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ASYMPTOTIC BEHAVIOR FOR QUADRATIC VARIATIONS OF
NON-GAUSSIAN MULTIPARAMETER HERMITE RANDOM FIELDS
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Abstract. Let (Z] ’H)t c[o,1)¢ denote a d-parameter Hermite random
field of order ¢ > 1 and self-similarity parameter H = (H1,...,Hg) €
(%, 1)d. This process is H-self-similar, has stationary increments and ex-
hibits long-range dependence. Particular examples include fractional Brow-
nian motion (¢ = 1, d = 1), fractional Brownian sheet (¢ = 1,d > 2),
the Rosenblatt process (¢ = 2, d = 1) as well as the Rosenblatt sheet
(g=2,d>2).Forany ¢ > 2,d >1and H € (%,l)d we show in this
paper that a proper renormalization of the quadratic variation of Z%* con-
verges in L2(Q) to a standard d-parameter Rosenblatt random variable with
self-similarity index H” = 1 + (2H — 2)/q.
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1. MOTIVATION AND MAIN RESULTS

In recent years, analyzing the asymptotic behavior of power variations of self-
similar stochastic processes has attracted a lot of attention. This is because they
play an important role in various aspects, both in probability and statistics. As
far as quadratic variations are concerned, a classical application is to use them to
construct efficient estimators for the self-similarity parameter (see e.g. [2], [I5]).
For a less conventional application, let us also mention the paper [5], where the
authors have used weighted power variations of fractional Brownian motion to
compute exact rates of convergence of some approximating schemes associated
with one-dimensional fractional stochastic differential equations.

* T thank M. S. Pakkanen and A. Réveillac, the authors of [[0], for sharing their paper in
progress with me. Another thank goes to my advisor, Professor Ivan Nourdin, for his very careful
review of the paper as well as for his comments and corrections.
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In this paper, we deal with the quadratic variation in the context of multi-
parameter Hermite random fields. To be more specific, let Z9H = (Zg’H)te[()’l]d
stand for the d-parameter Hermite random field of order ¢ > 1 and self-similarity
parameter H = (Hy,...,Hy) € (%, l)d (see Definition I for the precise mean-
ing), and consider a renormalized version of its quadratic variation, namely

1 N-1

H
(1.1) Ni= ig) [NQH(AZE%/N,(H-I)/N])Q —1],

where AZ Eiltﬁ are the increments of Z%H defined as

7H d— iTi 7H
(1.2) AZEJS,t]: Z (_1) > Zngr-(tfs)

re{0,1}4

and where the bold notation is systematically used in presence of multi-indices
(we refer to Section 2 for precise definitions). As illustrating examples, observe
that (I2) reduces to AZ%H = th’H — 7% when d = 1, and to AZ%H1H2

[5,¢] [s:t]
q,H1,H2 q,H1,H2 q,H1,H2 q,H1,H2 _
Ztlﬂt2 —Zths2 —Zsm2 + Zs) s, 2 whend = 2.

It is well known that each Hermite random field Z%H is H-self-similar (that

is, (ZZ’H)teRd @ (aHZg’H)teRd for any a > 0), has stationary increments (that
is, (AZ%E)tERd @ (AZﬁﬁH])teRd for all h € R%) and exhibits long-range de-
pendence. Also, when ¢ = 1, observe that Z LH i either the fractional Brownian
motion (if d = 1) or the fractional Brownian sheet (if d > 2); in particular, among
all the Hermite random fields Z%H it is the only one to be Gaussian. When ¢ = 2,
we use the usual terminology: the Rosenblatt process (if d = 1) or the Rosenblatt
sheet (if d > 2).

Before describing our results, let us give a brief overview of the current state
of the art. Firstly, let us consider the case ¢ = d = 1, that is, the case where Z LH —
BH is a fractional Brownian motion with Hurst parameter H. The behavior of the
quadratic variation of B is well known since the 1980s, and dates back to the
seminal works of Breuer and Major [[I], Dobrushin and Major [B], Giraitis and
Surgailis [@] or Taqqu [[3]. We have, as N — oo:

« If H < 3/4, then

N
_ (d)
N2 Zl (N*(BIy — B _yyn)? — 1) — N(0,0%).
]:
« If H =3/4, then

N
_ (d)
(Nlog N)~1/? 21 (N3/2(BﬁN — B{l_yn)* —1) — N(0,03,,).
iz
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« If H > 3/4, then

N 2
N'T2N (NZH(BﬁN - Bg,l)/N)z —1) L), «Rosenblatt v,

J=1

where “Rosenblatt r.v.” denotes the random variable which is the value at time one
of the Rosenblatt process.

Secondly, assume now that ¢ = 1 and d = 2, that is, consider the case where
Z%H s a two-parameter fractional Brownian sheet with Hurst parameter H =
(H1, H3). According to Réveillac et al. [IZ] and with ¢(N, H) a suitable scaling
factor, the quadratic variation of Z LH pehaves as follows, as N — 0o:

« IfH ¢ (3/4,1)2, then

N N
H (d)
o(N,H) ; ; (N Az ) — 1) = N0, o).

« If H € (3/4,1)2, then

N
H H. 1.H
o(N, H)i;; (N#RHR(AZ T i) — 1)
12(9)

—— “two-parameter Rosenblatt r.v.”,

where “two-parameter Rosenblatt r.v.” means the value at point 1 = (1,1) of the
two-parameter Rosenblatt sheet.

Here, we observe the following interesting phenomenon: the limit law in the
mixture case (that is, when H; < 3/4 and Hy > 3/4) is Gaussian. For simplicity
of the exposition, we have only described above what happens when d = 2. But the
asymptotic behavior for the quadratic variation of Z%H is actually known for any
value of the dimension d > 2, and we refer to Pakkanen and Réveillac [9]-[11]] for
precise statements.

Let us finally review the existing literature on the quadratic variation of Z%H
in the non-Gaussian case, that is, when ¢ > 2. It is certainly because it is a more
difficult case to deal with that only the case where d = 1 has been studied so far.
Chronopoulou et al. have shown in [2] (see also [[3], [T4]) that, properly renormal-
ized, the quadratic variation of Z%* converges in L?(Q), for any ¢ > 2 and any
value of H € (1/2,1), to the Rosenblatt random variable. A consequence of this
finding is that fractional Brownian motion is the only Hermite process (d = 1) for
which there exists a range of parameter such that its quadratic variation exhibits
normal convergence; indeed, for all the other Hermite processes, it is shown in []
that we have the convergence toward a non-Gaussian random variable belonging
to the second Wiener chaos.
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In the present paper, we study what happens in the remaining cases, that is,
when ¢ and d are both greater than or equal to 2. Thanks to our main result,
Theorem [, we have now a complete picture of the asymptotic behavior of the
quadratic variation of any Hermite random field.

THEOREM 1.1. Fixq > 2,d > landH € (%, 1)d. Let Z9H be a d-parameter
Hermite random field of order q with self-similarity parameter H (see Defini-

tion ). Then chQN(2_2H)/q(q!q)_1VN converges, in L*(Q), to the standard
d-parameter Rosenblatt sheet with self-similarity parameter 1 + (2H — 2) /q eval-
uated at time 1, where c1 g is given by (B9).

Our proof of Theorem [Tl follows a strategy introduced by Tudor and Viens in
[15], based on the use of chaotic expansion into multiple Wiener—Ito6 integrals. Let
us sketch it. Since the Hermite random field Z%H is an element of the g-th Wiener
chaos, we can firstly rely on the product formula for multiple integrals to see that
the quadratic variation Vi can be decomposed into a sum of multiple integrals of
even orders from 2 to 2¢q. Secondly, by using the isometric property of multiple
Wiener-1t6 integrals and after checking the L*(([0,1]%)?) convergence of its ker-
nel, we will prove that the projection onto the second Wiener chaos converges in
L?(€2) to the d-parameter Rosenblatt random variable. Finally, we will check that
all the remaining terms in the chaotic expansion are asymptotically negligible.

In conclusion, it is worth pointing out that, irrespective of the self-similarity
parameter, the (properly normalized) quadratic variation of any non-Gaussian mul-
tiparameter Hermite random fields exhibits a convergence to a random variable be-
longing to the second Wiener chaos. It is in strong contrast with what happens in
the Gaussian case (¢ = 1), where either central or non-central limit theorems may
arise, depending on the value of the self-similarity parameter.

The remainder of the paper is structured as follows. Section 2 contains some
preliminaries and useful notation. The proof of our main result, Theorem [T, is
then provided in Section 3.

2. PRELIMINARIES

This section describes the notation and the mathematical objects (together with
their main properties) that are used throughout this paper.

2.1. Notation. Fix an integer d > 1. In what follows, we shall systematically
use bold notation when dealing with multi-indexed quantities. We thus write:

« a=(ay,as,...,aq).

« ab = (a1by,azbs, ... ,aqbg) and a/b = (ay/b1,a2/bs, ..., aq/bq).
 [ab] = TTi, [a bil, (2, ) =TT (as, ).

« Summation is suppressed as follows: Eil ai = le sz iy,

i1=1""" ig=1
. d )
whereas for products we shall write a® = 1T, a?l

iq>

. Finally, we shall writea < b
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(resp. a < b) whenever a; < b1, as < b, ..., ag < by (resp. a1 < b1, as < ba,
L ag < bg).

2.2. Multiple Wiener-Ito6 integrals. We will now briefly review the theory of
multiple Wiener—Itd integrals with respect to Brownian sheet, as described e.g. in
Nualart’s book [R], Chapter 1, or in [9], Section 3. Let f € L?((R%)?) and let
us denote by I (}/V (f) the g-fold multiple Wiener—Itd integral of f with respect to
the standard two-sided Brownian sheet (W) cra. In symbols, such an integral is
written

V()= [ flur,...,u)dWy, ...dWy,.
(1)

Moreover, one has [ ;’V (=1 ;’V (f), where f is the symmetrization of f defined
by the formula

~ 1

(2.1) f(ul,...,uq) Z f(ua(l),...,ug(q)).

!
q: 0e6,

The set of random variables of the form I,V (f), when f runs over L*((R%)7),
is called the g-th Wiener chaos of W. Furthermore, if f € Lz((Rd)p) and g €
L?((R7)?) are two symmetric functions, then

w w 4 (Y (4w =
22) B0 @=L (7)) (1) o r5eo)

where the contraction f®, g, which belongs to L?((R*)P*772") for every r =
0,1,...,pAgq,1is given by

23) f@rg(ar,..., 0, Vi,...,Vg—p)
= f flur,...,up—p,ai,...,a.)9(Vi,...,Vg—p,a1,...,a,)da; ...da,.
(RA)"

Forany r = 0,...,p A g, the Cauchy—Schwarz inequality yields

24 1 £ &gl L2 (@aypra—2ey < F @r gll 2 (Raypra—2ny

<
< 1 fllp2(wayey 191l L2 ((raya)-

Also, f @p g = (f,9) L2((R4)P) when ¢ = p. Furthermore, the multiple Wiener in-
tegrals satisfy the following isometry and orthogonality properties:

p'<fa §>L2((Rd)p) ifp=gq,

w W _
E[Ly ()1, (9)] = {0 if p # q.
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2.3. Multiparameter Hermite random fields. Let us now introduce our main
object of interest in this paper, the so-called multiparameter Hermite random field.
We follow the definition given by Tudor in [T4], Chapter 4.

DEFINITION 2.1. Let ¢,d > 1 be two integers and let H = (Hy,..., Hy) be

a vector belonging to (3, 1)d. The d-parameter Hermite random field of order q
and self-similarity parameter H is any random field of the form

aw,

yeenUl,d t 0t Ug,15--+yUq,d

25) ZH(t)=com [ dW,,,
(R4)a

t1
X ({dal fdad]_[ (a1—uj1); —(1/24+(~H1)/q9) (ad_uj7d);(1/2+(lfHd)/q))

q
=cqu [ dWy, ...dWy, f da [[(a— uj);(l/ﬂ(l*H)/q),
(Rd)a 0 J=t

where x4 = max(z,0), W is a standard two-sided Brownian sheet, and c( ) is
a positive constant depending only on ¢ and H chosen so that E[Z9F(1)?] = 1.

The above integral (Z3) represents a multiple Wiener—Itd integral of order ¢
with respect to the standard two-sided Brownian sheet 1.

In many cases (e.g. when one wants to simulate Z%* or when one looks for
constructing a stochastic calculus with respect to it), the following finite-time in-
terval representation for Z9H may be interested as well:

H (d t1 tq t1 tq
(2.6) ZTH(t) = qu deu“, - { {quq,l ,,,,, g

t1 ,
X ( f da181KH1 (al,ulvl) 81K (al,uql))

u1,1V...Vug,1
tq
X ( f dadﬁlK (ad, Ul d) 61K (ad, Ugq, d))
Uy, gV...Vig d
d t
= bq,H f qu1 SN quq H f da81 (a (5% ]) 61K (a uq]).

[071;]11 J=1 u1,;V...Vig j

In (Z6), K stands for the usual kernel appearing in the classical expression of
the fractional Brownian motion B* as a Volterra integral with respect to Brownian

motion (see e.g. [A], [[Z]), that is, BH fo KH (t,s)dBs, whereas
2.7

1/2 1/2

(H(2H - 1))
(¢! (H'(2H' — 1))

by =

d J(2H; — 1)
12 — (Ve T1 (A )

=1 (g (H(2H] — 1)) "?
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is the unique positive constant ensuring that E[Z%H(1)2] = 1, where

~1
(2.8) =14 571 (i omr — 2)g = 2H - 2).
q

For a proof of (') when d = 2, we refer to [[4], Chapter 4. The extension to any
value of d as presented here is straightforward.

3. PROOF OF THEOREM 1.1

We are now in a position to give the proof of our Theorem [l. It is divided
into three steps.

3.1. Expanding into Wiener chaos. In preparation for analyzing the quadratic
variation (), let us find an explicit expression for the chaos decomposition of
V. Using (Z6) and proceeding by induction on the dimension d, we can write
AZﬁ}i,(i +1)/N] 88 @ g-th Wiener—It6 integral with respect to the standard two-
sided Brownian sheet (W );cga as follows: for every 0 < i <N — 1, one has

G-1) AZEN iy = Lalfim),
where
d
(3.2) fin(x1,.. . %xq) = b [ fijn; (w155, 2,5),
j=1
with f; y(x1,...,z,) denoting the expression
(i+1)/N ) )
(3:3) 1oy (T1V ...V Ty) Ik dudi K* (u, 1) ... 01 K™ (u,x,)
r1V...VIg
i/N ) )
— 1y V...V [ dudy K (u, 1) ... 01 K (u, )
z1V..VIgq

and with b, i and H’ given by (IZ7) and (IZ8), respectively. Indeed, for d = 1, see
[2], Section 3, p. 8, it reduces to

JH o H H
AZin arnym) = Zivnyn — Zign = batilg(fin),

while for d = 2 it is easy to verify that

q,H _ q,H1,H q,H1,H: q,H1,H: q,H1,H
AZEN /N = 2N Grom ~ ZipnGrome — a5 N g T 2N

= Iy(fij,N.Mm),
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where

fi,j,N,M($17y17 cee ,xqayq)

(i+1)/N / /
= bq,H1,H21[0,(i+1)/N](x1\/- . .\/xq) f dualKHl (u,ml) ...81KH1(’LL,$Q)
z1V...VIq
(G+1)/M - -
X 1[0’(j+1)/M](y1\/...\/yq) f dvol K Q(U,yl)...alK 2(v,yq)
Yy1V...Vyq
(i+1)/N / ,
— bq,Hl,Hgl[O,(i+1)/N](xl\/- . .\/l'q) f du@lKHl(u,ml) ...61KH1(u,xq)
z1V...Vxq
/M I ”
X Lo/ (Y1 V... V) f dvO1 K72 (v, 1) ... 01 K72 (v, yq)
Yy1V...Vyq
Z/N ! !
_bq,Hl,Hzl[Qi/N](l'lv---\/l'q) f du@lKHl(u,xl)...alKHl(u,xq)
z1V...VIgq
G+1)/M ” -
X Loy V.. Vyg) [ dvdiK2(v,y1) ... 01K 72 (v, yg)
Y1V...Vyq
i/N , ,
+bq,H1,H21[0,i/N](x1 V... \/xq) f dualKHl(u,xl)...é)lKHl(u, .CCq)
z1V...VIg
/M - -
X 1[0,j/M]<y1 v---qu) f dvol K 2(v,y1)...81K Q(U,yq)
Yy1V...Vyq
= bg, iy 1y fi N (15 ) fj (Y1, -+ -5 Yg)-

The last equality above is obtained by grouping each term of f; ; n s together.
Suppose that the expressions (B) and (B2) are true for d, that is, the kernel of

7H 3
AZ[qi/Nj(iH)/N] is equal to

d
_yd
by,H z (*Dd Yiza H 1[0,(i]-+rj)/Nj}(x1,j V...V "L‘q’j)

(r1,...,ra)€{0,1}4 j=1

(ij+r;)/N; , ,
X Ik dudy K (u, 1 5) .. 0 K™ (u, 24 5)

T1,5V..Vxq

d
= bq7H H fl]7N]($17j’ tt ’:'Eqmj)'
j=1
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Then, for the case d + 1 we have

Az4H

s _ d+1— d+1rl s
InGoyn = > (F)HITEanZEl

refoTyat (i+r)/N

- d— Zz T q,H
= ( Z)e{o l}d( 1) 1 Z((Z1+r1)/N1, (ig+7ra) /Na,(ias1+1)/Nas1)
T1,y--57d s

_1\d+1-2¢ 7 o, H
! ( z):€{0 1}d( Y ' Z((il"'rl)/Nlw-w(id'*‘?"d)/Nd:idH/Nd+1)
T1,--47d )

_ d—x¢_ ri rq,H
- ( Z)6{0 1}d(_1) ' Z((il+7”1)/Nl7~-~7(id+rd)/Nd7(id+1+1)/Nd+1)
T15---5Td )
d—x¢_ i 7¢,H
- Z (_1) ! ((il—‘,-r'l)/Nl,...,(id-‘r?"d)/Nd,idJrl/Nd+1)'

(r1,.-.,rq)€{0,1}

It belongs to the g-th Wiener chaos with the kernel f; nv given by

JiN=0bgn > (—1yd-=iam H Lio,(6;4r)/N;) (1,5 V ooV T 5)
(r1,...,rq)€{0,1} J=1
(ij+75)/N;

X i dud K (u x14) ... O KY (u Zq.j)
r1,5;V..VEg
(ta+1+1)/Nay1 , ,
X ( f du’@lKHdH(u', T1dt1) - - - 01 K Har (u, Tgdt1)
T1,d+1V.-VTq dt1

igy1/Nat1 , ,
— f du' 8y K Ha (v 21441) - O KHam (), :Eq,d_i_l)).

Z1,d+1V---VTq,d+1

By induction, one gets fin = bgH H flw 1,js---»>Zq;j), which is our de-
sired expression.
Next, by applying the product formula (), we can write

(3.4)
q—1 2
q ~
(AZ[I/N (1+1)/N})2 - E[(Azﬁ’/ﬁ{r,(iﬂ)/N])Q] = Z_:OT!(T> Iog—2r (fiN®r fiN).-

Let us compute the contractions appearing on the right-hand side of (B-4)). For every
0<r<qg—1,wehave

(3.5) (fi7N Qr fi,N)(Xla <. aX2q72r)

= f day ...da, fiN(X1,...,Xg—p,a1,...,3)
(fo,1])r

X fi,N(Xq7T+17 cey X2g—2r, A1, .- - ar)
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d
2
= bq,H f da1 ...daT H fij,Nj(xl,ja" . ,xq,m-,al,j,. ..,am-)
(fo,1})r j=1
d
X H fij,Nj (l‘q—r-ﬁ-l,jv sy L2q—27,5, Al 5y - oy ar,j)
7=1

d
= baH [1 (fijﬂNj QO fij»Nj)(xlm s T2g-2r),s
j=1
where

(3.6) (fin ®r fin)(@1,... w2q—2,) = (H'(2H —1))"
(i+1)/N
X {1[0,(i+1)/N] (1 V...Vx4_y) f dud K’ (u,z1) ... nK" (u, xg—r)
1V..VTq_r
(i+1)/N
X Lo, (i+1)/N) (Zg—r41 V - .. V T2g—2r) / du' O K™ (W 2g—ri1) - .
Tg—r41V...VT2g—2r
. .GlKH/(u', Tog—or)|u — u’](QH,_z)’"
(i+1)/N
— 1[07(14_1)/1\7] (1’1 V...V a:q,r) f dualKHl (u, 331) .. .alKH/ (u, ajq,r)
1V..VTqg—pr
i/N
X Lo,i/N)|(Tg—r41 V - ..V T2g-27) f du’éﬁKH'(u’, Tgrt1) .-
Tg—r4+1V...VT2q—2r
. .81KH/(u', Tog—2r)|U — u'|(2H/_2)T
i/N
= Ljin(T1 V.V ag,) f dud K’ (u,z1) ... nKT (u, xg—r)
1V..VTq_r
(i+1)/N
X Lo, (i+1)/N] (Tg—r41 V - .. V D2q-2r) / du' O KM (W g pi) ...
Tqg—r4+1V...VT2q—2r
.. .81KHl(u', Tog—or)|u — u’](QHLQ)’"
i/N
+ Ljoi/n (@1 VooV Xgy) 1l dud K™ (u, 21) ... 0, K™ (u, Tg—r)
z1V..VTg—rp
i/N
X Lo,i/N)(Tg—r41 V - ..V T2g-27) 1l du' KT (W g i) ...

Tg—r4+1V..VT2q—_2r

ce 61KHI (u', xgqurﬂu — u’|(2H,—2)T}.

(See [2], p. 10, for a detailed computation of the expression (B-f).) Moreover, since
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Z%H ig H-self-similar and has stationary increments, we obtain

q,H d) \—H ¢H (D ~—HqH
AZin gy = N = N2
It follows that
2H H 21 H 21
E[N (AZE/N(H_I)/N]) | =FE[Z%7(1)7] = 1.
As a consequence, we have
(3.7 N = FogN + cog—2Fpg—aN + ...+ caFy N + 2o N,
where coq—o, = 7! (3)2, r=20,...,q — 1, are the combinational constants coming
from the product formula, and
N-1 _
(3.8) Fogopn = N7y o0, ( 3 fin®, fin)
i=0

for the kernels fi,Né)T fin computed in (B3).

3.2. Evaluating the L?(Q)-norm. Set

3.9

2124p% 1 (H/(2H — 1))
U= (R~ 3) (AH — 2)[(2F — 2)(q — 1) + P[0 — 1)(g — 1) + 1]
(26D 4(H(2H, - 1))
2d-1 1% (q)2(4H] — 3)(4H] — 2)
d 1
ol L 077 TPy R 1107 Ay [P YR

We claim that

(3.10) lim Ble; ;N2 212) = 1.
N—oo ’

Let us prove (B10). Due to the orthogonality property for Wiener chaos of dif-
ferent orders, it is sufficient to evaluate the L?(2)-norm of each multiple Wiener—
It integral appearing in the chaotic decomposition (B71) of V. Let us start with
the double integral:

N-1
En=N"1L(Y fin®1 fin).
i=0
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. N-1 . .
Since the kernel ) ;" 1" fi N ®q—1 fi,N is symmetric, we have

N-1
_ 2
BIF;N] = 2N"172|| 32 fin ®q-1 il 22 0.0y
i=0

N-1

= 2N4H_2 . kZO <fi,N ®q71 fi,Na fk,N ®q71 fk,N>L2(([071}d)2) .
ik=

Let us now compute the scalar products in the above expression. By using (B33),
we get

(fin @g-1 [iN, [N ®q-1 fiN) 12((0.1]4)2)

d
=byu H1<fij,Nj ®g—1 fij,N;s fr;.N; ®q—1 [rj.N;) L2([0,1]4)
i

. ) ) 2g & (i5+1)/N; (4;+1)/N; (kj+1)/N; ) (kj+1)/N; )
=b,n (H (2H' — 1)) H f du; f dv; f du; f dv;
J=1 " i;/N; ij/N; kj/N; kj/N;

li —
25=2)(a=1)

j U}’(QHJ/'*z)(qfl)\uj — u;.|2H§*2, 2H) -2

x |uj — ;| vj — vy

The change of variables u' = (u — i/N)N for each uj, u};, vj, v} with j from 1 to
d yields

B[F}y] = 2b} g (H/(2H — 1)) NH2N-IN-CH =22

N-1 1 1 1 1

x 3 T [ duy [ dv; [ du; [ dvfluy — v P72 Doy — o G720
i,k=07=10 0 0 0

X Jug =y + i — kg [P oy — o iy — kP2

We split the sum Z?Ik;lo appearing in E[F22 N/ just above into

N-1 N-1 N-1
= 2+ X
i, k=0 i, k=0 i, k=0

N <diig=k; Vi £k;

For the first term, without loss of generality, we can assume that i1 = k1 and i; #
k; for all j # 1. Then,
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N-1 d , ’
N2> 11 S dujdvjdu;-dvﬂuj—vj|(2Hj_2)(q_1)]u;~—v§|(2HJ’_2)(q_1)

b0l o)e

i1=k1

X |Uj — u; +ij; — kj|2HJ,’72|Uj — 'U; +i; — kj|2HJ/'72

= Nfl f durdviduydutjug — Ul\(ZHi_Q)(q_l)Wﬁ - Ull’(QH{_Q)(q_l)
[0,1]*

x Juy — up P2 oy — of [P

d
I R A Y A 1(2H —=2)(q—-1),, 1 (2H:—2)(q—1)
X H [ dujdvjdulidvl|u; — ;|7 |y — v
]:2[071]4
N;—1 , ,
-2 ! . 2H -2 / . 2H -2
X 2N >0 fuy — w4y — kT vy — vy — k[T
ij,kao
i;>k;

Following [] or [I5], we see that

N-1
N2 Y fu—u +i— kPP 20— i — kP2

i,k=0
i>k
oy 1 N n\|lu—vw w2 2o—o P2
— N2(2H'-2) L 1 " il
N n; N N + N N + N
is asymptotically equivalent to
1

N2(2H'-2)

(1 _ x)x4H/74dx — N2(2H’72)

ot—

(4H' —3)(4H' —2)

It follows that

N-1 4 , /
N2} H f dujdv;du’;dv}u; — vj|(2Hj72)(q71)]u;~ — q;;‘@Hr?)(qfl)

i,kzko Jj=lo,1]4

11=K1

X |u]' — U; +1; — kj|2H;_2”Uj - U} +1i — k‘j|2H§_2

S NS dusdoidu g — |2 D ]2
[0,1]

d 22H! -2
X Jug — ol [PHE2 oy — o 2HIZ2 ] 2Nj( i72)
j=2

1
" H] = 3)(4H] — 2)[(2H] — 2)(q — 1) + 1P[(H] — D{g— 1) + 1]




398 T. T. Diu Tran

Similarly for the second term, where i; # k; forall 1 < j < d, we have

N-1 d ’ /

N2 Y [1 Ik dededU;-dU;~|Uj—Uj|(2Hj_2)(q_1)|u;~—v;’(2H]‘_2)(q_1)
ik=0 J=1[0,1]4
Vi 2k

’o 2H!—2 Iy 2H! -2
X uj —uf + i — k[T oy — g iy — kT
d /
2(2H’ —2)
~ [[2n;
Jj=1

1
" H] = 3)(AH] — 2)[H] — 2)(g — 1) + 1P[(H] — D{g— 1) + 17

Putting everything together, we conclude that

(3.11) lim Ele; yN?C2Hp2 ) = 1.
N—oo ’
Let us now consider the remaining terms Fy N, . . . , F54 N in the chaos decom-

position (B72). Since ||g||z2 < ||g||z2 for any square integrable function g, one can
write, forevery 0 < r < ¢ — 2,

N-1
_ ~ 2
E[FQZq—Qr,N] = N4H 2(261 - QT)! H Z fi,N®rfi,NHL2(([071]L1)21172T)
i=0
AH-2 = 2
< N - (2q — 2T)' H Z fi7N ®7‘ fi,NHL2(([O’1]d)2q72T)
i=0

N-1
= (2q—27”)!N4H_2 Z <fi,N®rfi,N7fk,N®rfk,N>L2(([071]d)2q—2r)-
i,k=0

Proceeding as above, we obtain

(fin @r fiN, fiN @r fiN) 120 1]-20-20))
A 2g & (i;+1)/N; (i;+1)/N; (kj+1)/N; ) (kj+1)/N; .
=b,u (H'(2H' — 1)) H f du, f dv; f du; f dvj
J=1i;/N; ij/Nj kj/N; kj/N;

X [uj—v;] (2H]-2)r |u; —v} | (2H}-2)r Ju; —u;» | (2H}-2)(q—) v —v;- | (2Hj=2)(q—r)

Using the change of variables v’ = (u — i/N)N for each u;, uj,vj, v} with j =
1,...,d, we get
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E[F22q72r,N]
< (2 — 2r)b) g (H/(2H' — 1)) N*H-2N 4N~ (H'-2)2

N-1 4 1 1 1 1
x > ] fduj fdvj fdu;fdvﬂuj — vj]@H;'_Q)T]u; — U;-|(2HJ/'_2)T
ik=07=10 0 0 0

L T e T e e L A T 2 K B

= (2 — 2r)1b} 1 (H'(2H' — 1))*'N 2

d
x [ f dudvdu’sdvy|u; — vj\(2H§'72)T]u" — v’-|(2H§72)T

; J J
J=1][0,1)4
Nj—1
. 2H’ —2)(q— . 2H' —2)(q—
X fug — w4y — Ry BT oy — o 4 — | BRI
ij,kj:O

= (2q — 2r)\bj g (H/(2H — 1)) IN2@H =2)(a=7)

d
x [T [ dujdvjdudv]u; — vj\(2H§'72)T]u" — o |CH;=2r

=L b
2 % <1 TL] ) uj — u; TL] (QH]{—Q)(q—T) 'Uj — 'U;- n] (2H;‘_2)(q_7')
>< —_— _— —_ —_
Njn =i\ NjJI N N;j Nj  Nj

Apart from the diagonal terms, the term (u — ') /N is dominated by n/N for n, N
large enough. Using a Riemann sum approximation, one has for 0 < r < ¢ — 2 and
as N — oo,

(3.12) ENCG2H)@e=2p2 (] =0(1).
We deduce that
(3.13) Jim BN, o ] =0,

and the proof of (310) follows.

3.3. Concluding the proof of Theorem 1.1. Thanks to (B-I0), to understand the
asymptotic behavior of the renormalized sequence of Vp, it is enough to analyze
the convergence of the term

N-1
(3.14) L(NHAINZ2H S £ ®g-1 fiN)
i=0

with

d
[iN ®g—1 fin(x1,%X2) = bﬁ,H Hl(fz'j,Nj ®q—1 fi;N; ) (71,5, T2,5)
‘7:
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= 02y (H'(2H — 1))
d (ij+1)/Nj  (ij4+1)/N;

x I1 (1[0,ij/Nj](xl,j)l[o,z'j/Nj](m,j) f du f du'0, K™ (U 1,5)
J=1 i;/N; i;/N;

x K (0 2y ;) Ju — o/ [P DD

(i5+1)/N;  (i;+1)/N;

+ Ljo,i; /8,1 (€1,5)L4i, /Ny (5541 /8,0 (£2,5) [ oduw [ au oK™ (“ 1,5)
lJ/N 2,5

x LK (u/, zoj)|u— | (2H;=2)(a—1)

(i5+1)/N;
+ 1, vy +0) /8, (1) Lo 61y v, (225) [ du
x1,5
o (ij+j~)/N dul o K (2H ~2)(g-1)
'Oy (u xlj)alK (u xo j)lu —u [\
ij/Nj
(i;+1)/N;
F Ly N5 /N3 (1,5 ) L Ny Gg0) /5] (2,5) du
T1,5
(i5+1)/N; eH—2)g)
x du'8, K1, (u x1 )0 K" (u x2 ;) |u o' |H; ).
x2,5

Among the four terms of each factor on the right-hand side of the above ex-
pression, only the first one is not asymptotically negligible in L?(2), see [2], pp. 14
and 15, or follow the lines of [15] for details. Furthermore, by the isometry property
for multiple Wiener—Ito integrals, evaluating the L?(£2)-limit of a sequence belong-
ing to the second Wiener chaos is equivalent to evaluating the L?(([0, 1)%)?)-limit
of the sequence of their corresponding symmetric kernels. Therefore, we are left to
find the limit of f3¥ in L?(([0,1]%)?), where

2H ) —1.9H.—1..2—2H"
N . d 1 / / q :
fa' (x1,%2) : jqu (H, T 1))q(Hj(2Hj —1))" NN,
N;—1 (i;41)/N; (i;4+1)/N;
X L0/, (%1,5) 10,5, /5,1 (¥2,5) [ du [ du o1 K5 (u, 1)
= ij/Nj ij/Nj

x K (u/, xgj)|u7u’|(2HJ/'_2)(q_1).

According to [?], Theorem 3.2, by using integral approximation and the Lebesgue
dominated convergence theorem, each term under the product for j from 1 to d
converges in L*([0, 1]?) to the constant a; times the kernel of a standard Rosenblatt
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random variable ZQ’QHJ,'_I(l) as N; — oo with

_ 2H;(2H; — 1)
q(4H] = 3)V2(4H) - 2)V2[(2H] - 2)(q — 1) + 1[(H} — 1)(¢ = 1) + 1]’

a;

Therefore, fN converges in L?(([0,1]%)?) to the constant 2(d=1)/ 201/12{ times the
kernel of a standard Rosenblatt sheet at time 1 as N — oo, which leads to our
desired conclusion.
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