,, .o, 7715, (t) = E(X;) almost surely,
where S, (t) = ZZ:1 X+, .., Since OT is not countable, the following question
naturally arises: are there some ¢ € 9T so that lim,, oo n 715, () = a # E(X1)?
Multifractal analysis is a framework adapted to answer this question. Consider the
set Z of those o € R such that

I
E(a) = {t €oT: nlirr;o - kzzjl Xy ooy, = a} # 0.
These level sets can be described geometrically through their Hausdorff dimen-
sions. They have been studied by many authors, see [[I0], [T9], [T]-[3], [Z]; all these
papers also deal with the multifractal analysis of associated Mandelbrot measure
(see also [I4], [21]], [TE] for the study of Mandelbrot measures dimension).
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Take, for u € Un>0 N’t, the random variable W, = eXu and set

I={7(q); g€ J}.

THEOREM 4.1. With probability one, for all o € I, the multifractal formalism

holds at o, i.e.,
dim F(«) = Dim E(a) = 7" («);

in particular, E(«) # 0.

Proof. A simple covering argument yields, with probability one, for all
a € I, Dim E(a) < 7"(«) (see, for example, Proposition 2.7 in [2]). In addi-
tion, consider the Mandelbrot measure p4, ¢ € J, defined by (). It is known
(see, for example, Corollary 2.5 in [T]) that with probability one, 1, (E (T’ (q)))
= 1. In addition, according to Theorem [Tl, we have, with probability one, for all
q € J,dimpg > 7(q) — q7’'(¢). We deduce the result from the mass distribution
principle (Theorem B2 below). =

REMARK 4.1. This result has been proved in [3] when N is not random, and
in the weaker form, for each fixed o € 1, almost surely dim E(«) = 7*(«) in [10],
[09], [@], when N is random.

REMARK 4.2. Using the Cauchy formula, we can prove Theorem [ (see
[T]). Then our result gives a new approach to estimate, almost surely and simultane-
ously, the lower Hausdorff dimension of the Mandelbrot measure over J .

5. PROOF OF PROPOSITIONS 3.1 AND 3.2
Define, for (¢,p, 8) € J x [1,00) x (0, 1], the function

©a(p,q) = exp (1(pq) — pr(q) + (1 — p) log B).

LEMMA 5.1. For all nontrivial compact K C [Jp ¢ there exists a real number
1 < pg < 2 such that for all 1 < p < pg we have

sup ¢3(pK,q) < 1.
qeK

Proof. Letq € Jg.; we have %(Fﬁ q) < 0 and there exists p, > 1 such
that p3(pg, q) < 1. Therefore, in a neighborhood V, of ¢, we have 3(py,¢') < 1
forall ¢’ € V. If K is a nontrivial compact of 73 , it is covered by a finite number
of such V;,. Let px = inf; py,. If 1 < p < px and sup,ep p5(p,q) > 1, there
exists ¢ € K such that ¢3(p,q) > 1, and ¢ € V,, for some i. By log-convexity of
the mapping p — ¢3(p, q) and the fact that (1, q) = 1, since 1 < p < pq,, we
have pg(p, ¢) < 1, which is a contradiction. m
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LEMMA 5.2. For all compact K C J, there exists px > 1 such that

N _
SupE(( > W;;)px) < 00.
qeK i=1
Proof. Since K is compact and the family of open sets J N Q% increases to
J as v decreases to one, there exists vy € (1, 2] such that K C Q}y Take px = 7.

The conclusion comes from the fact that the function ¢ — E(( sz\il Wiq)p K ) is
continuous over Q%K. ]

LEMMA 5.3 (Biggins [B]). If {X;} is a family of integrable and independent
complex random variables with E(X;) = 0, then E| > Xi‘p < 2P E|X;|P for
I<p<

The same lines as in Lemma 2.11 in [0], we get the following lemma.

LEMMA 5.4. Let (N,V1,Va,...) be a random vector taking values in N x
CN+ and such that Zf\il V; is integrable and IE( Zf\il Vz) = 1. Consider a se-
quence {(Ny, Vi1, Vaa, . . ')}UGUn>o N7 of independent copies of (N, V1,...,Vy).
We define the sequence (Zy,)n>0 by Zo = 1 and forn > 1

n

Zn = Z ( IVuUc)'

ueT, k=

Let p € (1,2]. There exists a constant C,, depending on p only such that for all
n>l1,

E(Zn — ZuaP) < @(E(ﬁl vir))" (k] iéwp) +1).

Proof of Proposition B2 (1) Recall that the uniform convergence
result uses an argument developed in [6]. Fix a compact K C J3 . By Lemma 52
we can fix a compact neighborhood K’ of K and pg+ > 1 such that

N ~
sup E(( > Wiq)pK/> < 0.
S i=1

By Lemma BT, we can fix 1 <p <min(2, p) such that sup,c x ¢5(px, q) <1.
Then for each ¢ € K, there exists a neighborhood V,, C C of ¢ whose projection to
R is contained in K’ and such that for all u € T and z € V,, the random variable

e? log Wy,
Wﬂvz7u = Wﬂ7u N
E( T ez log WZ)
i=1
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is well defined, and we have
sup ¢g(pK,2) < 1,
zeVy

where forall z € C

N N
ws(prc, 2) = BLPRE( Y |eloeWip)|E(Y exlos i) [7PX.
=1 =1

By extracting a finite covering of K from qu K Vq» we find a neighborhood V' C
C of K such thatsup,cy ¢5(pK, 2) < 1. Since the projection of V' to R is included
in K’ and the mapping z — E( sz\il e?1°8Wi) is continuous and does not vanish
on V, by considering a smaller neighborhood of K included in V' if necessary, we
can assume that

_pK+1<oo.

PK) ‘E( Z ezlogWi)

=1

N
Ay =supE(| Y e*losWs
z€V i=1
Now, for u € T, we define the analytic extension of Y;,(3, ¢, u) to V given by

Yn(ﬁyzau) = Z H W,B,z,uvl...vk-
VET R (u) k=1

We denote also Y, (3, z,0) by Y,(8,z). Now, applying Lemma B4 with V; =
W, i» we obtain

N n—1 N
E([Ya(B,2) = Ya-1(8,2)" ) <Cp (E( S Vi) (E(| X Vi) +1).
=1 =1

Notice that E( Zf\il \VilPx) = ¢p(pK, ). Then,

]E(|Yn(ﬁ,z) — Yn71(ﬁ,z)|pK) < CpAv sug o(pr, 2)" L.
zEe

With probability one, the functions z € V' +— Y, (3, z),n > 0, are analytic. Fix a
closed disc D(zp,2p) C V. Theorem B below implies

sup Yo (B,2) = Yo1(B,2)| <2 [ |Ya(B,¢(0)) — Ya—1(8.€(9))]d0,

2€D(z0,p) [0,1]

where, for 6 € [0, 1], ((0) = 20 + 2pei?™. Furthermore, Jensen’s inequality and
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Fubini’s theorem give
E( sup |Yn(B,2) = Yau-1(2)[")

2€D(20,p)
E((2 [ [¥a(8.€(0)) = Yas (8.C(0))]d0)™ )

[0,1]

<2PKE( f ‘Yn(ﬁ,ﬁ(ﬁ))— n— 1(ﬁ C )‘pKdQ)

[0,1]

< 2P [ E[YL(B8,¢(8)) — Yauo1(8,¢(0))["d6

(0,1]

< 2PK Gy Ay sup pp(prc, 2)"
zeV

Since sup, ¢y 93(pK, 2) < 1, it follows that

Z H sup ‘Yn(ﬁaz) - TL 1 67 ’H

n>1 2€D(z20,p)

This implies that z — Y,,(3, z) converge uniformly, almost surely and in LPX norm
over the compact D(z, p), to a limit z — Y (3, z). This also implies that

| sup V(8,2 < 0.
z€D(z0,p)

Since K can be covered by finitely many such discs D(z, p), we get the uni-
form convergence, almost surely and in LPX norm, of the sequence (q e K+—
Yn(ﬁ,q))n21 to ¢ € K — Y(3,q). Moreover, since Jg. can be covered by a
countable union of such compact K, we get the simultaneous convergence for all
q € J. The same holds simultaneously for all the functions ¢ € Jg — Y, (5, ¢, u),
u € |J,5o N7, because  J,,, N7} is countable.

To complete the proof of (1), we must show that a.s., ¢ € K — Y (f3, q) does
not vanish. Without loss of generality we suppose that K = [0, 1]. If ] is a dyadic
closed subinterval of [0, 1], we denote by E; the event {3 ¢ € I : Y(3,q) = 0}.
Let Iy, I; stand for two dyadic subintervals of I in the next generation. The event
E; being a tail event of probability zero or one, if we suppose that P(E;) = 1,
there exists j € {0,1} such that P(Ey,) = 1. Suppose now that P(Ex) = 1.
The previous remark allows us to construct a decreasing sequence (I (n))n>0 of
dyadic subintervals of K such that P(Ey(,)) = 1. Let o be the unique element
of (), >0 1(n). Since g — Y (5, ) is continuous, we have P(Y(B,q0) =0) =1,

which contradlcts the fact that (Y, (5, qo)) | converges to Y (3, qo) in L.
(2) Here we develop, in the context of the boundary of a supercritical Galton—

Watson tree, a uniform version of the argument used by Kahane in [T3] on homo-
geneous trees, and written in complete rigor in [24]. Fix € > 0 and a compact set
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K in J3 . Denote by E the separable Banach space of the real-valued continuous
functions over K endowed with the supremum norm.
Forn>m > 1and g € K let

Zm,n(ﬁv Q) = Z Ynfm(Q»u) knl W,B,q,m...uk-

UET’"L

Notice Z, »(5,q) = Y, (5, q). Moreover, since Y, (3, -) converges almost surely
andin L' norm to Y (83, ) asn — o0, Yy, (83, -) belongs to L, = LL(Q5 x Q, Ag x
A,Pg x P) (where we use the notation of Section V-2 in [(1]), so that the contin-
uous random function E(Z,w(ﬂ | Fm ® fn) is well defined by Proposition
V-2-5 in [20]; also, for any fixed ¢ € K, we can deduce from the definitions and
the independence assumptions that

Zm,n(ﬁa Q) = E(Zn,n(ﬁa Q)|~7:[J’,m ® ]:n)

almost surely. By Proposition V-2-5 in [20] again, since g € E — g(q) is a contin-
uous linear form over E, we thus have

Zm,n(ﬁ> Q) = E(Zn,n(ﬁa ')‘f@m & fn) (Q)

almost surely. By considering a dense countable set of ¢ in K, we can conclude
that the random continuous functions Zp, »(3,-) and E(Zy (8, )| Fam ® Fn)
are equal almost surely.

Similarly, since for each ¢ € K the martingale (Yn (B8,9), Fpmn ® fn) con-
verges to Y (3, ¢) almost surely and in L', and Y (3, -) € L1, by using Proposition
V-2-5 in [20] again we can get almost surely
(5.1)

Znm(B,) =E(Y (8, )| Fpn ® Fn), hence Zmn(B,-) =E(Y (B, )| Fom ® Fn).

Moreover, it follows from Proposition B7A(1) and the definition of p,([u]) that
Zmn(B,-) converges almost surely uniformly and in L' norm, as n — oo, to
Y. (B, ). This and (B) yield, by Proposition V-2-6 in [20],

Von(B,) = 1 Zonn(B,) = E(Y (5, ) Fpm @ (U F))

n—oo n31
and finally
Tim Vu(8,) = E(Y(8,)lo (U Fom) @0( U F2)) =Y(5,)
m2>=1 n>1

almost surely (since, by construction, Y'(8,-) is o (U,,51 Fo.m) @ 0 (U1 Fn)-
measurable), where the convergences hold in the uniform norm. Moreover, since
J3,e can be covered by a countable union of such compact K, we get the simulta-
neous convergence forall ¢ € Jg .. =
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Proof of Proposition Bl The proof of the first point is similar to
the proof of Proposition B2(1) (8 = 1). The second point is a consequence of the
branching property:

N

Yoti(g,u) =Y Woui Yo(g,ui). =
i=1

6. APPENDICES
APPENDIX 1 — CAUCHY FORMULA

DEFINITION 6.1. Let D((,r) be a disc in C with center ¢ and radius r. The
set 0D is the boundary of D. Let g € C(9D) be a continuous function on 9D. We
define the integral of g on 9D as

[ 9(Q)d¢ = 2imr [ g(¢(t))e™™dt,
oD [0,1]

where ((t) = ¢ + re?™.

THEOREM 6.1. Let D = D(a,r) be a disc in C with radius v > 0, and f be
a holomorphic function in a neighborhood of D. Then, for all z € D

1 f(¢ dC
1z " 2ir JD ¢ —
It follows that
©6.1) sup [f(2)] <2 [ [f(¢(®))]dt.
z€D(a,r/2) [0,1]

APPENDIX 2 — MASS DISTRIBUTION PRINCIPLE

THEOREM 6.2 (Falconer [9]). Let v be a positive and finite Borel probability
measure on a compact metric space (X, d). Assume that M C X is a Borel set
such that v(M) > 0 and

log v(B(t,
M C {tE X, hmlnfM > 5}.
r—0+ log r

Then the Hausdorff dimension of M is bounded from below by 4.
APPENDIX 3 — HAUSDORFF AND PACKING MEASURES AND DIMENSIONS

Given a subset K of NT‘L endowed with a metric d making it o-compact, g :
R, — R acontinuous non-decreasing function near zero and such that g(0) = 0,
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and E a subset of K, the Hausdorff measure of E with respect to the gauge function
g is defined as
HY(E) = lim inf { 3" g(diam(0j;)) },
§—0+ ieN

the infimum being taken over all the countable coverings (U;);cn of E by subsets
of K of diameters less than or equal to 9.

If s € RY and g(u) = u®, then HI(E) is also denoted by H*(E) and called
the s-dimensional Hausdorff measure of E. Then, the Hausdorff dimension of
is defined as

dim F = sup{s > 0: H*(F) = oo} = inf{s > 0 : H*(E) = 0},

with the convention sup () = 0 and inf () = occ.
Packing measures and dimensions are defined as follows. Given g and £ C K
as above, one first defines

(6 =ty s { - ofaant5)).
ieN

the supremum being taken over all the packings { B; } ;e of E by balls centered on
FE and with diameter smaller than or equal to J. Then, the packing measure of E
with respect to the gauge g is defined as

PI(E) = Jim inf {SPE)},
- €N

the infimum being taken over all the countable coverings (E;);en of E by subsets
of K of diameters less than or equal to 6. If s € R* and g(u) = u®, then PI(E)
is also denoted by P?(E) and called the s-dimensional measure of E. Then, the
packing dimension of E is defined as

DimFE = sup{s > 0: P*(E) = oo} = inf{s > 0: P*(E) = 0},

with the convention sup ® = 0 and inf ) = oo. For more details the reader is re-
ferred to [9].
If p is a positive and finite Borel measure supported on K, then its lower
Hausdorff and packing dimensions are defined as
dim(p) = inf{dim F': F Borel, u(F) > 0},
Dim(u) = inf{Dim F' : F Borel, u(F) > 0},

and its upper Hausdorff and packing dimensions are defined as

dim(p) = inf{dim F : F Borel, u(F) = |||},
Dim(p) = inf{Dim F' : F Borel, u(F) = ||ul|}
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We have (see [B], [I1])

log u(B(t,
dim(p) = ess inf,, lzg(i)gf W

lo B(t,r
Dim(p) = ess inf,, limsup M
root log(r)

and

S 1 B(t,
dim(z) = ess sup,, liminf M

r—0+ log(r)
— log pu(B(t,r))
Di = li —_—
im(p) = ess sup,, lfl?ip Tog(r)

where B(t,r) stands for the closed ball of radius 7 centered at t. If dim(u) =
dim(p) (resp. Dim(p) = Dim(p)), this common value is denoted by dim p (resp.
Dim(u)), and if dim ¢ = Dimy, one says that p is exact dimensional.
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