MATHEMATICAL STATISTICS

Vol. 42, Fasc. 1 (2022), pp. 143–162 Published online 13.6.2022 doi:10.37190/0208-4147.00020

LIMIT BEHAVIOR OF THE INVARIANT MEASURE FOR LANGEVIN DYNAMICS

BY

GERARDO BARRERA (HELSINKI)

Abstract. We consider the Langevin dynamics on \mathbb{R}^d with an overdamped vector field and driven by multiplicative Brownian noise of small amplitude $\sqrt{\epsilon}, \epsilon > 0$. Under suitable assumptions on the vector field and the diffusion coefficient, it is well-known that it has a unique invariant probability measure μ^{ϵ} . We prove that as ϵ tends to zero, the probability measure $\epsilon^{d/2}\mu^{\epsilon}(\sqrt{\epsilon} dx)$ converges in the *p*-Wasserstein distance for $p \in [1, 2]$ to a Gaussian measure with zero-mean vector and non-degenerate covariance matrix which solves a Lyapunov matrix equation. Moreover, the error term is estimated. We emphasize that generically no explicit formula for μ^{ϵ} can be found.

2020 Mathematics Subject Classification: Primary 60H10; Secondary 34D10, 37M25, 60F05, 49Q22.

Key words and phrases: coupling, Gaussian distribution, invariant distribution, Langevin dynamics, Ornstein–Uhlenbeck process, perturbations of dynamical systems, Wasserstein distance.

THE FULL TEXT IS AVAILABLE HERE