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Abstract. We give an elementary proof of a result due to Diaconis and
Saloff-Coste (1994) that families of symmetric simple random walks on
Cayley graphs of abelian groups with a bound on the number of genera-
tors never have sharp cutoff. Here convergence to the stationary distribution
is measured in the total variation norm. This is a situation of bounded de-
gree and no expansion; sharp cutoff (or the cutoff phenomenon) has been
shown to occur in families such as random walks on a hypercube (Diaco-
nis, 1996) in which the degree is unbounded as well as on a random regular
graph where the degree is fixed, but there is expansion (Diaconis and Saloff-
Coste, 1993).
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1. INTRODUCTION

The notion of cutoff was introduced by Aldous and Diaconis [1], [2] to describe
a phenomenon that is sometimes observed in the convergence behavior of random
walks. Informally, a family of walks exhibits sharp cutoff if the evolving distribu-
tions of the walks spend a relatively long time far from the stationary distribution
before quickly converging to it.

In the same work, Aldous and Diaconis conjectured that sharp cutoff should
occur for random walks on Cayley graphs of groups whenever the number of gen-
erators is sufficiently large (see also [9] for a discussion of this conjecture). This
conjecture has been shown to hold in a number of settings. Interesting recent work
of Hermon and Olesker-Taylor [8] considers abelian groups, showing that if the
number of generators becomes unbounded, then the cutoff phenomenon typically
does occur. In a different paper [10], the same authors examined groups of upper
triangular matrices, showing that cutoff also typically occurs for walks on these
nonabelian groups when the number of generators grows. In a more general con-
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text, Salez [14] recently showed that cutoff is a consequence of a certain non-
negative curvature condition, which is often satisfied in the case of Cayley graphs
of abelian groups. See the paper [8] and the references therein for a further sum-
mary of existing related results.

What about the behavior for walks with a small number of generators? The im-
portant work of Diaconis and Saloff-Coste [7] established that families of walks on
groups exhibiting so-called moderate growth do not have sharp cutoff. Families of
nilpotent groups with a bounded number of generators were shown to have moder-
ate growth and therefore there is no cutoff for the corresponding families of walks.
Later, Hough [11] re-proved this in the special case of cyclic groups of prime order,
but with a quantitatively sharper result about the transition to stationarity.

In this paper, we give a new elementary proof that there is no cutoff for abelian
groups with a bounded number of generators. The setup is as follows. We consider
a finite abelian group G equipped with a generating set {ai}1¬i¬r of size r. We
analyze the cutoff (or lack thereof) behavior of the random walk given by applying
one of the elements {0,±ai}with equal probability; we will call this a type r walk.

THEOREM 1 ([7], [15]). No family of walks all of the same type has sharp
cutoff.

What is new here is the proof method. The more general method of [7] in the
case of moderate growth rests on a relation between the growth rate of the set
of words of a fixed length in the generators and the rate at which the walk ap-
proaches the uniform distribution. Showing that abelian (and more generally nilpo-
tent) groups satisfy moderate growth uses the same sort of “doubling” property
employed by Gromov in his polynomial growth theorem.

In contrast, our proof focuses on the Fourier domain, connecting cutoff to eigen-
values of the walk and then analyzing the distribution of these eigenvalues. Before
going into the details, we informally outline the approach below. See also [15,
Section 8] for more on the convergence rate of type r walks.

2. FOURIER APPROACH TO CUTOFF

Sharp cutoff is defined as follows. If A is an irreducible symmetric Markov matrix
with unique stationary distribution v0 (so that Av0 = v0 and |v0|1 = 1) and
x0 = (1, 0, . . . , 0), we write

dA(t) = |Atx0 − v0|1

for the distance to the stationary distribution at time t, and

tA(d) = max {t | dA(t) ­ d}

for the time it takes to get within distance d of the stationary distribution.
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DEFINITION 2. A family {Ai} of irreducible symmetric Markov matrices has
sharp cutoff if

lim
n→∞

tAn(ε)

tAn(1− ε)
= 1

for every ε ∈ (0, 1/2).

(See also [15, Definition 3.3].)
Our reasoning about the notion of sharp cutoff is inspired by the following

two extreme scenarios. Consider on the one hand a family {An} of Markov ma-
trices with n eigenvalues 1, 1 − ε, 0, . . . 0, and on the other hand a family {Bn}
with n eigenvalues 1, 1 − ε, . . . , 1 − ε. For fixed n, beginning with a vector x0 =
(1, 0, . . . , 0) we are interested in how quickly the vectorsAinx0 andBi

nx0 approach
the stationary distribution

(
1
n , . . . ,

1
n

)
when measured in `1 norm. For the moment,

let us imagine that we can take
√
n times the `2 norm as a proxy for the `1 norm;

in general this substitution is not rigorous but it does hold quite tightly in many
cases (see [5, Chapter 3]), and doing it here allows us to change basis and analyze
our scenarios in the diagonal basis of the Markov matrix (for a treatment of the `2

version of the problem see [3]).
Denote the image of x0 in the diagonal basis by w; the image of the stationary

distribution
(

1
n , . . .

1
n

)
is the first eigenvector

(
1√
n
, 0, . . . , 0

)
.

Then we have for i ­ 1,

ai := Ain(w) = (w1, (1− ε)iw2, 0, . . . , 0).

Under the assumption that the |wi| are each on the order of 1√
n

, the `2 distance to

the stationary distribution is about (1 − ε)iw2, and our proxy measure is already
within a constant of

(
1√
n
, 0, . . . , 0

)
at time i = 1. Further iteration moves closer to

stationary at basically the constant multiplicative rate 1−ε per time step. This does
not display sharp cutoff, since An moves quickly to within a constant distance of
the stationary. (See Definition 2.)

In contrast, for Bn, we see that

bi := Bi
n(w) = (w1, (1− ε)iw2, (1− ε)iw3, . . . , (1− ε)iwn)

has `2 distance (1− ε)i
√∑n

i=2 |wi|2 ≈ (1− ε)i which only gets within a constant

of stationary (in our proxy measure) at a time i for which (1 − ε)i
√
n is constant,

i.e., for i = O(log n)/log 1
1−ε . Once i exceeds this time, bi moves towards the

stationary distribution at the same rate per step as ai. Thus Bn spends a long time
(O(log n)) getting close to the stationary relative to the time spent improving that
closeness, meaning that Bn does exhibit sharp cutoff.

These examples illustrate the perspective that sharp cutoff is a criterion that
captures those scenarios where the eigenvalues of the process drop off “slowly
enough.” This perspective is made rigorous in our context via Lemma 3, which
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uses a standard argument to relate sharp cutoff to the decay of eigenvalues. As we
will then show, the eigenvalues for the type r processes we consider here drop off
too quickly for sharp cutoff to occur.

Our argument rests on one key idea which we now describe. The fact that our
groups G are abelian allows us to describe the eigenvalues of the process explic-
itly via the one-dimensional representations of G. Rather than analyzing directly
the distribution of the sizes of these eigenvalues, we observe that these eigenvalues
correspond in a nice way to certain vectors in an r-dimensional lattice. We show
that the sizes of the eigenvalues fall off more quickly than the set e−c|x|

2
for x rang-

ing over the lattice, which despite being an infinite set is more readily summable.
The lengths of lattice vectors shrink quickly enough to rule out sharp cutoff via this
comparison.

Most of the work to prove Theorem 1 already shows up in the cyclic case,
which we prove in Section 4. The general abelian case, which is notationally more
complicated, is completed in Section 5.

3. RELATING RATE OF CONVERGENCE TO EIGENVALUES

We start with a general lemma relating the distance to the stationary distribution at
time t to the eigenvalues of the Markov matrix A corresponding to a random walk
on a Cayley graph.

We write {λk} ⊆ (−1, 1] for the eigenvalues of A with

λ0 = 1 and |λm| = max
k 6=0
|λk| < 1.

LEMMA 3. Given a transition matrix A for a random walk on a Cayley graph
for the abelian group G, we have

(3.1) λ2t
m ¬ d2

A(t) ¬
∑
k 6=0

λ2t
k .

Proof. For the left inequality note that A = A∗ is self-adjoint and the station-
ary distribution is v0 = 1

n1. Write vm for the eigenvector with Avm = λmvm and
|vm|1 = 1. Since A is a transition matrix for a random walk on a Cayley graph
for G, it commutes with rotation (action by G). Thus vm is an eigenvector for ro-
tation and hence all entries of vm have the same norm, which by the normalization
is |vm|∞ = 1

n . Since dA(t) = maxv
〈Atx0−v0,v〉
|v|∞ this gives

dA(t) ­ n|〈Atx0 − v0,vm〉| = |λm|t.

For the right inequality in (3.1), if vk is the eigenvector ofAwith eigenvalue λk
and every entry having norm 1

n then |〈x0,vk〉| = 1
n so that d2

A(t) = |Atx0−v0|21 ¬
n|Atx0 − v0|22 =

∑
k 6=0 λ

2t
k . �
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4. LATTICES AND THE CYCLIC CASE

With Lemma 3 in hand, we first prove Theorem 1 in the case where every group is
cyclic. In this case the Markov matrices are circulants. Focusing on one walk from
the family, we will denote by {±ai} (1 ¬ i ¬ r) the r possible steps of the walk
on Z/nZ and by A the corresponding symmetric Markov transition matrix. The
Fourier transform yields an explicit form of the eigenvalues of A for k = 1, . . . , n:

λk =
r∑
i=1

2

2r + 1
cos

(
2π
kai
n

)
+

1

2r + 1
.

Our strategy is to bound the λk and use these bounds in conjunction with
Lemma 3 to get upper and lower bounds on d2

A(t) which will be tight enough
to show that sharp cutoff does not occur. Specifically, we will associate to each λk
an r-dimensional vector σk for which e−c1|σk|

2 ¬ λk ¬ e−c2|σk|
2
. Modulo a minor

complication, the σk will all lie in an r-dimensional lattice, with σm being a min-
imal length vector in that lattice. This will allow us to upper bound the right hand
side of (3.1) by the sum over the whole lattice of e−c2|σk|

2
. Despite the inclusion

of many extra terms, this bound will be tight enough for our needs.
The minor complication is that if λk < 0 we need to analyze a slightly different

lattice which we do via a slightly different vector σ̃k. However, the core of the
argument remains the same.

We begin by defining for each k = 1, . . . , n− 1 the vector

σk =

(〈
ka1

n

〉
, . . . ,

〈
kar
n

〉)
∈ Rr

where we use 〈x〉 ∈
(
−1

2 ,
1
2

]
for the smallest translate of x by an integer. The

vector σk lives in the lattice

Λ = Zr + Z ·
(
a1

n
, . . . ,

ar
n

)
.

Note that if all the coordinates of σk are small, then all the cosines in the expression
for λk are close to 1, so λk is close to 1. For λk to be close to −1, we are forced to
have the coordinates of σk close to±1

2 . For this reason, we also consider the vector

σ̃k =

(〈
ka1

n
+

1

2

〉
, . . . ,

〈
kar
n

+
1

2

〉)
∈ Rr,

which lives in the lattice

Λ̃ = Zr + Z ·
(
a1

n
, . . . ,

ar
n

)
+ Z ·

(
1

2
, . . . ,

1

2

)
.
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Let µ and µ̃ denote the lengths of the shortest nonzero vectors of Λ and Λ̃ respec-
tively. Since σ ∈ Λ̃ implies 2σ ∈ Λ, we have

2µ̃ ­ µ.

The following lemma gives a lower bound on d(t) by bounding |λm| in terms
of the length µ of the shortest vector in Λ. Here we assume n is sufficiently large,
which we may do since if any subfamily of walks has bounded size then the family
cannot have sharp cutoff.

LEMMA 4. Let β = 8π2

2r+1 . Then if n is sufficiently large,

|λm| ­ e−βµ
2
.

Proof. First note that Vol[(Rr/Λ)] = 1
n , which approaches 0. It follows that

for large enough n, the shortest nonzero vector in Λ has length less than 1, and is
therefore equal to σk for some k = 1, . . . , n− 1. For this shortest σk, we may also
assume that the all the coordinates of σk have absolute value less than 1

2π . We will
now show

|λk| ­ e−β|σk|
2
,

which will establish the lemma.
For any x ∈ [−1, 1], we have cos(x) ­ e−x2 . Thus

λk ­
1

2r + 1

(∑
i

2e−(2π〈 kai
n
〉)2 + 1

)
.

Now consider the right hand side as an average of 2r + 1 values of the function
e−x. The convexity of this function yields

λk ­ e−
2

2r+1

∑
i(2π〈

kai
n
〉)2 = e−β|σk|

2
,

as desired. �

Next we establish an upper bound on d(t) by bounding the sum of λ2t
k . For

each k, we bound |λk| by an exponential of either |σk| or |σ̃k|. We then replace the
sum of these exponentials with a sum over the entire lattice Λ̃.

LEMMA 5. Let α = 8
(2r+1)2

. Then

(4.1)
∑
k 6=0

λ2t
k ¬ 2

∑
σ∈Λ̃\{0}

e−α|σ|
2·2t.

We note that the above lemma gives a relation between the mixing time t(ε)
and the smoothing parameter η of the dual lattice Λ̃∗ introduced by Micciancio
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and Regev [13]. Specifically, using the definition of the smoothing parameter that
appears in [13, Section 3], a computation shows that Lemma 5 implies

t(ε) <
π(2r + 1)2

16
[ηε2/2(Λ̃∗)]2.

Proof of Lemma 5. Fix k ∈ {1, . . . , n − 1}. First assume λk ­ 0. As in
the previous proof, we will replace cosines with exponentials, this time using the
inequality cos(x) ¬ e−

1
2π2

x2 , which is valid for all x ∈
[
−3

2π,
3
2π
]
. This gives

λk ¬
1

2r + 1

(∑
i

2e−2〈 kai
n
〉2 + 1

)
.

We now consider the right hand side as an average value of the function e−x
2

at
2r+1 values of x, each of which lies in the interval

[
0, 1√

2

]
. Since e−x

2
is concave

down on this interval, we obtain

λk ¬ e
− 8

(2r+1)2
[
∑
|〈 kai

n
〉|]2

= e−α|σk|
2
1 .

Since |v|1 ­ |v|, we finally arrive at

λk ¬ e−α|σk|
2
.

Now consider the case in which λk < 0. In this case, |λk| = −λk is the sum of
negative cosines, so using − cos(2πx) = cos

(
2π
(
x+ 1

2

))
, an argument similar to

the first case shows that
|λk| ¬ e−α|σ̃k|

2
.

Hence in both cases we see that |λk| is bounded above by e−α|σ|
2

with σ ∈ Λ̃.
To complete the proof of the lemma, we must show that no such σ appears for
more than two different values of k. To see this, note if σk = σk′ for some k, k′ ∈
{1, . . . , n − 1}, then kai ≡ k′ai mod n for all i. Since the ai generate Zn, this
forces k = k′. Similarly, σ̃k = σ̃k′ implies k = k′. Finally, if σk = σ̃k′ , then we
get either k = k′, or k = k′ ± n

2 with n even. In any event, no more than two
distinct choices of k lead to the same lattice element σ. �

The next two lemmas will further bound the right hand side of (4.1) in terms of
r and Λ. This amounts to showing that the number of lattice points of length at most
d is bounded above by a polynomial in d. Given two discrete (infinite) multisets
S, T ⊂ R­0, we say S dominates T if there are orderings of S = {si : i ∈ Z+}
and T = {ti : i ∈ Z+} such that si ­ ti for all i. Note that dominance induces a
partial order on such multisets.

For a lattice Λ, let |Λ| denote the multiset of norms of vectors of Λ. So |Λ| is
discrete and contained in R­0.
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LEMMA 6. Let r be a fixed integer. Let T be the multiset consisting of {0} and
3r(i + 1)r copies of i ∈ N = {1, 2, . . . }. Then for every full rank lattice Λ in Rr
with minimal nonzero vector of length 1, the set |Λ| dominates the multiset T .

Proof. Observe that for d ­ 1 the number n(d) of lattice points of Λ of norm
no greater than d is bounded above by (3d)r. This is because the shortest vector
of Λ has length 1, so radius 1/2 balls around points of Λ are disjoint, so that
n(d) ·B(1/2) ¬ B(d+ 1/2) where B(t) is the volume of a ball in Rr of radius t.
This gives n(d) ¬ B(d+ 1/2)/B(1/2) = 2r(d+ 1/2)r ¬ 3rdr.

It follows that no more than 3r(i+ 1)r lattice points are between lengths i and
i+ 1 and thus |Λ| dominates the multiset T . �

LEMMA 7. Fix r and Λ a full rank lattice in Rr, and let µ = min0 6=σ∈Λ |σ|2.
Then ∑

σ∈Λ

e−a|σ|
2
2 ¬ 1 + 3rr!

(
1

(1− (e−aµ2))r
− 1

)
.

Proof. By Lemma 6 we have∑
σ∈Λ

e−a|σ|
2
2 ¬ 1 +

∑
t∈T

e−a(µt)2 ¬ 1 +
∑
i∈N

3r(i+ 1)r(e−aµ
2
)i

2
.

This last sum can be bounded as∑
i∈N

3r(i+1)r(e−aµ
2
)i

2 ¬
∑
j∈N

3r(
√
j+1)r(e−aµ

2
)j ¬ 3rr!

∑
j∈N

(
j + r

r

)
(e−aµ

2
)j

where we have substituted i2 = j for the first inequality and (
√
j + 1)r ¬ r!

(
j+r
r

)
for the second. Finally, using the well known

∑∞
i=1

(
i+r
i

)
xi = 1

(1−x)r −1, we have

3rr!
∑
j∈N

(
j + r

r

)
(e−aµ

2
)j = 3rr!

(
1

(1− (e−aµ2))r
− 1

)
. �

We now prove Theorem 1 (in the cyclic case). Combining Lemma 5 with
Lemma 7 yields the upper bound∑

i

λ2t
i ¬ 2 · 3rr!

(
1

(1− e−αµ̃2·2t)r
− 1

)
.

Meanwhile, Lemma 4 together with 2µ̃ ­ µ gives

e−αµ̃
2·2t ¬ |λm|

α
2β
t
,

hence

(4.2)
∑
i

λ2t
i ¬ 2 · 3rr!

(
1

(1− |λm|
α
2β
t
)r
− 1

)
.
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By the first inequality of Lemma 3 we have tA(ε) ­ t0 where t0 is the solution
to |λtm| = ε. It follows that

tA(ε) ­ log|λm| ε.

By the second inequality of Lemma 3 and (4.2), we have tA(1 − ε) ¬ t1 with
t1 the solution to 2 · 3rr!

(
1

(1−|λm|
α
2β
t
)r
− 1
)

= (1− ε)2. Solving this yields

(4.3) tA(1− ε) ¬ 2β

α
log|λm|C(ε)

with C(ε) = 1−
( (1−ε)2

2·3rr! + 1
)−1/r.

Together we have, for each walk in the family,

tA(ε)

tA(1− ε)
­ α

2β
log|λm| ε/log|λm|C(ε) =

1

2π2(2r + 1)
logC(ε) ε.

Notice that as ε → 0 we have C(ε) → 1 −
(

1
2·3rr! + 1

)−1/r, which is less than 1
and bounded away from zero, so there will be a choice of ε that will make the right
hand side greater than 1 independent of A. This completes the proof in the cyclic
case.

5. THE GENERAL CASE

To prove the main theorem for arbitrary abelian groups, we closely follow the proof
for cyclic groups given above.

We consider an arbitrary finite abelian group G, which we express as the prod-
uct of s cyclic groups of orders n1, . . . , ns. Let n = |G| = n1 · · ·ns. We suppose
that we have r generators a1, . . . , ar of G, with

aj = (aj1, . . . , ajs),

with each ajh ∈ Znh , h = 1, . . . , s. We will assume that we have chosen a product
decomposition in which s ¬ r, which is always possible for an abelian group
generated by r elements.

It will be convenient to have

ηjh =
ajh
nh
∈ [0, 1),

and define ηj = (ηj1, . . . , ηjs).
The eigenvalues of our Markov process are indexed by tuples k = (k1, . . . , ks)

with kh ∈ Znh and are given by

λk =
1

2r + 1

(
2

r∑
j=1

cos(2πk · ηj) + 1
)
.
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As before, we identify the r-tuple appearing in the arguments of the cosines
above, letting

σk = (〈k · η1〉, . . . , 〈k · ηr〉) ∈ Rr.

The vector σk lives in the lattice

Λ = Zr +
s∑

h=1

Zθh, where θh = (η1h, . . . , ηrh).

(The θ matrix is the transpose of the η matrix.)
As before, we also introduce

σ̃k =
(〈
k · η1 + 1

2

〉
, . . . ,

〈
k · ηr + 1

2

〉)
∈ Rr,

which lives in the lattice

Λ̃ = Zr +
s∑

h=1

Zθh + Z ·
(

1
2 , . . . ,

1
2

)
.

As before, we let λm be the eigenvalue with largest absolute value, m 6= 0, and
we have

λ2t
m ¬ d2(t) ¬

∑
k 6=0

λ2t
k .

With this setup, the rest of the argument is similar to the cyclic case. The con-
clusion of Lemma 4 holds exactly as before, while Lemma 5 must be modified as
follows:

LEMMA 8. Let α = 8
(2r+1)2

. Then∑
k 6=0

λ2t
k ¬ 2s

∑
σ∈Λ̃\{0}

e−α|σ|
2·2t.

Proof. As in the proof of Lemma 5, we see that if λk > 0, then

λk ¬ e−α|σk|
2
,

and if λk < 0, then
|λk| ¬ e−α|σ̃k|

2
.

So in either case |λk| is bounded above by e−α|σ|
2

with σ ∈ Λ̃. To complete
the proof of the lemma, we must show that no such σ appears for more than 2s

different values of k. For this purpose, assume that σk = σk′ . This implies that for
j = 1, . . . , r,

〈k · ηj〉 = 〈k′ · ηj〉.
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Equivalently, if we consider the r × s matrix A = (ajh), and let x be the length s

column vector with xh =
kh−k′h
nh

, then

Ax ∈ Zr.

Now we use the fact the aj generate G. This implies that there exists an integer
vector c = (c1, . . . , cr) such that

∑
cjaj = (1, 0, . . . , 0) in G, i.e.,

cA = (1 + γ1n1, γ2n2, . . . , γsns),

where the γh are integers. It follows that

cAx = x1 +
s∑

h=1

γh(kh − k′h),

and hence x1 ∈ Z. Similarly, all xh are in Z, and we get kh ≡ k′h mod nh, i.e.
k = k′.

We have now established that σk = σk′ implies k = k′. A similar argument
shows that σ̃k = σ̃k′ implies k = k′. Finally, if σk = σ̃k′ , then for each h, we get
either kh = k′h or kh = k′h ±

nh
2 with nh even. It follows that no more than 2s

distinct choices of k lead to the same lattice element σ. �

Finally, because r is constant and s ¬ r, the presence of the factor 2s in the
above lemma does not effect the rest of the proof given in the cyclic case, which
goes through without further modification.
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