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Abstract. We prove an analogue of Ehrhard’s inequality for the two-
dimensional isotropic Cauchy measure. In contrast to the Gaussian case,
the inequality is not valid for non-convex sets. We provide the proof for
rectangles which are symmetric with respect to one coordinate axis.
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1. INTRODUCTION

In 1971 A. Prekopa [6] provided sufficient conditions for a probability measure in
Rn to be logarithmically concave, in terms of its density. In particular, he proved
that the isotropic Gaussian measure γn in Rd is logaritmically concave, that is, for
any two convex Borel sets A and B and any 0 < λ < 1 we have

log γn((1− λ)A+ λB)  (1− λ) log γn(A) + λ log γn(B).

This result was substantially improved in 1983 by A. Ehrhard [3], who proved that,
instead of the logarithm, one can use the inverse of Φ, the distribution function of
the standard one-dimensional Gaussian measure. Let Φ(x) = 1√

2π

∫ x
−∞ e

−t2/2 dt

and let A, B, λ be as above. Then

Φ−1(γn((1− λ)A+ λB))  (1− λ)Φ−1(γn(A)) + λΦ−1(γn(B)).

Later C. Borell [1] proved that the above inequality holds true for all Borel sets.
This property has many important consequences. For instance, it implies that

Φ−1(u(t, x)) is a concave function of x ∈ A, where u(t, x) is the Dirichlet heat
kernel of a convex open set A ⊂ Rn (see [3]). This Φ−1-concavity of Gaus-
sian measure also has some isoperimetric consequences. Using it, R. Latała and
K. Oleszkiewicz [5] proved that among all Borel symmetric convex subsets of Rn
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with fixed measure, the symmetric strip {x ∈ Rn : |xn| < a} has the smallest
measure of the boundary.

In order to prove the above-mentioned inequality, Ehrhard [3] defined in Rn a
family of k-symmetrizations, k = 1, . . . , n. In our paper we use 2-symmetrization
in R2; let us recall this notion for the standard Gaussian measure γ2. Let A be an
open set in the plane. The 2-symmetrization of A is a half-plane HA = {(x, y) :
x < a} such that γ2(A) = γ2(HA) = Φ(a), where Φ is the distribution function
of N(0, 1). Ehrhard extensively used two important features of the standard Gaus-
sian measure in Rn: γn is a product measure and it is rotationally invariant. These
crucial properties helped Ehrhard to use a kind of induction on k = 1, . . . , n.

In this paper we investigate some analogous concavity properties of the two-
dimensional isotropic Cauchy distribution µ2 with density f(x, y) = (2π(1+x2 +
y2)3/2)−1. Let F (x) = 1

2 + 1
π arctanx be the distribution function of the standard

one-dimensional Cauchy distribution and let F−1(x) = − cot(πx) be its inverse.
Our main theorem states that κ(b, c, d) = cot(πµ2((−b, b) × (c, d))) is a convex
function of (b, c, d) for b > 0 and c < d.

In the proof we use 2-symmetrization of rectangles for the standard Cauchy
measure µ2 on the plane. Namely, given a rectangle P on the plane we can find a
half-planeHP = {(x, y) : x < p} such that µ2(P) = µ2(HP) = 1

2 + 1
π arctan(p).

Unfortunately, µ2 is not a product measure, hence Ehrhard’s method cannot be ap-
plied in this case. Let us only mention that in [2] we examined important properties
of 1-symmetrization for the standard Cauchy measure in Rn.

The convexity of the function κ(x, y, z) implies the following:

PROPOSITION 1.1. Let µ2 be the standard Cauchy measure on the plane and
let A, B be two rectangles symmetric with respect to the same axis. Then for all
0 < λ < 1,

F−1(µ2((1− λ)A+ λB))  (1− λ)F−1(µ2(A)) + λF−1(µ2(B)),

where F−1(x) = − cot(πx).

Proof. For a given rectangle (−b, b)×(c, d) there is a unique function κ(b, c, d)
(see Lemma 2.3 below) such that

b∫
−b

d∫
c

1

2π(1 + x2 + y2)3/2
dy dx =

κ(b,c,d)∫
−∞

1

π(1 + x2)
dx.

In Theorem 2.1 we will prove that κ(x, y, z) = cot(πµ2((−x, x) × (y, z))) is
convex as a function of (x, y, z) for x > 0 and y < z. This implies that for all
(b1, c1, d1) and (b2, c2, d2) in this domain and all λ ∈ (0, 1),

κ
(
(1− λ)(b1, c1, d1) + λ(b2, c2, d2)

)
¬ (1− λ)κ(b1, c1, d1) + λκ(b2, c2, d2).

Now we show that this implies Proposition 1.1.
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Let P1 = (−b1, b1)×(c1, d1) and P2 = (−b2, b2)×(c2, d2) be two rectangles,
symmetric with respect to the y-axis. For all λ ∈ (0, 1) we have

(1− λ)P1 + λP2
= (−(1− λ)b1 − λb2, (1− λ)b1 + λb2)× ((1− λ)c1 + λc2, (1− λ)d1 + λd2).

Then, by the concavity of −κ(x, y, z),

F−1(µ2((1− λ)P1 + λP2)) = −κ
(
(1− λ)(b1, c1, d1) + λ(b2, c2, d2)

)
 −(1− λ)κ(b1, c1, d1)− λκ(b2, c2, d2)

= (1− λ)F−1(µ2(P1)) + λF−1(µ2(P2)). �

We also state the following:

CONJECTURE 1.1. Let µn be the isotropic Cauchy measure in Rn and letA, B
be convex Borel sets in Rn. Then for all 0 < λ < 1 the inequality from Proposition
1.1 holds true.

REMARK 1.1. Observe that in dimension 1, cot(π
∫ b
a

1
π(1+x2)

dx) = 1+ab
b−a is a

convex function of (a, b), a < b.

REMARK 1.2. Let A(r,R) = {(x, y) : r2 ¬ x2 + y2 ¬ R2} be an annu-
lus. Computing the Hessian, one can easily check that cot(πµ2(A(r,R))) is not a
convex function of (r,R), 0 < r < R < ∞. This shows that convexity of sets is
crucial in the above conjecture and this is in sharp contrast to the Gaussian case.

As a first step towards proving the above conjecture, we will prove it for rect-
angles symmetric with respect to one of the axes of the plane. It is in analogy with
the beautiful proof of the classical Brunn–Minkowski theorem, given in 1957 by
Hadwiger and Ohmann (compare [4, Theorem 4.1]), where the first step was to
prove the theorem for rectangular parallelepipeds whose sides are parallel to the
coordinate hyperplanes.

2. MAIN RESULT

We begin with some notations. Let F (x) = 1
2 + 1

π arctanx for x ∈ R be the
distribution function of the standard one-dimensional Cauchy measure. Then for
0 < x < 1 we have F−1(x) = − cot(πx). Let µ2 be the two-dimensional Cauchy
measure with density f(x, y) = (2π(1 + x2 + y2)3/2)−1. Consider a rectangle R
that is symmetric with respect to one of the coordinate axes of the plane. Without
loss of generality we can assume thatR = (−b, b)×(c, d), where b > 0 and d > c.
Instead of F−1(x) = − cot(πx) we will use cot(πx) and prove the convexity of
cot(πµ2(R)). Here is our main theorem.
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THEOREM 2.1 (Cotangent-convexity of Cauchy distribution on the plane). Let
R = (−b, b) × (c, d), b > 0, c < d, be a rectangle symmetric with respect to
the y-axis and let µ2 be the Cauchy measure on the plane with density f(x, y) =
(2π(1 + x2 + y2)3/2)−1. The Hessian of cot(πµ2(R)) is positive-definite with
respect to (b, c, d) for b > 0 and c < d, which means that this function is convex
on this set.

REMARK 2.1. The measure µ2 is rotationally invariant so that the above the-
orem is valid for all rectangles that are symmetric with respect to any straight line
through the origin.

We will examine the function

κ(b, c, d) := cot(πµ2((−b, b)× (c, d)))

and prove its convexity for b > 0 and d > c. Observe that the measure µ2 is
symmetric so that if d < c < 0 then κ(b, d, c) = κ(b,−c,−d), and in what follows
we will assume that either 0 < c < d or c < 0 < d. We start by computing
µ2((−b, b)× (c, d)).

LEMMA 2.1. We have

b∫
0

d∫
0

dt ds

(1 + s2 + t2)3/2
=

b∫
0

d

1 + s2
ds√

1 + s2 + d2

= arc cot

(
− b d√

1 + b2 + d2

)
+
π

2
.

For all x, y with 0 < x, y < ∞ we have the following formula (an immediate
consequence of the formula for the cotangent of the difference of two angles):

arc cot(x)− arc cot(y) = arc cot
1 + xy

y − x
.

Taking into account the above formulas we obtain, for every b > 0 and every c < d:

LEMMA 2.2 (Measure of a symmetric rectangle).

µ2((−b, b)× (c, d))

=
b∫
−b

d∫
c

dt ds

2π(1 + s2 + t2)3/2
=

b∫
0

d∫
c

dt ds

π(1 + s2 + t2)3/2

=
1

π

(
arc cot

(
− b d√

1 + b2 + d2

)
− arc cot

(
− bc√

1 + b2 + c2

))
=

1

π
arc cot

b2cd+
√

1 + b2 + c2
√

1 + b2 + d2

bd
√

1 + b2 + c2 − bc
√

1 + b2 + d2
.
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By our definition κ(b, c, d) = cot(πµ2((−b, b)× (c, d))) so that

κ(b, c, d) = cot

(
π

b∫
−b

d∫
c

dt du

2π(1 + u2 + t2)3/2

)
.

The above lemma and the definition of κ imply the following.

LEMMA 2.3 (Formula for κ(b, c, d)). For all b > 0 and c < d we have

κ(b, c, d) =
b2cd+

√
1 + b2 + c2

√
1 + b2 + d2

bd
√

1 + b2 + c2 − bc
√

1 + b2 + d2
.

Our aim is to prove that κ(b, c, d) is a convex function of (b, c, d). We obtain
this by checking that the Hessian matrix of κ is positive-definite. We begin by
computing the second order derivatives of κ:

∂2κ

∂d2
=

(1 + b2)2(1 + c2)((3d2 + 2(1 + b2))
√

1 + b2 + c2 − 3cd
√

1 + b2 + d2)

b(1 + b2 + d2)3/2(d
√

1 + b2 + c2 − c
√

1 + b2 + d2)3
,

∂2κ

∂d∂c
=

−2(1 + b2)2(b2cd+
√

1 + b2 + c2
√

1 + b2 + d2)

b
√

1 + b2 + c2
√

1 + b2 + d2(d
√

1 + b2 + c2 − c
√

1 + b2 + d2)3
,

∂2κ

∂d∂b
=

(1 + b2)(1 + c2)

b2(1 + b2 + d2)3/2
√

1 + b2 + c2

× 2b2cd
√

1 + b2 + d2 + (1 + d2 + b2 − b2d2)
√

1 + b2 + c2

(d
√

1 + b2 + c2 − c
√

1 + b2 + d2)2
,

∂2κ

∂c2
=

(1 + b2)2(1 + d2)((3c2 + 2b2 + 2)
√

1 + b2 + d2 − 3cd
√

1 + b2 + c2)

b(1 + b2 + c2)3/2(d
√

1 + b2 + c2 − c
√

1 + b2 + d2)3
,

∂2κ

∂c∂b
=

−(1 + b2)(1 + d2)

b2(1 + b2 + c2)3/2
√

1 + b2 + d2

× 2b2cd
√

1 + b2 + c2 + (1 + c2 + b2 − b2c2)
√

1 + b2 + d2

(d
√

1 + b2 + c2 − c
√

1 + b2 + d2)2
,

∂2κ

∂b2
=

(1 + c2)(1 + d2)

b3(1 + b2 + c2)3/2(1 + b2 + d2)3/2

×
(

2(1 + b2)(1 + b2 + c2)(1 + b2 + d2)

d
√

1 + b2 + c2 − c
√

1 + b2 + d2

+
b2((1 + b2)2 − d2c2) + b2cd

√
1 + b2 + c2

√
1 + b2 + d2

d
√

1 + b2 + c2 − c
√

1 + b2 + d2

)
.

As we see, the formulas are complicated. The level of complexity will increase
significantly when trying to establish the positivity of the minors of the Hessian.
Therefore we introduce the notation

x =
√

1 + b2 + c2, y =
√

1 + b2 + d2, θ = dx− cy,
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which gives

κ =
b2cd+ xy

bθ
.

Moreover, we write

Hc =
2b

x(1 + c2)
, Hd =

2b

y(1 + d2)
, Hb =

θ

xy(1 + b2)

together with σ = b(xy− cd) and r = (1+ b2)x2y2/(bxy), and rewrite the second
order derivatives of κ in the following way:

∂2κ

∂c2
=

1 + κ2

2θ
H2
c

(
3(1 + c2)

2b2
σ − rcc

)
,

∂2κ

∂c∂d
=

1 + κ2

2θ
HcHd(σ − r),

∂2κ

∂d2
=

1 + κ2

2θ
H2
d

(
3(1 + d2)

2b2
σ − rdd

)
,

∂2κ

∂c∂b
=

1 + κ2

2θ
HcHb(2σ − 2rcb),

∂2κ

∂b2
=

1 + κ2

2θ
H2
b (−2σ + 2(r + rbb)),

∂2κ

∂d∂b
=

1 + κ2

2θ
HdHb(−2σ + 2rdb).

The r-functions appearing above are

rcc =
y2(1 + c2)(1 + b2)

2bxy
, rdd =

x2(1 + d2)(1 + b2)

2bxy
,

rbb =
(1 + b2)(b2(x2 + y2) + x2y2)

bxy
,

rcb =
y2(1 + b2)(1 + c2 + 2b2)

2bxy
, rdb =

x2(1 + b2)(1 + d2 + 2b2)

2bxy
.

The structure of the derivatives allows us to write the Hessian of κ as

(
1 + κ2

2θ

)3

A


3(1 + c2)

2b2
σ − rcc σ − r 2σ − 2rcb

σ − r 3(1 + d2)

2b2
σ − rdd −2σ + 2rdb

2σ − 2rcb −2σ + 2rdb −2σ + 2(r + rbb)

A

with A = diag(Hc, Hd, Hb). The positivity of 1+κ2

2θ and of Hc, Hd, Hb allows us
to omit them in what follows.

We now provide some crucial algebraic properties of the functions introduced.
Write

sc =
b2(1 + b2)y2

bxy
, sd =

b2(1 + b2)x2

bxy
, s = sc+sd =

b2(1 + b2)(x2 + y2)

bxy
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and

mcd =
(1 + b2)2

b2
(1 + c2)(1 + d2), mc+d = (1 + b2)2(2 + c2 + d2),

mb = (1 + b2)2b2.

These functions are the basic bricks in the r-functions algebra presented below.
We have

rcb = r + sc, rdb = r + sd, rbb = r + s,(2.1)

rcc + rdd = r − 1
2s, rcb + rdb = r + 1

2s,(2.2)

(1 + c2)rdd + (1 + d2)rcc =
(1 + c2)(1 + d2)

2b2
s,(2.3)

(1 + c2)rdb + (1 + d2)rcb = (2 + c2 + d2)r − (1 + c2)(1 + d2)

2b2
s.(2.4)

As we can see, the r-functions and the specified linear combinations of them can
be represented in terms of r- and s-functions. Analogous formulas for products of
r-functions in terms of m-functions are

r2 =
(1 + b2)2x2y2

b2
= mcd +mc+d +mb,(2.5)

rs = (1 + b2)2(x2 + y2) = mc+d + 2mb,(2.6)

rccrdd =
(1 + b2)2

4b2
(1 + c2)(1 + d2) = 1

4mcd,(2.7)

rcbrdb =
(1 + b2)2

4b2
(1 + c2 + 2b2)(1 + d2 + 2b2)(2.8)

= 1
4mcd + 1

2mc+d +mb,

rccrdb + rddrcb = 1
2mcd + 1

2mc+d.(2.9)

We begin with the positivity of the smallest minor and prove

LEMMA 2.4. For all c < d and b > 0 we have

3(1 + c2)

2b2
σ − rcc  0.

Proof. Indeed, we can just write

3(1 + c2)

2b2
σ − rcc =

1 + c2

2bxy

[
3xy(xy − cd)− y2(1 + b2)

]
and observe that the expression in brackets is equal to

xy(xy − cd) + y2(x2 + c2)− 2xycd,

which is non-negative since x  |c|, y  |d| and x2 + c2  2x|c|. �
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The second step is to prove the positivity of the determinant of the second
minor:

LEMMA 2.5. For all c < d and b > 0 we have∣∣∣∣∣∣∣
3(1+c2)

2b2
σ−rcc σ−r

σ−r 3(1+d2)

2b2
σ−rdd

∣∣∣∣∣∣∣ =
3(1+c2)(1+d2)θ2

4b2

(
2− cd

xy

)
+θ2 > 0.

Proof. The proof is based on the formulas

(1 + b2)2(1 + c2)(1 + d2)− (xy + b2cd)2 = b2θ2,(2.10)

2xy(xy − cd)− (1 + b2)(x2 + y2) = θ2.(2.11)

To prove the first one, observe that

(1 + b2)2(1 + c2)(1 + d2) = (1 + c2)(1 + d2) + 2b2(1 + c2 + d2 + c2d2)

+ b4(1 + c2 + d2 + c2d2),

x2y2 + b4c2d2 = (1 + c2)(1 + d2) + b2(2 + c2 + d2) + b4(1 + c2d2),

and consequently

(1 + b2)2(1 + c2)(1 + d2)− (xy + b2cd)2

= b2(c2 + d2 + 2c2d2)b4(c2 + d2)− 2b2xycd

= b2(d2x2 + c2y2)− 2b2xycd = b2(dx− cy)2 = b2θ2.

The second one follows immediately from

2x2y2 = (1 + b2)(x2 + y2) + d2x2 + c2y2.

Going back to the determinant

9(1 + c2)(1 + d2)

4b4
σ2 − 3σ

2b2
((1 + c2)rdd + (1 + d2)rcc) + rccrdd − (σ − r)2

and using (2.3) together with (2.7) we obtain the expression

9(1 + c2)(1 + d2)

4b4
σ2 − 3(1 + c2)(1 + d2)(1 + b2)

4b2
x2 + y2

bxy
σ

− 3(1 + b2)2(1 + c2)(1 + d2)

4b2

+
(1 + b2)2(1 + c2)(1 + d2)

b2
− (xy + b2cd)2

b2
.
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By (2.10) the sum of the last two terms is just θ2. Extracting from the first three the
common factor 3(1 + c2)(1 + d2)/(4b2), we get

3σ2

b2
− xy − cd

xy
(1 + b2)(x2 + y2)− (1 + b2)2.

Since

σ2 = b2(xy − cd)2 = −2b2xycd+ b2(x2y2 + c2d2)

= b2(dx− cy)2 + b2(x2y2 + c2d2 − d2x2 − c2y2) = b2θ2 + b2(1 + b2)2,

we have

3θ2 + 2(1 + b2)2 − xy − cd
xy

(1 + b2)(x2 + y2)

= 3θ2 + 2(1 + b2)2 − (1 + b2)(x2 + y2) +
cd

xy
(1 + b2)(x2 + y2)

= 2θ2 + θ2 − (1 + b2)(c2 + d2) +
cd

xy
(1 + b2)(x2 + y2)

= 2θ2 − 2cd(xy − cd) +
cd

xy
(1 + b2)(x2 + y2)

= 2θ2 − cd

xy
[2xy(xy − cd)− (2 + b2)(x2 + y2)].

The last expression in brackets is equal to θ2 by (2.11), and altogether we arrive at
the final form of the determinant:

3(1 + c2)(1 + d2)θ2

4b2

(
2− cd

xy

)
+ θ2.

Its positivity is now straightforward since xy > cd. �

Finally, we prove the following:

LEMMA 2.6. For all c < d and b > 0 we have∣∣∣∣∣∣∣∣∣∣
3(1 + c2)

2b2
σ − rcc σ − r 2σ − 2rcb

σ − r 3(1 + d2)

2b2
σ − rdd −2σ + 2rdb

2σ − 2rcb −2σ + 2rdb −2σ + 2(r + rbb)

∣∣∣∣∣∣∣∣∣∣
> 0.

Proof. We begin by expanding the determinant as a polynomial in σ:

F0 + F1σ + F2σ
2 + F3σ

3
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with

F0 = 2(r + rbb)(rccrdd − r2) + 8rrcbrdb + 4rddr
2
cb + 4rccr

2
db,

F1 = 2r2 − 2rccrdd −
r + rbb
b2

(
3(1 + c2)rdd + 3(1 + d2)rcc − 4rb2

)
− 8(rcbrdb + r(rcb + rdb))

− 2

b2
(
3(1 + c2)r2db + 3(1 + d2)r2cb + 4b2rddrcb + 4b2rccrdb

)
,

F2 = 2(r + rbb)

(
9(1 + c2)(1 + d2)

4b4
− 1

)
+

3

b2
(
(1 + c2)rdd + (1 + d2)rcc

)
− 4r

+ 8(rcb + rdb + r) + 4(rcc + rdd) +
12

b2
(
(1 + c2)rdb + (1 + d2)rcb

)
,

F3 = − 9

2b4
(1 + c2)(1 + d2)− 6− 6

b2
(2 + c2 + d2).

The second step is to compute the coefficients Fi, for i = 0, 1, 2, 3, 4, in terms of

(2.12) F =
3

4b6
(
3(1 + c2)(1 + d2) + 4b2(2 + c2 + d2 + b2)

)
.

Starting with F0, since

rddr
2
cb + rccr

2
db = (rcb + rdb)(rccrdb + rddrcb)− (rcc + rdd)rcbrdb

we can write
1
2F0 = (r + rbb)(rccrdd − r2) + 2rcbrdb(2r − (rcc + rdd))

+ 2(rcb + rdb)(rccrdb + rddrcb).

Then, using (2.1) and (2.2), we arrive at
1
2F0 =

(
r + 1

2s
)(

2rccrdd − 2r2 + 2rcbrdb + 2(rccrdb + rddrcb)
)

= 0,

where the last equality is a consequence of (2.5) and (2.7)–(2.9).
The computation of F1 is also based on m-functions. First we note that

(1 + c2)r2db + (1 + d2)r2cb = (rcb + rdb)
(
(1 + c2)rdb + (1 + d2)rcb

)
− (2 + c2 + d2)rcbrdb.

Using (2.1) and (2.2) we get r+rbb = 2r+s = 2(rcb+rdb) and both observations
lead to

1

2
F1 =

3(2 + c2 + d2)

b2
rcbrdb

− 3(rcb + rdb)

b2
[(1 + c2)rdd + (1 + d2)rcc + (1 + c2)rdb + (1 + d2)rcb]

+ r2 − rccrdd − 4rcbrdb − 4(rccrdb + rddrcb).
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Then, using (2.3) and (2.4) we can reduce the second component above and write
F1/2 as

3(2 + c2 + d2 + b2)

b2
(rcbrdb − r(rcb + rdb)) + F̃1,

where

F̃1 = r2 + 3r(rcb + rdb)− (rccrdd + 7rcbrdb + 4(rccrdb + rddrcb))

= 4r2 − 3
2rs−

1
4mcd − 7

(
1
4mcd + 1

2mc+d +mb

)
− 4
(
1
2mcd + 1

2mc+d

)
= 4r2 − 3

2rs− 4(mcd +mc+d +mb)− 3
2(mc+d + 2mb) = 0.

Here we use (2.2) and (2.7)–(2.9) in the first equality, and the last one follows from
(2.5) and (2.6). Finally, since

rcbrdb − r(rcb + rdb) = rcbrdb − r2 − rs/2
= 1

4mcd + 1
2mc+d +mb − (mcd +mc+d +mb)−

(
1
2mc+d +mb

)
= −(1 + b2)2

4b2
(3(1 + c2)(1 + d2) + 4b2(2 + c2 + d2 + b2))

= −b
4(1 + b2)2

3
F,

we obtain the final form of F1:

(2.13) F1 = −2b2(1 + b2)2(2 + c2 + d2 + b2)F.

The formula for F2 together with r+ rbb = 2r+s, rcb+ rdb = r+ 1
2s, rcc+ rdd =

r − 1
2s and the equalities (2.3) and (2.4) give

1

2
F2 =

[
9(1 + c2)(1 + d2)

4b4
− 1

]
2r +

[
9(1 + c2)(1 + d2)

4b4
− 1

]
s

+
3(1 + c2)(1 + d2)

4b2
s+ 8r + s

+
6

b2
(2 + c2 + d2)r − 6(1 + c2)(1 + d2)

2b4
s

=

[
9(1 + c2)(1 + d2)

4b4
+ 3 +

3(2 + c2 + d2)

2b2

]
2r.

Recalling (2.12) we arrive at

F2 =
3xy(1 + b2)

b5
(3(1 + c2)(1 + d2) + 4b2(2 + c2 + d2 + b2)) = 4bxy(1 + b2)F.
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It is easy to see that F3 = −2b2F . Altogether we get the following formula for the
determinant:

F0 + F1σ + F2σ
2 + F3σ

3

= 2σF
[
−b2(1 + b2)2(2 + c2 + d2 + b2) + 2bxyσ(1 + b2)− b2σ2

]
.

To finish the proof we need to compute the last bracket term. First recall that

σ2 = b2θ2 + b2(1 + b2)2.

We also have

2cdσ = 2cdb(xy − cd) = −b((dx− cy)2 − d2x2 − c2y2)− 2bc2d2

= −bθ2 + b(d2x2 + c2y2 − 2c2d2) = −bθ2 + b(1 + b2)(c2 + d2).

These two formulas give

2b(1 + b2)xyσ = 2b2(1 + b2)xy(xy − cd) = 2(1 + b2)σ2 + 2cdσb(1 + b2)

= 2(1 + b2)(b2θ2 + b2(1 + b2)2) + ((1 + b2)(c2 + d2)− θ2)b2(1 + b2)

= (1 + b2)b2θ2 + 2b2(1 + b2)3 + b2(1 + b2)2(c2 + d2)

= b2θ2 + b2[b2θ2 + (1 + b2)2(x2 + y2)]

= b2θ2 + b2[σ2 + (1 + b2)2(2 + c2 + d2 + b2)].

This allows us to compute that

−b2(1 + b2)2(2 + c2 + d2 + b2) + 2bxyσ(1 + b2)− b2σ2 = b2θ2,

and consequently the determinant is

3(dx− cy)2(xy − cd)

2b3
(
3(1 + c2)(1 + d2) + 4b2(2 + c2 + d2 + b2)

)
,

which is obviously positive. This ends the proof. �
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Śniadeckich 8
00-656 Warszawa, Poland
E-mail: Tomasz.Byczkowski@gmail.com

Jacek Małecki, Tomasz Żak
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50-370 Wrocław, Poland
E-mail: Jacek.Malecki@pwr.edu.pl

Tomasz.Zak@pwr.edu.pl

Received 21.8.2021;
accepted 23.6.2022




	1 Introduction
	2 Main result
	References

