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Abstract. For the class of free-infinitely divisible transforms we introduce
three families of increasing Urbanik type subclasses. They begin with the
class of free-normal transforms and end up with the whole class of free-
infinitely divisible transforms. Those subclasses are derived from the ones
of classical infinitely divisible measures for which random integral repre-
sentations are known. Special functions like Hurwitz–Lerch, polygamma
and hypergeometric functions appear in kernels of the corresponding inte-
gral representations.
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Limit distribution theory is one of the main topics in probability theory. Histor-
ically, it began with the central limit theorem which says that properly normalized
partial sums of independent and identically distributed (i.i.d.) random variables
with finite second moment converge in distribution to the standard normal (Gaus-
sian) variable. When we drop the assumption about moments but still assume i.i.d.
variables, in the limit we get the class of stable distributions. Still further, if we
assume that observations (variables) are only stochastically independent but af-
ter some normalization by positive constants the corresponding triangular array is
uniformly infinitesimal then in the limit we obtain the class of selfdecomposable
distributions (Lévy class L). Finally, limits of sums of arbitrary infinitesimal and
row-wise independent triangular arrays coincide with the class of infinitely divis-
ible distributions; see Feller [4, Chapter XVII] or Gnedenko and Kolmogorov [5,
Sects. 17–19, 29–30 and 33] or Loeve [23, Sect. 23]. Thus we have

(?) (Gaussian) ⊂ · · · ⊂ (selfdecomposable) ⊂ · · · ⊂ (infinitely divisible)
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[Here it might be worthy to notice that the class of selfdecomposable measures can
be obtained from strongly mixing sequences not necessarily stochastically inde-
pendent; cf. Bradley and Jurek [3]. That possible direction of study is not pursued
in this article.]

Urbanik [24, 25] refined the left hand side inclusion (below class L), and Jurek
[13], [14] refined the right hand side inclusion by introducing new subclasses of
limit distributions.

Later on, all the subclasses introduced were generalized to distributions on
infinite-dimensional spaces and then described as distributions of some random in-
tegrals on arbitrary Banach spaces. In Jurek [10], the normalization of partial sums
of random variables was done by bounded linear operators on a Banach space.
Those and other multidimensional set-ups might be of some use in a generalization
to multidimensional free-probability theory. [For the random integral representa-
tion conjecture see the link following the reference item [12].]

In this paper we give characterizations of the above mentioned results (i.e.,
refinements of the inclusions in (?) by adding new subclasses in place of “· · · ”)
for additive free-independence (free-additive convolution �). More precisely, we
describe the corresponding free-independent (Voiculescu) transforms. Those trans-
forms are considered only on the imaginary axis, which is enough for the identifi-
cation of the corresponding measure; see Jurek [16] and Jankowski and Jurek [7].

In Theorem 1 and the auxiliary Lemma 1 we deal with general random integral
mappings that lead to subsets of free-independent transforms. Propositions 1–4
provide applications of Theorem 1 to some specified mappings. A complete filtra-
tion of the class of all free-infinitely divisible transforms is given in Corollary 2. Fi-
nally, Theorem 2 shows an intrinsic relation between two classes of free-infinitely
divisible transforms: one derived from linear scalings and the other from nonlinear
scalings.

0. INTRODUCTION AND NOTATIONS

We will introduce Urbanik type subclasses of free-infinitely divisible Voiculescu
transforms in a such way that

(0.1) (Gaussian,�) ⊂ (stable,�) ⊂ · · ·
⊂ (U 〈k+1〉,�) ⊂ (U 〈k〉,�) ⊂ · · · ⊂ (U 〈1〉,�) ≡ (U ,�)

≡ (U1,�) ⊂ (U2,�) ⊂ · · · ⊂
∞⋃
k=1

(Uk,�) ≡ (ID,�),

where the closure is in the pointwise convergence of Voiculescu transforms (the
topology of weak convergence of measures) and � is the free-additive convolution.
The classes (U 〈k〉,�) and (Uk,�) are the free-probability counterparts of the clas-
sical probability classes (U 〈k〉, ∗) and (Uk, ∗) in (ID, ∗). For each of these classes
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there are characterizations in terms of random integrals; for a general conjecture
see the link following reference item [12].

For the above classes we have the following integral representations:

(0.2) (i) µ ∈ (U 〈k〉, ∗) iff µ = L
( ∫
(0,1]

t dY (τk(t))
)
,

τk(t) :=
1

(k − 1)!

t∫
0

(− log v)k−1dv, 0 < t ¬ 1, k = 1, 2, . . . ;

(ii) ν ∈ (Uk, ∗) iff µ = L
( ∫
(0,1]

t dY (rk(t))
)
, rk(t) := tk, 0 ¬ t ¬ 1,

and (Y (t), t  0) is a cadlag Lévy process and L(Z) denotes the probability
distribution of a random variable Z. [We have

∫
(− log x)k dx = Γ(k,− log x) +

const (the incomplete Euler gamma function), but we do not use this identity here.]
The integrals in (i) and (ii) are particular examples of random integrals

(0.3) ρ = Ih,r(a,b](µ) := L
( ∫
(a,b]

h(t) dY (r(t))
)
, L(Y (1)) = µ ∈ Dh,r(a,b],

where h is a real function, r (a time change) is a monotone, non-negative function
and Dh,r(a,b] denotes the domain of the random integral Ih,r(a,b]; for details see, for in-
stance, [13, 14, 15, 17, 19]. To Y (resp. µ) we refer as the background driving Lévy
process (BDLP) (resp. the background driving probability distribution (BDPD)) of
the measure ρ.

The identification (isomorphism) between classical infinitely divisible charac-
teristic functions φµ(t) and their free-infinitely divisible counterparts, the trans-
form Vµ̃(it) (or measure) is given as follows:

(0.4) (ID, ∗) 3 µ 7→ Vµ̃(it) = it2
∞∫
0

log φµ(−u)e−tu du, t > 0;

see Jurek [17, Corollary 6] and the random integral mapping K(e) in [17] which
was the origin for the identity (0.4). The need for such an identification arises when
one wants to use Bercovici–Pata isomorphism but we do not have parameters a
and m, in the Lévy–Khinchin or Bercovici–Voiculescu formula, for classical and
free independence. That those two approaches coincide was shown in [17], [18],
[20, Theorem 2.1]. Moreover, [20, p. 350] gives a diagram showing how one may
connect two abstract semigroups.

From the above mapping (0.4) we infer the properties

Vµ̃∗ν(it) = Vµ̃(it) + Vν̃(it) = Vµ̃�ν̃(it); V
T̃cµ

(it) = cVµ̃(it/c) for c > 0,

and the last property is in sharp contrast with φTcµ(t) = φµ(ct) for the character-
istic functions.
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The fundamental Lévy–Khinchin characterization says that

(0.5) µ ∈ ID iff φµ(t) = exp

[
ita+

∫
R

(
eitx−1− itx

1+x2

)
1+x2

x2
m(dx)

]
= exp

[
ita− 1

2
σ2t2 +

∫
R\{(0)}

(
eitx − 1− itx

1 + x2

)
M(dx)

]
, t ∈ R,

where the real number a, the finite Borel measure m with m({0}) = σ2 and the
Lévy spectral measure M(dx) = 1+x2

x2
m(dx) are uniquely determined. In that

case, we will simply write
µ = [a, σ2,M ].

Here is the Voiculescu analogue for free-infinite divisibility of the Lévy–
Khinchin formula:

(0.6) ν ∈ (ID,�) iff Vν(it) = a+
∫
R

1 + itx

it− x
m(dx), t 6= 0,

where the real number a and the finite Borel measure m are uniquely determined;
for details see Voiculescu [26], Bercovici and Voiculescu [2], Barndorff–Nielsen
and Thorbjorsen [1] and Jurek [16, 17].

Uniqueness of the parameters a and m in (0.5) and (0.6) gives a natural iden-
tification between classical and free-infinitely divisible transforms as mentioned
above. On the other hand, if one knows that φµ ∈ (ID, ∗) or Vν(it) ∈ (ID,�),
finding their corresponding parameters a and m might be, in general, quite diffi-
cult. In that case, for (ID, ∗) and (ID,�) we use the identification given by (0.4).

1. A BASIC THEOREM

We begin with a basic result which, later on, will allow us to introduce new sub-
classes of free-infinitely divisible transforms by specifying their corresponding
random integral representations Ih,r(a,b](µ); see (0.3) above and (1.4) below.

For a real measurable function h, a positive monotone function r and an interval
(a, b], we define constants

c :=
b∫
a

h(s) dr(s), d :=
b∫
a

h2(s) dr(s).

Furthermore, we define two functions, g+ and g−, depending on the monotonicity
of r:

g+(z) :=
b∫
a

h(s)

zh(s) + 1
dr(s) and g−(z) :=

b∫
a

h(s)

zh(s)− 1
dr(s), z ∈ C,

for r respectively non-decreasing and non-increasing. For brevity, in what follows
we write these as g±(z).
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THEOREM 1. For an infinitely divisible measure µ = [a, σ2,M ] ∈ Dh,r(a,b] and

ρ := Ih,r(a,b](µ) there exists a free-infinitely divisible counterpart ρ̃ ∈ (ID,�) with
Voiculescu transform

(1.1) Vρ̃(it) = a c± σ2

it
d±

∫
R\(0)

x

[
g±

(
ix

t

)
− ±c

1 + x2

]
M(dx), t > 0,

where the upper sign in each occurrence of± is for r non-decreasing and the lower
sign is for r non-increasing. This convention will be in force throughout the paper,
and applies to each occurrence of ∓ as well.

Equivalently, by putting m(dx) := x2

1+x2
M(dx) on R \ {0} and m({0}) := σ2

we get a finite measure m such that

(1.2) Vρ̃(it) = a c±
∫
R

[
g±

(
ix

t

)
− ±c

1 + x2

]
1 + x2

x
m(dx), t > 0,

where the integrand is equal to d(it)−1 at zero.
Moreover, if h(s) > 0, then we have the following relation between ρ̃ and µ̃,

the free-probability counterparts of ρ and its background driving measure µ:

(1.3) Vρ̃(it) =
b∫
a

h(s)Vµ̃(it/h(s)) dr(s) =
b∫
a

V
T̃h(s)µ

(it) dr(s), t > 0,

where (Tc(µ))(B) := µ(c−1B) for Borel sets B and c > 0.

Proof. The isomorphism (0.4) gives a one-to-one correspondence between the
classical φµ(t) and the free-infinitely divisible Vµ̃(it) transforms. The law (of the
random integral) ρ = Ih,r(a,b](µ) has characteristic function

(1.4) log φρ(v) =
b∫
a

log φµ(±vh(s)) d(±r(s)),

by (0.3); for details see [19, p. 279] or [20].
Since by (0.5), log φµ(t) = ita − σ2

2 t
2 +

∫
R\{(0)}

(
eitx − 1 − itx

1+x2

)
M(dx),

using the Fubini Theorem and (0.4) we get

Vρ̃(it) = it2
∞∫
0

log φρ(−u)e−tu du

= it2
∞∫
0

b∫
a

log φµ(−(±u)h(s)) d(±r(s))e−tu du

=
b∫
a

it2
∞∫
0

[log φµ(∓uh(s)) e−tu du] d(±r(s))
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=
b∫
a

ia(∓h(s))it2
∞∫
0

ue−tu du d(±r(s))

−
b∫
a

(∓h(s))2
1

2
σ2it2

∞∫
0

u2e−tu du d(±r(s))

+
b∫
a

∫
R\{(0)}

it2
∞∫
0

(
e∓ih(s)xu−1− x

1+x2
(∓ih(s)u)

)
e−tu duM(dx) d(±r(s))

=
b∫
a

ia(∓h(s))it2
1

t2
d(±r(s))−

b∫
a

(h(s))2
1

2
σ2it2

2

t3
d(±r(s))

+
b∫
a

∫
R\{(0)}

it2
(

1

t±ih(s)x
− 1

t
− i(∓h(s))x

1+x2
1

t2

)
M(dx) d(±r(s))

= ac± σ
2

it
d+

∫
R\{(0)}

b∫
a

[
±t h(s)x

t±ixh(s)
+

x

1+x2
(∓h(s))

]
d(±r(s))M(dx)

= ac± σ
2

it
d±

∫
R\{(0)}

x
b∫
a

[
h(s)

1±ixh(s)/t
+

1

1+x2
(∓h(s))

]
dr(s)M(dx)

= ac± σ
2

it
d±
∫
R
x

[
g±(ix/t)− ±c

1+x2

]
M(dx),

which proves (1.1).
To get (1.2), note that g±(0) = ±c and

lim
x→0

g±( ixt )− ±c
1+x2

x
= lim

x→0

b∫
a

(h(s))2

(ixh(s)/t± 1)2
−i
t
dr(s) =

1

it
d.

Similarly,

Vρ̃(it) =
b∫
a

it2
∞∫
0

[log φµ(−h(s)u)e−tu du] dr(s)

=
b∫
a

it2
∞∫
0

[
log φµ(−w) e−tw/h(s)

dw

h(s)

]
dr(s) =

b∫
a

h(s)Vµ̃(it/h(s) dr(s)

=
b∫
a

V
T̃h(s)µ

(it) dr(s),

as by (0.4), V
T̃cµ

(it) = cVµ̃(it/c) for c > 0; this completes the proof. �

The kernel g+(z) from Theorem 1 admits the following representation:
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LEMMA 1. For r non-decreasing, the function g+(z) :=
∫ b
a

h(s)
zh(s)+1 dr(s)

maps the upper half-plane C+ into the lower half-plane C− and is analytic with
Pick–Nevanlinna representation

g+(z) =
b∫
a

h(s)

1 + h2(s)
dr(s) +

∫
R

1 + zx

z − x

( b∫
a

h2(s)

1 + h2(s)
δ−1/h(s)(dx) dr(s)

)
.

Proof. First, note that =(g+(z)) = −=(z)
∫ b
a

h2(s)
|1+zh(s)|2 dr(s), where the inte-

gral is positive because r is non-decreasing. This means that g : C+ → C− is an
analytic function with

dn

dzn
g+(z) = (−1)nn!

b∫
a

(
h(s)

1 + zh(s)

)n+1

dr(s), n = 0, 1, . . . .

Second, for b ∈ R we have the explicit Pick–Nevanlinna representation

1

z + b
= ub +

∫
R

1 + zx

z − x
mb(dx), ub :=

b

1 + b2
, mb(A) :=

1

1 + b2
δ−b(A),

and taking b := 1/h(s) and integrating the above with respect to dr(s) we get

g+(z) = u+
∫
R

1 + zx

z − x
m(dx),

where u :=
∫ b
a

h(s)
1+h2(s)

dr(s) is the shift parameter and

m(A) :=
b∫
a

h2(s)

1 + h2(s)
δA

(
− 1

h(s)

)
dr(s) =

b∫
a

h2(s)

1 + h2(s)
δ−1/h(s)(A) dr(s)

is a mixture of point-mass Dirac measures, k(s)δf(s)(A). This finishes the proof. �

2. THE CLASSES (U〈k〉,�) OF FREE-INFINITELY DIVISIBLE TRANSFORMS

For the one-parameter semigroup (Ur, r > 0) of non-linear shrinking operations
(for short, s-operations) Ur : R→ R defined

Ur(0) := 0, Ur(x) := max {|x| − r, 0} x
|x|
, x 6= 0,

Jurek [8, 9] introduced the class U of limiting distributions of sequences

Urn(X1) + Urn(X1) + · · ·+ Urn(Xn) + xn,

where the terms Urn(Xj), 1 ¬ j ¬ n, are uniformly infinitesimal and the random
variables Xn, n = 1, 2, . . . , are stochastically independent. The measures µ ∈ U
were termed s-selfdecomposable.
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REMARK 1. Note that, in mathematical finance, for X > 0, the s-operation
Ur(X) = (X − r)+ is called the European call option on a stock X with exercise
price r.

Jurek [15] introduced and characterized the following subclasses of the class
(ID, ∗) of classical infinitely divisible measures:

· · · ⊂ U 〈k+1〉 ⊂ U 〈k〉 ⊂ · · · ⊂ U 〈1〉 ≡ U ⊂ ID,

and measures µ ∈ U 〈k〉 were called k-times s-selfdecomposable. Furthermore, as
mentioned in the Introduction, taking the time change

(2.1) τk(t) :=
1

(k − 1)!

t∫
0

(− log v)k−1 dv,

we get

(U 〈k〉, ∗) = I
t,τk(t)
(0,1] (ID), and It,τk(t)(0,1] (ν) = It,t(0,1](I

t,t
(0,1](. . . (I

t,t
(0,1](ν))) (k times);

see [15, Proposition 4 and Corollary 2], and [19] for more general theory of com-
positions of random integrals.

Here are the free-infinitely divisible counterparts of k-times s-selfdecompos-
able probability measures:

PROPOSITION 1. For k = 1, 2, . . . , a measure ν̃ is a free-probability counter-
part of ν = [a, σ2,M ] ∈ (U 〈k〉, ∗), that is, ν̃ ∈ (U 〈k〉,�), if and only if

(2.2) Vν̃(it) =
a

2k
+
σ2

3k
1

it
+
∫

R\(0)
x

[
Φ

(
x

it
, k, 2

)
− 1

1 + x2
1

2k

]
M(dx).

Equivalently,

(2.3) Vν̃(it) =
a

2k
+
∫
R

[
Φ

(
x

it
, k, 2

)
− 1

1 + x2
1

2k

]
1 + x2

x
m(dx),

where a ∈ R, m(dx) := x2

1+x2
M(dx) on R \ {0} and m({0}) := σ2, is a finite

Borel measure m and Φ(z, s, v) :=
∑∞

n=0
zn

(v+n)s , |z| < 1, v 6= 0,−1,−2, . . . , is

the Hurwitz–Lerch function. Finally, the integrand in (2.3) is equal to (3kit)−1 at
zero.

Proof. Taking into account (2.1) and Theorem 1, we get c = 2−k and d = 3−k.
Furthermore, to find g+(z), by Gradshteyn and Ryzhik [6, formula (9.556)], the
Hurwitz–Lerch function has the following integral representation: if <v > 0, or
|z| ¬ 1, z 6= 1, <s > 0, or z = 1, <s > 1 then

Φ(z, s, v) =
1

Γ(s)

∞∫
0

ts−1e−vt

1− ze−t
dt.
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Hence

g+(z) =
1

(k − 1)!

1∫
0

s(− log s)k−1

1 + zs
ds

=
1

(k − 1)!

∞∫
0

wk−1e−2w

1 + zw
dw = Φ(−z, k, 2),

which completes the proof. �

REMARK 2. (i) For the class (U 〈1〉,�) of free s-selfdecomposable measures
we may use the identity Φ(−ix/t, 1, 2) = it(−x− it log(1 + ix/t)). The charac-
terization of the class (U 〈1〉�) ≡ (U ,�) was given in [18, Proposition 1(b)]. Note
a misprint there: (it)2 should read t2 in part (b).

(ii) Putting k = 0 in Propositon 1, we get (U 〈0〉,�) ≡ (ID,�), by (0.6).

Here are relations between consecutive classes (U 〈k〉,�):

COROLLARY 1. Define Df(t) := 2f(t)− t ddtf(t). Then for k  1,

D : (U 〈k〉),�)→ (U 〈k−1〉,�), where (U 〈0〉,�) := (ID,�).

Hence Dk : (U 〈k〉,�)→ (ID,�).

Proof. Let Vν̃(it) = a
2k

+ 1
3k

σ2

it ∈ (U 〈k〉,�). Then

D(Vν̃(it)) =
a

2k−1
+

2σ2

3k
1

it
− tσ

2

3k
(−1)i(it)−2

=
a

2k−1
+

1

3k−1
σ2

it
∈ (U 〈k−1〉,�).

Since by Wolframalpha.com

d

dt

[
Φ

(
x

it
, k, 2

)]
= −t−1

(
Φ

(
x

it
, k − 1, 2

)
− 2Φ

(
x

it
, k, 2

))
,

for the Poisson part in (2.2) we have

D
[
Φ

(
x

it
, k, 2

)
− 1

2k
1

1 + x2

]
= 2Φ

(
x

it
, k, 2

)
− 1

2k−1
1

1 + x2
− t d

dt

(
Φ

(
x

it
, k, 2

))
= 2Φ

(
x

it
, k, 2

)
− 1

2k−1
1

1 + x2
+ Φ

(
x

it
, k − 1, 2

)
− 2Φ

(
x

it
, k, 2

)
= Φ

(
x

it
, k − 1, 2

)
− 1

2k−1
1

1 + x2
,

which is the kernel in (2.2) corresponding to the free-infinitely divisible measure
in (U 〈k−1〉,�). This completes the proof. �
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3. THE CLASSES (Uk,�) OF FREE-INFINITELY DIVISIBLE TRANSFORMS

For a fixed k, a probability measure µ is in (Uk, ∗) if there exists a sequence νn ∈
(ID, ∗), n = 1, 2, . . . , such that

(3.1) ρn := T1/n(ν1 ∗ ν2 ∗ · · · ∗ νn)∗n
−k ⇒ µ as n→∞

(see [13, Theorem 1.1 and Corollary 1.1]; take there Q = I , Borel measures νk on
the real line and β = k).

The class of all possible limits in (3.1) is denoted by (Uk, ∗) and measures
µ ∈ (Uk, ∗) are referred to as k-times s-selfdecomposable measures. Note that for
k = 1 we get the class (U, ∗) of s-selfdecomposable measures.

Furthermore, the subclasses (Uk, ∗) form an increasing filtration of the class of
infinitely divisible measures, and all subclasses admit random integral representa-
tions:

(3.2) if 0 ¬ k ¬ l then (U0, ∗) ⊂ (Uk, ∗) ⊂ (Ul, ∗) ⊂ (ID, ∗);

in particular,

(U0, ∗) ≡ (L0, ∗) (selfdecomposable measures; see Section 4);

(U1, ∗) ≡ (U 〈1〉, ∗) (s-selfdecomposable measures; see Section 2);

(Uk, ∗) = It,t
k

(0,1](ID);
∞⋃
k=1

(Uk, ∗) = (ID, ∗).

Here are transforms of free-infinitely divisible counterparts of measures from
the classes (Uk, ∗):

PROPOSITION 2. For k  1, a measure ν̃ is a free-probability counterpart of
ν = [a, σ2,M ] ∈ (Uk, ∗), that is, ν̃ ∈ (Uk,�), if and only if for t > 0,

(3.3) Vν̃(it) =
k

k + 1
a+

k

k + 2

σ2

it

+
∫

R\{0}

[
kitΦ

(
x

it
, 1, k

)
− it− k

k + 1

x

1 + x2

]
M(dx)

=
k

k + 1
a+

∫
R

[
kit

(
Φ

(
x

it
, 1, k

)
− k−1

)
− k

k + 1

x

1 + x2

]
1 + x2

x2
m(dx)

where M is an arbitrary Lévy measure; m(dx) := x2

1+x2
M(dx) on R \ {0}, and

m({0}) := σ2, is a finite measure; the integrand in (3.3) is k
k+2

1
it at zero; and

Φ(z, s, v) is the Hurwitz–Lerch function.
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Proof. Since Uk = It,t
k

(0,1](ID), we take a = 0, b = 1, h(t) = t and r(t) = tk in
Theorem 1. Thus c = k/(k + 1), d = k/(k + 2) and

g+(z) = k
1∫
0

sk

1 + zs
ds =

k

k + 1
2F1(1, k + 1; k + 2;−z)

by Gradshteyn and Ryzhik [6, 3.194(5)] (|arg(1 + z)| < π) where 2F1 denotes the
hypergeometric function defined as

2F1(a, b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (x)n := x(x+1) . . . (x+n−1), c 6= −N;

where (x)n is the Pochhammer symbol with (x)0 := 1.
Consequently,

g+(z) =
k

k + 1
2F1(1, k + 1; k + 2;−z)

= k(k + 1)−1
∞∑
n=0

(1)n(k + 1)n
(k + 2)n

(−z)n

n!

= k
∞∑
n=0

(−z)n

k + n+ 1
= k(−z)−1

∞∑
j=1

(−z)j

k + j

= k(−z)−1
[ ∞∑
n=0

(−z)n

k + n
− 1

k

]
= k(−z)−1[Φ(−z, 1, k)− k−1].

Finally, xg( ixt ) = itk(Φ(x/(it), 1, k)− k−1) and this completes the proof. �

COROLLARY 2. If ν̃k ∈ (Uk,�) then

lim
k→∞

Vν̃k(it) = a+
∫
R

1 + itx

it− x
m(dx) = V (it) ∈ (ID,�) for t > 0.

In other words,
⋃∞
k=1(Uk,�) = (ID,�).

Proof. Note that as k →∞ then

kΦ

(
x

it
, 1, k

)
= k

∞∑
n=0

(
x

it

)n 1

k + n
=
∞∑
n=0

(
x

it

)n 1

1 + n/k

→
∞∑
n=0

(
x

it

)n
=

it

it− x
,

and[
kitΦ

(
x

it
, 1, k

)
− it− k

k + 1

x

1 + x2

]
1 + x2

x2

→
[
it

it

it− x
− it− x

1 + x2

]
1 + x2

x2
=

1 + itx

it− x
,

which proves the corollary. �
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REMARK 3. For any β  −2, the classes (Uβ,�) are well defined by (3.1);
cf. [13, 14]. Here we have restricted indices to the natural numbers to have the
sequence of inclusions as announced in (0.1). Proposition 2 holds true when one
replaces k  1 by β > 0. Furthermore, for β = 0 we get the selfdecomposable
distributions as discussed below.

4. URBANIK TYPE CLASSES (Lk,�) OF FREE-INFINITELY DIVISIBLE TRANSFORMS

Urbanik [24, 25] introduced a filtration of convolution semigroups of selfdecom-
posable measures (Lévy class L0) in such a way that

(4.1) (Gaussian) ⊂ (stable) ⊂ L∞ ⊂ · · ·
⊂ Lk+1 ⊂ Lk ⊂ · · · ⊂ L0 ⊂ · · · ⊂ ID.

Then using the extreme points method he found their descriptions in terms of char-
acteristic functions. Measures µ ∈ (Lk, ∗) are called k-times selfdecomposable.

Later on, all the above classes were described in terms of random integrals.
Namely, taking

rk(t) := tk+1/(k + 1)!, h(t) := e−t, t ∈ (0,∞),

we have the representations

Lk = I
e−t, rk(t)
(0,∞) (IDlogk+1),

IDlogk+1 :=
{
ν ∈ ID :

∫
R

logk+1(1 + |x|)ν(dx) <∞
}
.

Furthermore, from the integral representations one easily gets their characteristic
functions in the same form as in [24, 25]; see [11, Corollary 2.11 and Theorem 3.1].

Here are the free-infinitely divisible analogues of the Urbanik classes (Lk, ∗):

PROPOSITION 3. For k = 0, 1, . . . , a measure ν̃ is a free-probability counter-
part of ν = [a, σ2,M ] ∈ (Lk, ∗), that is, ν̃ ∈ (Lk,�), if and only if

(4.2) Vν̃(it) = a+
1

2k+1

σ2

it
+
∫

R\(0)

(
itLik+1

(
x

it

)
− x

1 + x2

)
M(dx), t > 0,

where the Lévy measure M has
∫
(|x|>1)

logk+1(1 + |x|)M(dx) <∞.
Equivalently,

(4.3) Vν̃(it) = a+
∫
R

[
itLik+1

(
x

it

)
− x

1+x2

]
m(dx)

logk+1(1+|x|2/(k+1))
, t > 0,

wherem is a finite Borel measure such thatm({0}) = σ2. The integrand in (4.3) is
equal to 1

2k+1
1
it at zero. Here Lis(z) :=

∑∞
n=1

zn

ns , |z| < 1, (analytically continued
over C) is the polylogarithmic function.
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Proof. For h(s) = e−s, rk(s) = sk+1/(k + 1)! and (a, b] = (0,∞), using
Theorem 1, we get c = 1,d = 2−k−1 and

g+(z) =
∞∫
0

e−s

1 + ze−s
sk

k!
ds = −z−1 Lik+1(−z),

by Wolframalpha.com. It follows that g+(ix/t) = −t/(ix) Lik+1(−ix/t) =
it/xLk+1(x/it). Inserting this, together with c = 1 and d = 2−k−1, into (1.1)
in Theorem 1 we get

(4.4) Vρ̃(it) = a+
σ2

it
2−k−1+

∫
R\(0)

[
itLik+1(x/it)−

x

1 + x2

]
M(dx), t > 0.

Since m(dx) := logk+1(1 + |x|2/(k+1))M(dx) is a finite measure on R \ {0} (see
Jurek and Mason [21, Proposition 1.8.13]) and adding an atom m({0}) := σ2, we
complete the proof. �

REMARK 4. Since Li1(
x
it) ≡ PolyLog[1, xit ] = − log(1− x

it), taking k = 0 in
Proposition 3 above we retrieve Proposition 2 of [18].

Here is a relation between the consecutive classes (Lk,�).

COROLLARY 3. Let Df(t) := f(t)− t ddtf(t). Then for k  0,

D : (Lk,�)→ (Lk−1,�), where (L−1,�) ≡ (ID,�).

Hence Dk+1 : (Lk,�)→ (ID,�).

Proof. Let Vν̃(it) = a+ 1
2k+1

σ2

it ∈ (Lk,�). Then

D(Vν̃(it)) = a+
1

2k+1

σ2

it
− t σ

2

2k+1
(−1)i(it)−2 = a+

1

2k
σ2

it
∈ (Lk−1,�).

Keeping in mind that (d/dz) Lik+1(z) = z−1 Lik(z) for the Poissonian part of
(4.2) we have

D

[ ∫
R\(0)

(
itLik+1

(
x

it

)
− x

1 + x2

)
M(dx)

]
=
∫

R\(0)

[(
itLik+1

(
x

it

)
− x

1 + x2

)
− t d

dt

(
itLik+1

(
x

it

))]
M(dx)

=
∫

R\(0)

[
− x

1 + x2
− t
(
it
d

dt

(
Lik+1

(
x

it

)))]
M(dx)

=
∫

R\(0)

[
− x

1 + x2
− it2

(
it

x
Lik

(
x

it

)
(−ix)(it)−2

)]
M(dx)

=
∫

R\(0)

[
− x

1 + x2
+ itLik

(
x

it

)]
M(dx) ∈ (Lk−1,�),

which completes the proof. �
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5. RELATIONS BETWEEN (Lk,�) AND (U<k>,�)

Since (Lk, ∗) ⊂ (U 〈k〉, ∗) for k = 0, 1, . . . (see [15, Corollaries 2 and 7]), the
injection (0.4) between the classical and free infinite-divisibility implies that

(5.1) (Lk,�) ⊂ (U 〈k〉,�), k = 0, 1, 2, . . . .

The classes (Lk, ∗) and (U 〈k〉, ∗) were introduced via linear and non-linear
scaling, respectively; here is another relation, besides (5.1), between their free-
probability counterparts.

For the notational simplicity, as in [12], set

I(ν) ≡ Ie
−t,t

(0,∞)(ν), ν ∈ IDlog, J (ρ) ≡ It,t(0,1](ρ), ρ ∈ ID.

Then we have

(L0, ∗) = I(IDlog), Lk+1 = I(I
e−t,rk(t)
(0,∞) (IDlogk+2), rk(t) =

1

(k + 1)!
tk+1;

U 〈0〉 = J (ID), U 〈k+1〉 = J (I
t,τk(t)
(0,1] (ID)), τk(t) =

t∫
0

(− log x)k−1dx;

that is, those classes correspond to the compositions of k + 1 mappings I and J ,
respectively; see [19] for the general theory of compositions of random integral
mappings.

THEOREM 2. For k = 0, 1, . . . , a measure ρ̃ ∈ (U 〈k〉,�) is in (Lk,�) if and
only if there exists ω ∈ (IDlogk+1 , ∗) such that ρ̃ = Ĩ(ω) � ω̃.

Proof. Let k = 0 and ρ̃ be the free counterpart of ρ ∈ (U 〈0〉, ∗)∩ (L0, ∗). Then
there exist ν ∈ ID and µ ∈ IDlog such that ρ = J (ν) = I(µ). For such equality
to hold it is necessary and sufficient that ν = µ ∗ I(µ); see [12, Theorem 4.5].
Equivalently ρ = J (ν) = J (µ)∗I(J (µ)). Taking ω := J (µ) we have ω ∈ IDlog

as µ ∈ IDlog and finally ρ = ω ∗ I(ω). Hence ρ̃ = ˜(I(ω) ∗ ω) = Ĩ(ω)� ω̃, which
proves Theorem 2 for k = 0.

Assume that the conclusion is true for the classes with indices 0 ¬ j ¬ k and
let ρ̃ ∈ U 〈k+1〉,�) ∩ (Lk+1,�) be the counterpart of ρ ∈ U 〈k+1〉, ∗) ∩ (Lk+1, ∗).
Then there exist ν ∈ ID and µ ∈ IDlogk+2 such that

ρ = I
t,τk+1(t)
(0,1) (ν) = J (I

t,τk(t)
(0,1) (ν)) and ρ = I

e−t,rk+1(t)
(0,∞) (µ) = I(I

e−t,rk(t)
(0,∞) (µ)),

and by putting ν1 := I
t,τk(t)
(0,1) (ν) ∈ U 〈k〉 and µ1 := I(I

e−t,rk(t)
(0,∞) (µ) ∈ Lk, we have

ρ = J (ν1) = I(µ1). From this (as in the case k = 0) we get ν1 = µ1 ∗ I(µ1) and
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ρ = J (µ1) ∗ I(J (µ1)). Taking ω := J (µ1) ∈ IDlogk+1 we get ρ̃ = ω̃ � Ĩ(ω),
which completes the proof. �

Since there is no random integral representation for the class (L∞, ∗), there is
no direct application of Theorem 1. Nevertheless we have

PROPOSITION 4. (i) A measure ν̃ is a free-probability counterpart of ν ∈
(L∞, ∗), that is, ν̃ ∈ (L∞,�), if and only if

(5.2) Vν̃(it) = c−
∫

(−2,2]\{0}

Γ(|x|+ 1)ieiπx/2 + x

t|x|−1(1− |x|)
G(dx),

where c ∈ R, G is a finite Borel measure and the integrand is equal to iπ/2∓ γ at
±1, respectively.

(ii) A measure ν̃ is a free-probability counterpart of ν ∈ (U 〈∞〉, ∗), that is,
ν̃ ∈ (U 〈∞〉,�), if and only if Vν̃(it) is of the form (5.2) above.

Proof. From [24, Theorem 2] or [25, Theorem 2] we know that ν ∈ (L∞, ∗)
iff

φν(t) = exp

(
iat−

∫
(−2,2]\{0}

[
|t||x|

(
cos

(
πx

2

)
−i t
|t|

sin

(
πx

2

))
+itx

]
G(dx)

1− |x|

)
where a ∈ R and G is a finite Borel measure on (−2, 0) ∪ (0, 2].

Let us use the identification (0.4). Then

Vν̃(it) = it2
∞∫
0

log φν(−u)e−tu du

= it2
∞∫
0

(
−iau−

∫
(−2,2]\{0}

[
|u||x|

(
cos

(
πx

2

)
+i

u

|u|
sin

(
πx

2

))
−iux

]
G(dx)

1− |x|

)
× e−tu du

= a−
∫

(−2,2]\{0}
it2
∞∫
0

[
u|x|
(

cos

(
πx

2

)
+ i

u

|u|
sin

(
πx

2

))
− iux

]
e−tu du

G(dx)

1−|x|

= a−
∫

(−2,2]\{0}

[
it2Γ(1 + |x|)t−(1+|x|)

(
cos

(
πx

2

)
+ i sin

(
πx

2

))
+x

]
G(dx)

1−|x|

= a−
∫

(−2,2]\{0}

[
Γ(1 + |x|)t1−|x| ieiπx/2 +x

]
G(dx)

1−|x|

where

lim
x→1

Γ(|x|+ 1)ieiπx/2 + x

1− |x|
= iπ/2− γ,

lim
x→−1

Γ(|x|+ 1)ieiπx/2 + x

1− |x|
= iπ/2 + γ,
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and for x > 0,

lim
x→1

d

dx
Γ(x+ 1) = lim

x→1

d

dx

∞∫
0

uxe−u du = lim
x→1

∞∫
0

log(u)uxe−u du

=
∞∫
0

u log(u)e−u du = 1− γ (γ = Euler’s constant),

which gives part (i). Part (ii) follows from the identity (L∞, ∗) = (U 〈∞〉, ∗); see
[15, Corollary 7]. �

Because of the special role of±1 in Proposition 4, let us consider the following
example:

EXAMPLE 1. Let G(dx) := 1
2δ−1(dx) + 1

2δ1(dx) (Rademacher distribution)
in Proposition 4. Then

Vν̃(it) = c− iπ/2 = c+
1

2

∫
R

1 + itx

it− x
dx

1 + x2
, t > 0,

which is the classical example of Pick function (Voiculescu representation of a
free-infinitely divisible ν̃) (

∫
R

1+itx
it−x

dx
1+x2

= −iπ).
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