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Abstract. In this article, we obtain, for the total variation distance, error
bounds for Poisson approximation to the convolution of power series distri-
butions via Stein’s method. This provides a unified approach to many known
discrete distributions. Several Poisson limit theorems follow as corollaries
from our bounds. As applications, we compare Poisson approximation re-
sults with negative binomial approximation results for sums of Bernoulli,
geometric, and logarithmic series random variables.
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1. INTRODUCTION

Convolution of distributions plays an important role in several applications in ar-
eas related to rare events, waiting time, and wireless communications, among many
others. It is in general difficult to find the distributions of sums of independent and
non-identically-distributed random variables (rvs). In such cases, approximations
to a known distribution are useful in applications. For example, Poisson approxi-
mation to the convolution of Bernoulli rvs was studied by Barbour and Hall [2],
Chen [4], Kerstan [10], and Le Cam [11]. Poisson approximation to the convolu-
tion of geometric rvs was studied by, for example, Barbour [1], Hung and Giang
[7] and Teerapabolarn and Wongkasem [15]. Poisson approximation to the convo-
lution of negative binomial rvs was studied by Teerapabolarn [14] and Vellaisamy
and Upadhye [17], among others.

In this article, we focus on the convolution of non-identically-distributed power
series distributions (PSDs) and obtain upper bounds for their approximation by
Poisson distribution, using Stein’s method. The metric used is the total variation
distance. We establish a device (Theorem 3.1) where, beyond moment matching,
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the main question is to compare a first-moment-type statistic for the PSDs under
consideration with the same statistic for derived PSDs, where the two statistics
would coincide if the laws were all Poisson distributed. We show that the limit
theorems given by Pérez-Abreu [13] follow from our results as special cases. As
examples, we discuss Poisson convergence results for binomial, negative binomial
and logarithmic series distributions. Furthermore, we mention negative binomial
approximation results and compare the bounds with Poisson approximation re-
sults, either theoretically or numerically. It is shown that our bounds are either
comparable to or an improvement over the existing bounds. We also discuss Pois-
son approximation to the convolution of logarithmic series distributions, which has
not been studied in the literature so far.

The article is organized as follows. In Section 2, we discuss some known results
for PSDs and Stein’s method. In Section 3, we derive error bounds for Poisson ap-
proximation of the convolution of PSDs, and discuss some relevant consequences.
In Section 4, we present results for negative binomial approximation to PSDs ob-
tained by Vellaisamy et al. [18]. Finally, we give a numerical comparison between
Poisson and negative binomial approximation to PSDs.

2. PRELIMINARIES

First we introduce the notation and briefly discuss Stein’s method. Let Z+ =
{0, 1, 2, . . . }, and let Z be a random variable (rv) with

(2.1) P(Z = k) =
akθ

k

h(θ)
, k ∈ Z+, θ > 0,

where ak ­ 0 and h(θ) =
∑∞

k=0 akθ
k. Then we say Z is a PSD corresponding to

h(θ). It can be easily verified that Bernoulli, binomial, geometric, negative bino-
mial and logarithmic series distributions, among many others, are PSDs. For more
details, we refer the reader to Johnson et al. [8]. Throughout the paper, Poi(λ) and
Geo(p) denote respectively the Poisson and geometric distributions.

Next, we briefly describe Stein’s method of bounding the difference, in the
total variation norm, between the distributions of two discrete rvs Y and Z, where
the former plays the role of the target law, and the estimation in total variation is
interpreted as an approximation of the latter law by the target law. Stein’s method
mainly involves the following three steps:

1. Identify a so-called Stein operator for the target law of Y . Specifically, define
the class of bounded real-valued functions on Z+ as G = {f : Z+ → R | f is
bounded}. For a Z+-valued rv Y , define GY = {g ∈ G | g(0) = 0 and g(x) = 0
for x /∈ Supp(Y )}. An operator AY defined on GY is called a Stein operator for
the rv Y if

(2.2) E[AY g(Y )] = 0 for g ∈ GY .
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2. Solve the so-called Stein equations. Specifically, for any fixed test function
f ∈ G of interest (see item 3 below), and for a fixed target law of Y , we solve for g
the following functional equation:

(2.3) AY g(k) = f(k)− Ef(Y ), f ∈ G and g ∈ GY .

This equation is called the Stein equation corresponding to f and to the Stein op-
erator AY .

3. Replace k by a rv Z in the Stein equation (2.3), and take expectation and
supremum over all test functions f of interest, to get

(2.4) dTV(Z, Y ) := sup
f∈H
|Ef(Z)− Ef(Y )| = sup

f∈H
|EAY g(Z)|,

where H = {I(A) | A ⊆ Z}, I(A) is the indicator function of A and dTV(Z, Y )
is the total variation distance between the distributions of Z and Y . Note that in
principle, g depends on f via the Stein equation (2.3), even if a solution to this
equation exists and is not unique. However, any upper bound on |AY g|, which in
practice may be global and may not depend on how g depends on f , can then be
exploited to get a convenient upper bound on the total variation distance of interest.
See an instance of this phenomenon below in equations (2.6) and (2.7).

The above methodology also applies to the use of Stein’s equations for con-
tinuous variables, classically for comparisons with normal laws, but also for any
number of laws in specific classes which include the normal. See for instance the
research monograph making the connection to the Malliavin calculus (Nourdin
and Peccati [12]), and a treatment of all target laws in the Pearson class (Eden and
Viens [5]).

Let now X ∼ Poi(λ), the Poisson distribution, with probability mass function
(pmf)

(2.5) P(X = k) =
e−λλk

k!
, k ∈ Z+,

for some λ > 0. The Stein operator for X is given by (see Barbour et al. [3])

(2.6) Ag(k) = λg(k + 1)− kg(k), k ∈ Z+.

Also, the known bounds for the solution of the Stein equation (2.3) are

(2.7) ‖g‖ ¬ 1

max(1,
√
λ)

and ‖∆g‖ ¬ 2‖f‖
max(1, λ)

,

where ∆g(k) = g(k + 1) − g(k) and ‖∆g‖ = supk |g(k + 1) − g(k)|. As noted
in item 3 above, these bounds are essentially uniform for all functions f : the de-
pendence on f is only via ‖f‖. By the definition of the space H of test functions,
one may replace 2‖f‖ by 1 in (2.7) (see Upadhye et al. [16]), removing the depen-
dence on f entirely. For more details, we refer the reader to Barbour et al. [3] and
Upadhye et al. [16].
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3. POISSON APPROXIMATION TO PSDS

We first consider the case of independent but non-identical PSDs. To implement
our machinery, we choose to work with a specific parametric class of PSDs, where
the elements which vary in the data are the parameters, not the function h defining
the class which we fix. We allow for inhomogeneity “in time” and within each
sequence of data points, by using a double (triangular) array of rvs. Specifically,
letXi,n, 1 ¬ i ¬ n, n ­ 1, be a double array of independent rvs having PSDs with
pmf

P(Xi,n = k) = pi,n(k) =
akθ

k
i,n

h(θi,n)
, k ∈ Z+,(3.1)

where ak ­ 0, θi,n > 0, and h(θi,n) =
∑∞

k=0 akθ
k
i,n, 1 ¬ i ¬ n. For simplicity,

we call Xi,n power series rvs and the distributions in (3.1) the PSDs associated
with the function h. We assume h is differentiable. Note that

(3.2) EXi,n =
∞∑
k=1

kpi,n(k) =
1

h(θi,n)

∞∑
k=1

kakθ
k
i,n =

θi,nh
′(θi,n)

h(θi,n)
.

Since h′(θi,n) =
∑∞

k=1 kakθ
k−1
i,n =

∑∞
k=0(k + 1)ak+1θ

k
i,n, we have

(3.3)
∞∑
k=0

(k + 1)ak+1θ
k
i,n

h′(θi,n)
= 1.

Let X∗i,n, 1 ¬ i ¬ n, n ­ 1, be a sequence of independent power series rvs
corresponding to h′ so that the pmf of X∗i,n is given by

(3.4) p∗i,n(k) = P(X∗i,n = k) =
(k + 1)ak+1θ

k
i,n

h′(θi,n)
, k ∈ Z+.

Since h = h′ in the case of the Poisson law, heuristically, one can ask whether
comparing the laws of the double arrays based on another h and its h′ might tell us
how close those laws are to Poisson ones. It turns out that this is a good strategy for
partial sums, as our main theorem below shows, which explains why we introduce
X∗ above.

Specifically, for n ­ 1, let Sn =
∑n

i=1Xi,n denote the sequence of partial
sums of independent power series rvs. As announced in the introduction, our main
interest in this article is to study Poisson approximation to Sn, and obtain error
bounds. Our result unifies several known results obtained for specific PSDs includ-
ing binomial and geometric ones.

Let Nλ henceforth denote a Poisson rv with mean λ > 0. As mentioned in
the introduction, the next theorem is a device which shows that one only needs to
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keep track of two elements to approximate the law of Sn by that of Nλ in total
variation. The first term in the approximation bound (3.14) below asks how close
Sn’s mean is to λ. This is a minimal expression one could expect from moment
matching. The second term is also a mean-type statistic, but can be thought of
as a mixture mean expression, similar to what one encounters in Wald’s identity.
Here each summand in the mean of Sn is multiplied by a mean-type expression
for the bounded variation measure of the difference between the law of the original
Xi,n and of the derived X∗i,n introduced above. As alluded to above, by depending
explicitly on a mean-type statistic of pi,n − p∗i,n, which is small when h and h′ are
close to each other, this second term shows exactly how the distributional closeness
of the summands to Poisson summands influences each term in the partial sum.

THEOREM 3.1. Let Xi,n, 1 ¬ i ¬ n, n ­ 1, be a double array of independent
power series rvs defined in (3.1), and Sn =

∑n
i=1Xi,n. Then

(3.5) dTV(Sn, Nλ)

¬ |λ− ESn|
max(1,

√
λ)

+
1

max(1, λ)

n∑
i=1

EXi,n

∞∑
k=1

k|pi,n(k)− p∗i,n(k)|,

where pi,n(·) and p∗i,n(·) are the PSDs given in (3.1) and (3.4), respectively.

Proof. Replacing k by Sn in (2.6) and taking expectation, we have

E[Ag(Sn)] = λE[g(Sn + 1)]− E[Sng(Sn)].

Adding and subtracting ESnE[g(Sn + 1)], we get

(3.6) E[Ag(Sn)] = (λ−ESn)E[g(Sn + 1)] +ESnE[g(Sn + 1)]−E[Sng(Sn)]

= (λ−ESn)E[g(Sn + 1)] +
n∑
i=1

EXi,nE[g(Sn + 1)]

−
n∑
i=1

E[Xi,ng(Sn)].

Let now Wi,n = Sn − Xi,n so that Wi,n and Xi,n are independent. Adding and
subtracting

∑n
i=1 E(Xi,n g(Wi,n + 1)) in (3.6), we have

(3.7) E[Ag(Sn)]

= (λ− ESn)E[g(Sn + 1)] +
n∑
i=1

EXi,nE[g(Sn + 1)− g(Wi,n + 1)]

−
n∑
i=1

E[Xi,n(g(Sn)− g(Wi,n + 1))].
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First, consider the second term from (3.7). We have

E[g(Sn + 1)− g(Wi,n + 1)] = E[g(Wi,n +Xi,n + 1)− g(Wi,n + 1)]

=
∞∑
k=0

E[g(Wi,n + k + 1)− g(Wi,n + 1)]pi,n(k),

since Wi,n and Xi,n are independent. Note that

g(Wi,n + k + 1)− g(Wi,n + 1) =
k∑
j=1

∆g(Wi,n + j).(3.8)

Therefore,

(3.9) E[g(Sn + 1)− g(Wi,n + 1)] =
∞∑
k=1

k∑
j=1

E[∆g(Wi,n + j)]pi,n(k).

Next, consider the third term of (3.7):

(3.10) E[Xi,n(g(Sn)− g(Wi,n + 1))]

= E[Xi,n(g(Wi,n +Xi,n)− g(Wi,n + 1))]

=
∞∑
k=0

kE[g(Wi,n + k)− g(Wi,n + 1)]pi,n(k)

=
∞∑
k=2

k−1∑
j=1

kE[∆g(Wi,n + j]pi,n(k) (using (3.8))

=
∞∑
k=1

k∑
j=1

(k + 1)E[∆g(Wi,n + j)]pi,n(k + 1).

Substituting (3.9) and (3.10) in (3.7), we get

E[Ag(Sn)] = (λ−ESn)E[g(Sn+1)]+
n∑
i=1

EXi,n

∞∑
k=1

k∑
j=1

E[∆g(Wi,n+j)]pi,n(k)

−
n∑
i=1

∞∑
k=1

k∑
j=1

(k+1)E[∆g(Wi,n+j)]pi,n(k+1)

= (λ−ESn)E[g(Sn+1)]

+
n∑
i=1

∞∑
k=1

EXi,n

[
pi,n(k)− (k+1)pi,n(k+1)

EXi,n

]
k∑
j=1

E[∆g(Wi,n+j)].

Therefore,

(3.11) |E[Ag(Sn)]| ¬ |λ− ESn| ‖g‖

+ ‖∆g‖
n∑
i=1

∞∑
k=1

kEXi,n

∣∣∣∣pi,n(k)− (k + 1)pi,n(k + 1)

EXi,n

∣∣∣∣.
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Using (2.4), (2.7), and (3.11), we get

dTV(Sn, Nλ) ¬ |λ− ESn|
max(1,

√
λ)

+
1

max(1, λ)

n∑
i=1

EXi,n(3.12)

×
∞∑
k=1

k

∣∣∣∣pi,n(k)− (k + 1)pi,n(k + 1)

EXi,n

∣∣∣∣.
From (3.1) and (3.2), we have

(3.13)
(k + 1)pi,n(k + 1)

EXi,n
=

(k + 1)ak+1θ
k
i,n

h′(θi,n)
= p∗i,n(k).

Substituting (3.13) in (3.12), we get the required result. �

The next corollary eliminates the first term in the bound simply by matching
first moments. This is of practical interest because Theorem 3.1 is not an asymp-
totic result, holding globally for all n ­ 1, so that one may choose a value λ
which depends on n, while the second term does not depend on λ, only concerning
individual summands’ proximity to a Poisson law irrespective of their means.

COROLLARY 3.1. Let Xi,n, 1 ¬ i ¬ n, n ­ 1, be defined as in Theorem 3.1,
and choose λ = ESn =

∑n
i=1 EXi,n =

∑n
i=1 θi,nh

′(θi,n)/h(θi,n) so that the first
moments of Nλ and Sn match. Then

(3.14) dTV(Sn, Nλ) ¬ 1

max(1, λ)

n∑
i=1

EXi,n

∞∑
k=1

k|pi,n(k)− p∗i,n(k)|.

Next we discuss some applications of Theorem 3.1 and Corollary 3.1. In the
first example, in contrast to the previous corollary, one assumes that all data-points
are Poisson distributed, leading to the disappearance of the second term.

EXAMPLE 3.1. LetXi,n ∼ Poi(λi,n), 1 ¬ i ¬ n and n ­ 1 so that ak = 1/k!,
h(λi,n) = eλi,n , and

pi,n(k) =
e−λi,nλki,n

k!
, k ∈ Z+,

p∗i,n(k) =
(k + 1)ak+1λ

k
i,n

h′(λi,n)
=
e−λi,nλki,n

k!
= pi,n(k), k ∈ Z+.

Then Sn =
∑n

i=1Xi,n ∼ Poi(λn), where λn =
∑n

i=1 λi,n. From (3.5), we have

(3.15) dTV(Nλn , Nλ) ¬ |λ− ESn|
max(1,

√
λ)

=
|λ− λn|

max(1,
√
λ)
.

Also, if λn → λ as n→∞, then Sn
L→ Nλ.
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EXAMPLE 3.2. Let Xi,n ∼ Ber(pi,n), 1 ¬ i ¬ n, so that pi,n(k) =
pki,n(1 − pi,n)1−k for k = 0, 1. In that case, p∗i,n(k) = 1 for k = 0 and zero
otherwise. Also, ak = 1 for k = 0, 1, and ak = 0 for k ­ 2, h(θi,n) = 1 + θi,n,
where θi,n = pi,n/(1− pi,n), and EXi,n = pi,n. Then, from (3.5), we have

dTV(Sn, Nλ) ¬
|λ−

∑n
i=1 pi,n|

max(1,
√
λ)

+

∑n
i=1 p

2
i,n

max(1, λ)
.

Observe that dTV(Sn, Nλ) → 0 if
∑n

i=1 pi,n → λ, and
∑n

i=1 p
2
i,n → 0, as

n→∞, as proved in Theorem 3 of Wang [19]. This example thus provides a clear
quantitative interpretation of Wang’s theorem. Further, if we allow λ to depend on
n and use first-moment matching, then with λ =

∑n
i=1 pi,n,

dTV(Sn, Nλ) ¬
∑n

i=1 p
2
i,n

max(1, λ)
.(3.16)

Poisson approximation to the sum of independent Bernoulli rvs has been studied
by several authors and some bounds are given below:

(i) dTV(Sn, Nλ) ¬
∑n

i=1 p
2
i,n (Le Cam [11]),

(ii) dTV(Sn, Nλ) ¬ 1.05λ−1
∑n

i=1 p
2
i,n (Kerstan [10]),

(iii) dTV(Sn, Nλ) ¬ (1− e−λ)λ−1
∑n

i=1 p
2
i,n (Barbour and Hall [2]).

Note that we have used the bound for ‖∆g‖ given in (2.7) to obtain the bound in
(3.16). We will get the Barbour and Hall [2] bound in (iii) if we use instead the
bound ‖∆g‖ ¬ (1− e−λ)/λ (see (2.6) of Barbour and Hall [2]).

EXAMPLE 3.3. Let Xi,n ∼ Geo(pi,n), 1 ¬ i ¬ n. Then ak = 1 for k ∈ Z+,
and h(θi,n) = (1− θi,n)−1, where θi,n = qi,n = 1− pi,n. Note EXi,n = qi,n/pi,n
and EX∗i,n = 2qi,n/pi,n. Also, if qi,n ¬ 1/2, then p∗i,n(k) ­ pi,n(k), k ∈ Z+.
Therefore, from (3.14) we have, for λ =

∑n
i=1

qi,n
pi,n

,

dTV(Sn, Nλ) ¬ 1

max(1, λ)

n∑
i=1

EXi,n

∞∑
k=1

k|p∗i,n(k)− pi,n(k)|(3.17)

=
1

max(1, λ)

n∑
i=1

qi,n
pi,n

[
2qi,n
pi,n

− qi,n
pi,n

]
=

∑n
i=1

( qi,n
pi,n

)2
max(1, λ)

,

which is the bound obtained also by Kadu [9, p. 10]. Note that if max1¬i¬n qi,n→0

as n→∞, then Sn
L→ Nλ.

Poisson approximation to the sum of independent (identical or non-identical)
geometric rvs has been studied by several authors and the bounds obtained are
given below:
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(i) dTV(Sn, Nλ) ¬ (1− e−λ) qp (Barbour [1]),

(ii) dTV(Sn, Nλ) ¬
∑n

i=1

q2i,n
p2i,n

min
(
1, 1√

2λe

)
(Vellaisamy and Upadhye [17]),

(iii) Using |P(Sn = k) − P(Nλ = k)| ¬ 2
∑n

i=1

[
(1 − pi,n)2 +

1−pi,n
p2i,n

]
(Hung

and Giang [7]) for k ∈ {0, 1, . . . , n}, we get a bound

(3.18) dTV(Sn, Nλ) =
1

2

∞∑
k=0

|P(Sn = k)− P(Nλ = k)|

¬ (n+ 1)
n∑
i=1

[
(1− pi,n)2 +

1− pi,n
p2i,n

]
+

1

2

∞∑
k=n+1

|P(Sn = k)− P(Nλ = k)|.

Note that 1
max(1,λ) < n+ 1 and

n∑
i=1

(
qi,n
pi,n

)2

¬
n∑
i=1

(
q2i,n +

qi,n
p2i,n

)
=

n∑
i=1

[
(1− pi,n)2 +

1− pi,n
p2i,n

]
.

Hence, the bound given in (3.17) is better than the one in (3.18).

(iv) dTV(Sn, Nλ) ¬
∑n

i=1 min
(λ−1(1−e−λ)

pi,n
, 1
)
q2i,np

−1
i,n (Teerapabolarn and

Wongkasem [15])

Observe that the bound given in (3.17) is comparable to the bound given in (iv)
which is an improvement over other bounds.

We next obtain a bound which may appear to be crude in comparison with
Theorem 3.1, but it proves to be useful in situations where the PSD’s parameters
tend to 0. This is useful in applications, as shown in the last two examples in
this section (e.g. geometric data with decaying likelihood of failure). This is a
framework which was identified in Pérez-Abreu [13], where the corresponding
theorem follows from our result, as explained below.

THEOREM 3.2. Let Xi,n, 1 ¬ i ¬ n, n ­ 1, be defined as in (3.1), where h is
assumed to be twice differentiable. Let Mn = supθi,n [h′(θi,n)2 + h′′(θi,n)h(θi,n)].
If 0 < Mn <∞, then

(3.19) dTV(Sn, Nλ) ¬ |λ− ESn|
max(1,

√
λ)

+
Mn

a20 max(1, λ)

n∑
i=1

θ2i,n.

Proof. Note that (3.5) implies

(3.20) dTV(Sn, Nλ) ¬ |λ− ESn|
max(1,

√
λ)

+
1

max(1, λ)

n∑
i=1

EXi,n [EXi,n + EX∗i,n].
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Observe that

EX∗i,n =
∞∑
k=1

kp∗i,n(k) =
∞∑
k=1

k(k + 1)ak+1θ
k
i,n

h′(θi,n)
(3.21)

=
θi,n

h′(θi,n)

∞∑
k=1

k(k − 1)akθ
k−2
i,n =

θi,nh
′′(θi,n)

h′(θi,n)
.

Using (3.2) and (3.21) in (3.20), we get

(3.22) dTV(Sn, Nλ)

¬ |λ− ESn|
max(1,

√
λ)

+
1

max(1, λ)

n∑
i=1

θi,nh
′(θi,n)

h(θi,n)

[
θi,nh

′(θi,n)

h(θi,n)
+
θi,nh

′′(θi,n)

h′(θi,n)

]
=
|λ− ESn|

max(1,
√
λ)

+
1

max(1, λ)

n∑
i=1

(
θi,n

h(θi,n)

)2

[h′(θi,n)2 + h′′(θi,n)h(θi,n)]

¬ |λ− ESn|
max(1,

√
λ)

+
Mn

max(1, λ)

n∑
i=1

(
θi,n

h(θi,n)

)2

.

Further, note that

(3.23) h(θi,n) =
∞∑
k=0

akθ
k
i,n ­ a0 =⇒ 1

h(θi,n)2
¬ 1

a20
.

Using (3.23) in (3.22), the result follows. �

First, we show that Theorem 3 of Pérez-Abreu [13] follows as a corollary.

COROLLARY 3.2. Let Xi,n, 1 ¬ i ¬ n, n ­ 1, be defined as in (3.1) with
a0 > 0 and Sn =

∑n
i=1Xi,n. Also, assume

(3.24) θ∗n = max
1¬i¬n

θi,n → 0 and
n∑
i=1

θi,n → λ as n→∞,

for some λ > 0. Then Sn
L→ Nλ0 , where λ0 = λa1/a0.

Proof. It suffices to show dTV(Sn, Nλ0) → 0 as n → ∞. First, we show that
0 < Mn < ∞. Since h is an increasing function and θ∗n → 0 as n → ∞, we
have a0 ¬ h(θi,n) ¬ h(θ∗n) → a0, showing that h(θi,n) → a0, since θ∗n → 0.
Using a similar argument, since h′ and h′′ are also increasing functions, we have
h′(θi,n)→ a1 and h′′(θi,n)→ 2a2, since θ∗n → 0. Also,

Mn = sup
θi,n

[h′(θi,n)2 + h′′(θi,n)h(θi,n)](3.25)

¬ sup
θ∗n

[h′(θ∗n)2 + h′′(θ∗n)h(θ∗n)]→ a21 + 2a0a2,

since θ∗n → 0. Hence, 0 < Mn <∞.



Poisson approximation to the convolution of PSDs 73

Applying Theorem 3.2, we deduce from (3.19) that

dTV(Sn, Nλ0) ¬ |λ0 − ESn|
max(1,

√
λ0)

+
Mnθ

∗
n

a20 max(1, λ0)

n∑
i=1

θi,n.(3.26)

Note also that

(3.27) ESn =
n∑
i=1

θi,nh
′(θi,n)

h(θi,n)
→ λa1

a0
= λ0

under the conditions (3.24). The result now follows from (3.26), (3.27) and the
assumptions. �

EXAMPLE 3.4. LetXi,n ∼ Geo(pi,n), 1 ¬ i ¬ n. Then ak = 1 for all k ∈ Z+,
h(θi,n) = (1 − θi,n)−1, where θi,n = qi,n = 1 − pi,n. If max1¬i¬n qi,n → 0 and∑n

i=1 qi,n → λ as n→∞, then by Corollary 3.2, Sn
L→ Nλ, since a0 = a1 = 1.

Next, we apply our results to the convolution of logarithmic series distribu-
tions which have many real-life applications. For example, Fisher et al. [6] used
the logarithmic series distribution to investigate the distribution of butterflies in
the Malayan Peninsula. It is also used in areas such as sampling of quadrants for
plant species, distribution of animal species, population and community ecology,
population growth and some economic applications including inventory models, to
mention but a few.

The next example concerns Poisson approximation to the sum of logarithmic
series rvs, which has not been considered in the literature.

EXAMPLE 3.5. Let Yi,n, 1 ¬ i ¬ n, n ­ 1, follow logarithmic series distribu-
tion with

P(Yi,n = k) = −
θki,n

k ln(1− θi,n)
, 0 < θi,n < 1, k = 1, 2, . . . .

Further, let Xi,n = Yi,n − 1. Then

(3.28) P(Xi,n = k) = pi,n(k) = −
θk+1
i,n

(k + 1) ln(1− θi,n)
, k ∈ Z+.

We wish to obtain an error bound for Poisson approximation to Sn =
∑n

i=1Xi,n.
Here, ak = 1/(k + 1), h(θi,n) = − ln(1− θi,n)/θi,n, and therefore

(3.29) p∗i,n(k) =
(k + 1)ak+1θ

k
i,n

h′(θi,n)
=

(k + 1)θk+1
i,n

(k + 2)
(

1
1−θi,n +

ln(1−θi,n)
θi,n

) , k ∈ Z+.
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From (3.14), we have

(3.30) dTV(Sn, Nλ) ¬ 1

max(1, λ)

n∑
i=1

EXi,n

∞∑
k=1

k|pi,n(k)− p∗i,n(k)|,

where λ =
∑n

i=1 EXi,n,

E(Xi,n) = E(Yi,n)− 1 = −1− θi,n/[(1− θi,n) ln(1− θi,n)],

and pi,n(k) and p∗i,n(k) are defined as in (3.28) and (3.29), respectively. Also, if
max1¬i¬n θi,n → 0 and

∑n
j=1 θj,n → λ as n → ∞, then, by Corollary 3.2,

Sn
L→ Nλ/2, since a0 = 1 and a1 = 1/2.

3.1. The identical distributions case. We end this section by applying our main
results to the case of identically distributed data. This is a situation where the PSD
parameter at level n must tend to zero as n → ∞, to comply with obtaining a
finite mean for the Poisson limit. We show how our theorems give fully quantita-
tive versions of prior results in Pérez-Abreu [13], and new quantitative results for
Poisson approximation to binomial and negative binomial distributions (see proofs
of Corollaries 3.4 and 3.5).

Let Xi, 1 ¬ i ¬ n (n ­ 1), be a sequence of independent and identically
distributed rvs having PSDs with pmf

(3.31) pn(k) = P(Xi = k) =
akθ

k
n

h(θn)
, k ∈ Z+,

where ak ­ 0, θn > 0, and h(θn) =
∑∞

k=0 akθ
k
n. Also, let X∗i , 1 ¬ i ¬ n, be a

sequence of independent rvs having PSDs corresponding to h′(θn), so that the pmf
of X∗i is given by

(3.32) p∗n(k) = P(X∗i = k) =
(k + 1)ak+1θ

k
n

h′(θn)
, k ∈ Z+.

THEOREM 3.3. Let Xi and X∗i , 1 ¬ i ¬ n, be sequences of rvs with pmfs
pn(·) and p∗n(·), defined in (3.31) and (3.32), respectively. Let Sn =

∑n
i=1Xi, and

µn = ESn = nθnh
′(θn)/h(θn). Then, from Theorem 3.1, we have

dTV(Sn, Nλ) ¬ |λ− µn|
max(1,

√
λ)

+
µn

max(1, λ)

∞∑
k=1

k|pn(k)− p∗n(k)|,(3.33)

Also, from Theorem 3.2, a crude bound is

dTV(Sn, Nλ) ¬ |λ− µn|
max(1,

√
λ)

+
nθ2n[h′(θn)2 + h′′(θn)h(θn)]

a20 max(1, λ)
.(3.34)
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The following result is Theorem 2 of Pérez-Abreu [13].

COROLLARY 3.3. Let the conditions of Theorem 3.3 hold and nθn → λ as
n→∞, for some λ > 0. Then Sn

L→ Nλ0 , where λ0 = λa1/a0 with a0 > 0.

Next, we discuss two results, on binomial and negative binomial convergence
to Poisson distribution as application of Theorem 3.3.

COROLLARY 3.4 (Poisson approximation to binomial distribution). Let Xi ∼
Ber(pn) for 1 ¬ i ¬ n, and Sn =

∑n
i=1Xi. If pn → 0 and npn → λ as n→∞,

then Sn
L→ Nλ.

Proof. When Xi ∼ Ber(pn), 1 ¬ i ¬ n, we have ak = 1 for k = 0, 1,
and ak = 0 for k ­ 2. Also, h(θn) = 1 + θn, where θn = pn/(1 − pn) and
Sn ∼ Bi(n, pn). Note that h′(θn) = 1 and h′′(θn) = 0. Hence, from (3.34),

dTV(Sn, Nλ) ¬ |λ− npn|
max(1,

√
λ)

+
np2n

max(1, λ)(1− pn)2
.(3.35)

The bound given above goes to zero if pn → 0 and npn → λ as n → ∞. This
proves the result. �

COROLLARY 3.5 (Poisson approximation to negative binomial distribution).
Let Xi ∼ Geo(pn) for 1 ¬ i ¬ n, and Sn =

∑n
i=1Xi. If pn → 1 and n(1− pn)

→ λ as n→∞, then Sn
L→ Nλ.

Proof. Since Xi ∼ Geo(pn), 1 ¬ i ¬ n, we have ak = 1, for all k ∈ Z+.
Also, h(θn) = (1 − θn)−1, where θn = 1 − pn and Sn ∼ NB(n, pn). Note that
h′(θn) = (1 − θn)−2 = p−2n and h′′(θn) = 2(1 − θn)−3 = 2p−3n . Hence, from
(3.34), we have

dTV(Sn, Nλ) ¬

∣∣λ− n(1−pn)
pn

∣∣
max(1,

√
λ)

+
3n(1− pn)2

max(1, λ)p4n
→ 0

if pn → 1 and n(1− pn)→ λ as n→∞. This proves the result. �

EXAMPLE 3.6. Let us use an argument similar to that in Example 3.5 for
logarithmic series distribution in the identical distribution setup. Then we have
ak = 1/(k + 1) and h(θn) = − ln(1 − θn)/θn. Also, let nθn → λ as n → ∞.
Then by Corollary 3.3, Sn → Nλ/2, since a0 = 1 and a1 = 1/2.

4. COMPARISON OF POISSON AND NEGATIVE BINOMIAL BOUNDS

In this section, we compare the bounds for negative binomial approximation de-
rived by Vellaisamy et al. [18] for PSDs with those for Poisson approximation
obtained in this paper, through some relevant examples.
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Let Mr,p denote a negative binomial rv with parameter r > 0 and p = 1− q ∈
(0, 1) with

P(Mr,p = k) =

(
r + k − 1

k

)
prqk, k ∈ Z+.

Also, let Sn =
∑n

i=1Xi,n, where the Xi,n’s are defined in (3.1) such that

(4.1) ESn =
n∑
i=1

EXi,n =
n∑
i=1

θi,nh
′(θi,n)

h(θi,n)
=
rq

p
.

This condition implies E(Sn) = E(Mr,p), the first moment matching. Then, from
Theorem 3.1 of Vellaisamy et al. [18], the one-parameter approximation bound is

(4.2) dTV(Sn,Mr,p)

¬ 1

rq

n∑
i=1

∞∑
k=1

k|pEXi,npi,n(k) + qkpi,n(k)− (k + 1)pi,n(k + 1)|

=
1

rq

n∑
i=1

EXi,n

∞∑
k=1

k

∣∣∣∣p pi,n(k) + q
kpi,n(k)

EXi,n
− (k + 1)pi,n(k + 1)

EXi,n

∣∣∣∣.
Using (3.13), we have

(4.3) dTV(Sn,Mr,p) ¬
1

rq

n∑
i=1

EXi,n

∞∑
k=1

k|p pi,n(k) + q p∗i,n(k− 1)− p∗i,n(k)|.

Furthermore, let

τ := 2 max
1¬i¬n

dTV(Wi,n,Wi,n + 1)

= max
1¬i¬n

∞∑
k=1

|P(Wi,n = k)− P(Wi,n = k − 1)|,

where Wi,n = Sn −Xi,n. Choose now r and p such that

(4.4) r =
(ESn)2

Var(Sn)− ESn
and p =

ESn
Var(Sn)

.

Then, from Theorem 4.1 of Vellaisamy et al. [18], a two-parameter approximation
bound is

dTV(Sn,Mr,p) ¬
τ

rq

n∑
i=1

∞∑
k=1

k

(
k − 1

2
+ EXi,n

)
× |pEXi,npi,n(k) + qkpi,n(k)− (k + 1)pi,n(k + 1)|.
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Using (3.13), we have

dTV(Sn,Mr,p) ¬
τ

rq

n∑
i=1

EXi,n

∞∑
k=1

k

(
k − 1

2
+ EXi,n

)
(4.5)

× |ppi,n(k) + qp∗i,n(k − 1)− p∗i,n(k)|.

Also, from Remark 4.1 of Vellaisamy et al. [18],

τ ¬
√

2

π

(
1

4
+

n∑
i=1

τi − τ∗
)−1/2

,

where τi = min
(
1
2 , 1− dTV(Xi,n, Xi,n + 1)

)
and τ∗ = max1¬i¬n τi.

When Xi,n ∼ Ber(pi,n), 1 ¬ i ¬ n, and if we fix r = n, then, using Example
3.2 and (4.3), we have

(4.6) dTV(Sn,Mn,p) ¬
2
∑n

i=1 p
2
i,n∑n

i=1 pi,n
,

where p = 1/
(
1 + 1

n

∑n
i=1 pi,n

)
. Observe that the Poisson approximation (see

(3.16)) in this case is better than the negative binomial approximation. Also, the
bound given in (4.5) is not valid as condition (4.4) is not a valid choice of parame-
ters.

When Xi,n ∼ Geo(pi,n), 1 ¬ i ¬ n, and for qi,n ¬ 1/2, from (14) and (19) of
Vellaisamy et al. [18] respectively we have

(4.7) dTV(Sn,Mr,p) ¬
1

rq

n∑
i=1

|p− pi,n|
qi,n
p2i,n

and

(4.8) dTV(Sn,Mr,p)

¬ 3

√
2

π

(
n∑
i=1

qi,n −
1

4

)−1/2( n∑
i=1

qi,n
pi,n

)−1 n∑
i=1

∣∣∣∣ 1

pi
− 1

p

∣∣∣∣( qi,npi,n

)2

,

Now, we give a numerical comparison of the above bounds with the Poisson ap-
proximation bound. Let us choose the values of qi,n = 1 − pi,n for various values
of i as follows:

Table 1. The values of qi,n for numerical computations

i 1–10 11–20 21–50 51–100 101–150 151–200 201–250 251–300 301–400 401–500
qi,n 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02

Also, from (3.17), (4.7) and (4.8), we have the following numerical value of the
bounds.
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Table 2. Comparison of bounds

n Poisson approximation
(using (3.17))

Negative binomial
approximation (one moment

matching, using (4.7))

Negative binomial
approximation (two moments

matching, using (4.8))

10 0.25 0 0
20 0.2357460 0.0152439 0.0045271
50 0.2108950 0.0221529 0.0040439

100 0.1897860 0.0242177 0.0029142
150 0.1754270 0.0279765 0.0028037
200 0.1638720 0.0329378 0.0025511
250 0.1543910 0.0379188 0.0025933
300 0.1468760 0.0436179 0.0025801
400 0.1365930 0.0531102 0.0024826
500 0.1312850 0.0612465 0.0024836

Note that, for n ¬ 10, pi,n = 0.8 and so the bounds for negative binomial approx-
imation are zero as the sum of iid geometric distributions is negative binomial.
From the table, we see that negative binomial approximation is better than Pois-
son approximation. Also, the bound obtained by matching the first two moments is
better than the bound obtained by matching one moment, as expected.

EXAMPLE 4.1. Consider again Example 3.5 for logarithmic series distribution.
Note that

pi,n(k − 1)− pi,n(k) = −
θki,n

k(k + 1) ln(1− θi,n)
[k(1− θi,n) + 1] ­ 0.

Therefore,

dTV(Xi,n, Xi,n + 1) =
1

2

∞∑
k=0

|pi,n(k − 1)− pi,n(k)|

=
1

2

[
pi,n(0) +

∞∑
k=1

[pi,n(k − 1)− pi,n(k)]
]

=
1

2
[pi,n(0) + pi,n(0)] = pi,n(0) = − θi,n

ln(1− θi,n)
.

Hence, the upper bounds in (4.3) and (4.5) are valid for logarithmic series distribu-
tion with τ ¬

√
2/π

(
1
4 +
∑n

i=1 τi−τ
∗)−1/2, τi = min

(
1
2 , 1+(θi,n/ ln(1−θi,n))

)
and τ∗ = max1¬i¬n τi, E(Xi,n) = E(Yi,n)−1 = −1−θi,n/[(1−θi,n) ln(1−θi,n)],
and pi,n(k) and p∗i,n(k) defined as in (3.28) and (3.29). Also, for (4.3) and (4.5),
r and p can be evaluated using conditions (4.1) and (4.4), respectively.

From (3.30) and (4.3) with r = n/5 and

p =
1

1 + 5
n

∑n
i=1(−1− θi,n/[(1− θi,n) ln(1− θi,n)])

,
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and (4.5), we have the following numerical values of the bounds with θi,n = qi,n
given in Table 1. It is difficult to compute the bounds in a compact form. So, the
bounds are computed by using Mathematica.

Table 3. Comparison of bounds

n Poisson approximation
(from (3.30))

Negative binomial
approximation (one moment

matching, from (4.3))

Negative binomial
approximation (two moments

matching, from (4.5))
10 0.2068330 0.3949420 0.0033845
20 0.1950790 0.3711290 0.0033441
50 0.1745720 0.3293270 0.0028029

100 0.1571360 0.2931890 0.0022248
150 0.1452490 0.2661830 0.0019849
200 0.1356570 0.2411430 0.0019339
250 0.1277630 0.2165510 0.0019276
300 0.1214880 0.1917620 0.0019011
400 0.1128780 0.1479230 0.0018827
500 0.1084220 0.1086410 0.0018696

From the above table, it is clear that Poisson approximation is better than negative
binomial approximation with one moment matching. However, negative binomial
approximation with two moments matching is better than Poisson approximation
with one moment matching.
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