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1

8 Homogeneous Trees

8.1 Main Problems

Definition 8.1.1 A connected graph is called a tree is it has no cycles. A tree is called
homogeneous if it is regular.

Figure 8.1: Homogeneous tree of degree 4

Let Tκ be the homoeeous tree of deree κ ≥ 2 and A = Aκ be the adjacency matrix. We
choose and fix a vertex o ∈ Tκ as an origin (root). Our first interest lies in

(Am)oo = 〈δo, A
mδo〉 = |{m-step walks from o to itself}|.

In particular, we will study

(1) Integral representation of (Am)oo:

(Am)oo =

∫ +∞

−∞
xmµκ(dx), m = 1, 2, . . . ,

where µκ(dx) is a probability distribution on R.

(2) Asymptotic behavior of (Am)oo for a large κ.

We call µκ the vacuum spectral distribution of the homogeneous tree Tκ.

8.2 Vacuum Spectral Distribution

As usual, we start with the stratification of the vertex set V of Tκ:

V =
∞⋃

n=0

Vn , Vn = {y ∈ V ; ∂(o, x) = n}.

It is easy to see that

|V0| = 1, |V1| = κ, |V2| = κ(κ − 1), . . . , |Vn| = κ(κ − 1)n−1. (8.1)



2 CHAPTER 8. HOMOGENEOUS TREES

V

V

V

V

V

n+1

n

n 1

1

0

x

Figure 8.2: Stratification of T4

Define a unit vector Φn in ℓ2(Tκ) by

Φn = |Vn|−1/2
∑
x∈Vn

δx

and let Γ(Tκ) be the linear span of {Φ0, Φ1, . . . }.
Now let A = A+ + A− be the quantum decomposition of the adjacency matrix A = Aκ.

Let us observe the actions of A± on Γ(Tκ). First, since

|Vn|1/2A+Φn =
∑
x∈Vn

A+δx =
∑

y∈Vn+1

δy = |Vn+1|1/2Φn+1 ,

we obtain

A+Φn =

(
|Vn+1|
|Vn|

)1/2

Φn+1 .

In view of (8.1) we obtain

A+Φ0 =
√

κ Φ1 , A+Φn =
√

κ − 1 Φn+1 (n ≥ 1). (8.2)

In a similar manner, we consider

|Vn|1/2A−Φn =
∑
x∈Vn

A−δx .

For n ≥ 2 there are κ − 1 vertices in Vn which have a common end-vertex in Vn−1. Hence,
for n ≥ 2

|Vn|1/2A−Φn =
∑
x∈Vn

A−δx = (κ − 1)
∑

y∈Vn−1

δy = (κ − 1)|Vn−1|1/2Φn−1 .
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While, for n = 1 we have

|V1|1/2A−Φ1 =
∑
x∈V1

A−δx = κδo = κΦ0 .

Then, in view of (8.1) we obtain

A−Φ0 = 0, A−Φ1 =
√

κ Φ0 , A−Φn =
√

κ − 1 Φn−1 (n ≥ 2). (8.3)

We see from (8.2) and (8.3) also that Γ(Tκ) is invariant under the actions of A±.

Summing up,

Proposition 8.2.1 Notations being as above, (Γ(Tκ), {Φn}, A+, A−) is an interacting Fock
space associated with the Jacobi sequence

ω1 = κ, ω2 = ω3 = · · · = κ − 1.

The vacuum spectral distribution µκ is a probability measure whose Jacobi coefficients
are

ω1 = κ, ω2 = ω3 = · · · = κ − 1, α1 = α2 = · · · = 0.

In fact, we have

〈Φ0, A
mΦ0〉 = 〈Φ0, (A

+ + A−)mΦ0〉 =

∫ +∞

−∞
xmµκ(dx), m = 1, 2, . . . . (8.4)

We also note that µκ in (8.4) is uniquely determined since Carleman’s condition

∞∑
n=1

1√
ωn

= ∞

is satisfied.

Summing up,

Proposition 8.2.2 The vacuum spectral distribution of Tκ is a probability distribution µκ

characterized uniquely by its Jacobi coefficients

ω1 = κ, ω2 = ω3 = · · · = κ − 1, α1 = α2 = · · · = 0.

Remark 8.2.3 An explicit form of µκ is known:

µk(dx) =
κ

2π

√
4(κ − 1) − x2

κ2 − x2
1[−2

√
κ−1 ,2

√
κ−1](x)dx.

The detail will be discussed later.
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8.3 Asymptotic Spectral Distribution

We are interested in the asymptotic behavior of µκ as κ → ∞. Note first that

mean(µκ) =

∫ +∞

−∞
xµκ(dx) = (A)oo = 0,

var(µκ) =

∫ +∞

−∞
(x − mean(µκ))

2µκ(dx) = (A2)oo = deg(o) = κ.

Therefore,
A√
κ

=
A+√

κ
+

A−√
κ

is a reasonable scaling for κ → ∞.
It follows from (8.2) and (8.3) that

A+√
κ

Φ0 = Φ1,
A+√

κ
Φn =

√
κ − 1

κ
Φn+1 (n ≥ 1) (8.5)

A−√
κ

Φ0 = 0,
A−√

κ
Φ1 = Φ0,

A−√
κ

Φn =

√
κ − 1

κ
Φn−1 (n ≥ 2) (8.6)

The actions of
A±

κ√
κ

in the limit as κ → ∞ are now easily expected.

Definition 8.3.1 An interacting Fock space associated with the Jacobi sequence ωn ≡ 1 is
called the free Fock space. Let (Γfree, {Ψn}, B+, B−) be a free Fock space. Then,

B+Φn = Φn+1 (n ≥ 0), B−Φ0 = 0, B−Φn = Φn−1 (n ≥ 1). (8.7)

Theorem 8.3.2 (Quantum Central Limit Theorem) For any ϵ1, . . . , ϵm ∈ {±} and
m = 1, 2, . . . we have

lim
κ→∞

〈
Φ0,

Aϵm
κ√
κ
· · · Aϵ1

κ√
κ

Φ0

〉
= 〈Ψ0, B

ϵm · · ·Bϵ1Ψ0〉

For short, we say that

lim
κ→∞

A±
κ√
κ

= B±

in the sense of stochastic convergence.

Proof. More generally, we may prove that

lim
κ→∞

〈
Φi,

Aϵm
κ√
κ
· · · Aϵ1

κ√
κ

Φj

〉
= 〈Ψi, B

ϵm · · ·Bϵ1Ψj〉 (8.8)

for any i, j ≥ 0. The proof is by induction on m. For m = 1 we need to prove that

lim
κ→∞

〈
Φi,

Aϵ1
κ√
κ

Φj

〉
= 〈Ψi, B

ϵ1Ψj〉 (8.9)
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for any i, j ≥ 1 and ϵ1 = ±. Suppose that ϵ1 = +. By (8.5),

lim
κ→∞

〈
Φi,

A+
κ√
κ

Φ0

〉
= lim

κ→∞
〈Φi, Φ1〉 = 〈Ψi, Ψ1〉 = 〈Ψi, B

+Ψ0〉,

lim
κ→∞

〈
Φi,

A+
κ√
κ

Φj

〉
= lim

κ→∞

√
κ − 1

κ
〈Φi, Φj+1〉 = 〈Ψi, Ψj+1〉 = 〈Ψi, B

+Ψj〉,

where j ≥ 1. Thus, (8.9) is shown for ϵ1 = +. The case of ϵ1 = − is similar.
We now come toe the induction step, but the idea is similar. The detailed proof is left

to the reader.

8.4 Vacuum Distribution of Free Fock Space

Let (Γfree, {Ψn}, B+, B−) be a free Fock space.

Lemma 8.4.1 For m = 1, 2, . . . ,

〈Ψ0, (B
+ + B−)2m−1Ψ0〉 = 0, (8.10)

〈Ψ0, (B
+ + B−)2mΨ0〉 =

(2m)!

m!(m + 1)!
. (8.11)

Proof. We start with

〈Ψ0, (B
+ + B−)kΨ0〉 =

∑
ϵ1, . . . , ϵk ∈ {±}〈Ψ0, B

ϵk · · ·Bϵ1Ψ0〉,

where

〈Ψ0, B
ϵk · · ·Bϵ1Ψ0〉 =

{
1, if Bϵk · · ·Bϵ1Ψ0 = Ψ0,

0, otherwise.

Then (8.10) follows immediately from the actions of B± in (8.7). For k = 2m, Bϵ2m · · ·Bϵ1Ψ0 =
Ψ0 occurs if and only if

ϵ1 ≥ 0,

ϵ1 + ϵ2 ≥ 0,

· · ·
ϵ1 + ϵ2 + · · · + ϵ2m−1 ≥ 0,

ϵ1 + ϵ2 + · · · + ϵ2m−1 + ϵ2m = 0.

Such a sequence (ϵ1, ϵ2, . . . , ϵ2m) ∈ {+,−}2m is called a Catalan path of length 2m and denote
by Cm the set of such Catalan paths. With this notation we come to

〈Ψ0, (B
+ + B−)2mΨ0〉 = |Cm|.

It is then sufficient to show that

|Cm| =
(2m)!

m!(m + 1)!
.

The proof is given separately.
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Lemma 8.4.2 For m = 1, 2, . . . we have

|Cm| =
(2m)!

m!(m + 1)!
.

Proof. We set

C̃m =
{
ϵ = (ϵ1, ϵ2, . . . , ϵ2m) ∈ {+,−}2m ; ϵ1 + · · · + ϵ2m = 0

}
.

Obviously, Cm ⊂ C̃m. Each ϵ ∈ C̃m corresponds to a path connecting the vertices

(0, 0), (1, ϵ1), (2, ϵ1 + ϵ2), . . . , (2m, ϵ1 + ϵ2 + · · · + ϵ2m) = (2m, 0)

in order. Since we have

|C̃m| =

(
2m

m

)
=

(2m)!

m!m!
,

for |Cm| it is sufficient to count the number of paths in C̃m \ Cm. By definition a path
ϵ = (ϵ1, ϵ2, . . . , ϵ2m) in C̃m \ Cm has one or more vertices with negative ordinates. Let k be
the abscissa of the first such vertex. Then 1 ≤ k ≤ 2m − 1. If k = 1 we have ϵ1 = −1.
Otherwise,

ϵ1 ≥ 0, ϵ1 + ϵ2 ≥ 0, . . . , ϵ1 + · · · + ϵk−1 = 0,

ϵ1 + · · · + ϵk−1 + ϵk = −1.

Let L be the horizontal line passing through (0,−1). Then ϵ has one or more vertices which
lie on L and (k,−1) is the first one. Define ϵ̄ to be the path obtained from ϵ by reflecting
the first part of ϵ up to (k,−1) with respect to L (see Fig. 8.3). Then ϵ̄ becomes a path

Figure 8.3: Counting the Catalan number

from (0,−2) to (2m, 0) passing through (k,−1) as the first meeting point with L. It is easily
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verified that ϵ ↔ ϵ̄ is a one-to-one correspondence between C̃m \ Cm and the set of paths
connecting (0,−2) and (2m, 0). Obviously, the number of such paths is(

2m

m + 1

)
=

(2m)!

(m + 1)!(m − 1)!
= |C̃m \ Cm|.

Hence

|Cm| =
(2m)!

m!m!
− (2m)!

(m + 1)!(m − 1)!
=

(2m)!

m!(m + 1)!
,

which completes the proof.

Definition 8.4.3 We call

Cm = |Cm| =
(2m)!

m!(m + 1)!

the mth Catalan number.

Theorem 8.4.4 We have

〈Ψ0, (B
+ + B−)mΨ0〉 =

1

2π

∫ +2

−2

xm
√

4 − x2 dx, m = 1, 2, . . . . (8.12)

Proof. By direct computation we may obtain

1

2π

∫ +2

−2

x2m−1
√

4 − x2 dx = 0,

1

2π

∫ +2

−2

x2m
√

4 − x2 dx =
(2m)!

m!(m + 1)!
.

Then the assertion follows by combining Lemma 8.4.1.

Definition 8.4.5 The probability distribution

1

2π

√
4 − x2 1[−2,2](x)dx

is called the Wigner semicircle law. This is normalized to have mean 0 and variance 1.

Theorem 8.4.6 (Central Limit Theorem) Let Aκ be the adjacency matrix of a homoge-
neous tree Tκ. We have

lim
κ→∞

((
Aκ√

κ

)m)
oo

=
1

2π

∫ +2

−2

xm
√

4 − x2 dx, m = 1, 2, . . . .
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Proof. We start with((
Aκ√

κ

)m)
oo

=

〈
Φ0,

(
A+

√
κ

+
A−
√

κ

)m

Φ0

〉
.

Expanding

(
A+

√
κ

+
A−
√

κ

)m

and applying Theorem 8.3.2 (QCT), we obtain

lim
κ→∞

((
Aκ√

κ

)m)
oo

= 〈Ψ0, (B
+ + B−)mΨ0〉.

Then with the help of Theorem 8.4.4, we get the assertion.

The Wigner semicircle law is a unique probability distribution satisfying (8.12). In other
words, the Wigner semicircle law is the solution of a determinate moment problem. In fact,
its moments of even orders are given by

M2m = Cm =
(2m)!

m!(m + 1)!

and satisfies Carleman’s condition:

∞∑
m=1

M
− 1

2m
2m = +∞.

Then by a general result on the weak convergence of probability measures, we conclude the
following

Corollary 8.4.7 Let µκ be the vacuum spectral distribution of Tκ. Then

lim
κ→∞

∫ +∞

−∞
f

(
x√
κ

)
µκ(dx) =

1

2π

∫ +2

−2

f(x)
√

4 − x2 dx

for all f ∈ Cbdd(R). In other words, the scaled µ̃κ(dx) = µκ(
√

κ dx) converges weakly to the
Wigner semicircle law as κ → ∞.

8.5 Exercises

1. Complete the proof of Theorem 8.3.2.

2. Prove that the Wigner semicircle law is the solution of a determinate moment problem.
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9 Deformed Vacuum States and Free Poisson Distri-

butions

9.1 Q-Matrix

Let G = (V,E) be a graph and ∂(x, y) denotes the graph distance between two verices
x, y ∈ V . For −1 ≤ q ≤ 1 we define a matrix Q = Qq with elements

(Q)xy = q∂(x,y).

By definition Q0 = I. We call Q the Q-matrix of G.
Let o ∈ V be a fixed origin of the graph G. A linear functional on the adjacency algebra

A defined by
A ∋ a 7→ 〈a〉q = 〈Qδo, aδo〉

is called a deformed vacuum functional.

Proposition 9.1.1 The deformed vacuum functional is a state if

(i) QA = AQ;

(ii) Q is a positive definite kernel on V , i.e.,∑
x,y∈V

f(x)q∂(x,y)f(y) ≥ 0

for all f : V → R with finite supports.

Theorem 9.1.2 The deformed vacuum functional 〈·〉q on the homogeneous tree Tκ is a state
for all −1 ≤ q ≤ 1.

Proof. We check the conditions (i) and (ii) in Proposition 9.1.1. First, (i) is clear
because Tκ is distance-regular. For (ii) it is sufficient to show that the Q-matrix of a finite
tree is positive definite for all −1 ≤ q ≤ 1. We employ Bożejko’s theorem.

Theorem 9.1.3 (Bożejko) Let V be a set which is a union of two subsets V1, V2 whose
intersection consists of a single point, say o ∈ V . Namely,

V = V1 ∪ V2 , V1 ∩ V2 = {o}.

For i = 1, 2 let Ki be a positive definite kernel on Vi and assume that K1(o, o) = K2(o, o) = 1.
Define a C-valued function K on V × V by

K(x, y) =


K1(x, y), if x, y ∈ V1 ,

K2(x, y), if x, y ∈ V2 ,

K1(x, o)K2(o, y), if x ∈ V1, y ∈ V2 ,

K2(x, o)K1(o, y), if x ∈ V2, y ∈ V1 .

Then K is a positive definite kernel on V .
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Proof. Let f ∈ C0(V ). We may write f = f1 + f2 with fi ∈ C0(Vi) though uniqueness
does not hold for V1 ∩ V2 = {o}. Then,∑

x,y∈V

f(x) K(x, y)f(y) =
∑

x,y∈V1

f1(x) K1(x, y)f1(y)

+
∑

x,y∈V2

f2(x) K2(x, y)f2(y)

+
∑

x∈V1,y∈V2

f1(x) K(x, y)f2(y)

+
∑

x∈V2,y∈V1

f2(x) K(x, y)f1(y). (9.1)

We now observe that∣∣∣∣∣∑
x∈V1

f1(x) K1(x, o)

∣∣∣∣∣
2

=

∣∣∣∣∣ ∑
x,y∈V1

f1(x) K1(x, y)δo(y)

∣∣∣∣∣
2

. (9.2)

Since K1 is a positive definite kernel on V1, the right-hand side in (9.2) is the square of the
inner product

〈f1, δo〉K1 =
∑

x,y∈V1

f1(x) K1(x, y)δo(y).

Then by the Schwarz inequality we have

|〈f1, δo〉K1 |2 ≤ 〈f1, f1〉K1〈δo, δo〉K1 .

Namely, ∣∣∣∣∣∑
x∈V1

f1(x) K1(x, o)

∣∣∣∣∣
2

≤ K1(o, o)
∑

x,y∈V1

f1(x) K1(x, y)f1(y)

=
∑

x,y∈V1

f1(x) K1(x, y)f1(y). (9.3)

Similarly, ∣∣∣∣∣∑
y∈V2

f2(y) K2(y, o)

∣∣∣∣∣
2

≤
∑

x,y∈V2

f2(x) K2(x, y)f2(y). (9.4)

On the other hand, by definition we have∑
x∈V1,y∈V2

f1(x) K(x, y)f2(y)

=
∑

x∈V1,y∈V2

f1(x) K1(x, o)K2(o, y)f2(y)

=
∑
x∈V1

f1(x) K1(x, o)
∑
y∈V2

K2(o, y)f2(y)

=
∑
x∈V1

f1(x) K1(x, o)
∑
y∈V2

f2(y) K2(y, o) . (9.5)
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Similarly, ∑
x∈V2,y∈V1

f2(x) K(x, y)f1(y) =
∑
x∈V1

f1(x) K1(x, o)
∑
y∈V2

f2(y) K2(y, o). (9.6)

Combining (9.3)–(9.6), we see that (9.1) becomes∑
x,y∈V

f(x) K(x, y)f(y) ≥

∣∣∣∣∣ ∑
x∈V1

f1(x) K1(x, o)

∣∣∣∣∣
2

+

∣∣∣∣∣ ∑
y∈V2

f2(y) K2(y, o)

∣∣∣∣∣
2

+
∑
x∈V1

f1(x) K1(x, o)
∑
y∈V2

f2(y) K2(y, o)

+
∑
x∈V1

f1(x) K1(x, o)
∑
y∈V2

f2(y) K2(y, o)

=

∣∣∣∣∣ ∑
x∈V1

f1(x) K1(x, o) +
∑
y∈V2

f2(y) K2(y, o)

∣∣∣∣∣
2

≥ 0.

This completes the proof.

Definition 9.1.4 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with fixed origins
o1 ∈ V1 and o2 ∈ V2. The star product of G1 and G2 is obtained by glueing o1 and o2, and is
denoted by G1 ⋆ G2.

o o

G G

Figure 9.1: Star product G1 ⋆ G2

Theorem 9.1.5 Let G1 = (V1, E2) and G2 = (V1, E2) be two graphs with with distance
functions ∂G1 and ∂G2, respectively. Taking origins o1 ∈ V1 and o2 ∈ V2, we form the
star product G = G1 ⋆ G2 = (V,E), the distance function of which is denoted by ∂G. The
Q-matrices of G1, G2 and G are defined by

Q1 = (q∂G1
(x,y))x,y∈V1 , Q2 = (q∂G2

(x,y))x,y∈V2 , Q = (q∂G(x,y))x,y∈V .

If both Q1 and Q2 are positive definite kernels (for some q) on V1 and V2, respectively, then
so is Q.
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Proof. It is easy to see by definition of a star product that

∂G(x, y) =


∂G1(x, y), if x, y ∈ V1 ,

∂G2(x, y), if x, y ∈ V2 ,

∂G1(x, o1) + ∂G2(o2, y), if x ∈ V1, y ∈ V2 ,

∂G2(x, o2) + ∂G1(o1, y), if x ∈ V2, y ∈ V1 .

Then Q,Q1, Q2 satisfy the conditions of Theorem 9.1.3.

Proof of Theorem 9.1.2 (cont.) For the graph T1 ( s s) the Q-matrix takes the
form:

Q =

[
1 q
q 1

]
.

It is straightforward to see that Q is positive definite for all q ∈ [−1, 1]. Since any finite tree
is obtained from T1 by repeated application of star products, the Q-matrix of a finite tree is
positive definite for all q ∈ [−1, 1] by Theorem 9.1.5.

Now consider Tκ and f ∈ C0(Tκ). We may choose a finite sub tree of Tκ, say G, such
that f vanishes outside G. Note that the distance function ∂G is just the restriction of that
of Tκ. Hence the Q-matrix of G, say QG, is the restriction of that of Tκ. Therefore,∑

x,y∈V

f(x) q∂(x,y)f(y) =
∑

x,y∈G

f(x) q∂G(x,y)f(y),

which is ≥ 0 since QG is positive definite by the above argument.

Definition 9.1.6 The deformed vacuum state 〈·〉q on the adjacency algebra of Tκ is called
the Haagerup state. In fact, Theorem 9.1.2 is originally due to Haagerup, while our proof is
based on Bożejko’s argument.

9.2 Spectral Distributions in Haagerup States

Let Tκ be the homogeneous tree of degree κ and consider the Haagerup states 〈·〉q with
−1 ≤ q ≤ 1. We are interested in the asymptotics of the spectral distribution µκ,q determined
by

〈Am〉q =

∫ +∞

−∞
xmµκ,q(dx), m = 1, 2, . . . .

It is reasonable to call µκ,q a deformed Kesten distribution.

We first note the following

Lemma 9.2.1 (1) mean (µκ,q) = 〈A〉q = κq.

(2) var (µκ,q) = Σ2
q(A) = κ(1 − q2).
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Proof. (1) By definition

〈A〉q = 〈Qδo, Aδo〉 = 〈δo, QAδo〉 = (QA)oo

=
∑
x∈V

(Q)ox(A)xo =
∑
x∼o

(Q)ox =
∑
x∼o

q∂(o,x)

= q|{x ∈ V ; x ∼ o}| = qκ.

(2) Since
Σ2

q(A) = 〈A2〉q − 〈A〉2q
by definition, we need to compute 〈A2〉q. In a similar manner as in (1) we see that

〈A2〉q = κ(κ − 1)q2 + κ,

from which the assertion follows.

Lemma 9.2.1 suggests that a reasonable object to study is not A itself but the normalized
adacency matrix defined by

A − 〈A〉q
Σq(A)

=
A − κq√
κ(1 − q2)

.

We will study 〈(
A − κq√
κ(1 − q2)

)m〉
q

, m = 1, 2, . . . .

9.3 Asymptotic Spectral Distribution

Having already chosen an origin o of Tκ, we have the natural stratification and the
quantum decomposition of A = A+ + A− (A◦ = 0 for a tree). Accordingly, the normalized
adjacency matrix is decomposed into three parts:

A − κq√
κ(1 − q2)

=
A+√

κ(1 − q2)
+

A−√
κ(1 − q2)

+
−κq√

κ(1 − q2)
.

For simplicity we introduce Cϵ = Cϵ(κ, q) by

C+ =
A+√

κ(1 − q2)
, C− =

A−√
κ(1 − q2)

C◦ =
−κq√

κ(1 − q2)
. (9.7)

In view of the actios of A± on Γ(Tκ) given in (8.2) and (8.3), we have

C+Φ0 =
1√

1 − q2
Φ1, C+Φn =

√
κ − 1

κ(1 − q2)
Φn+1 (n ≥ 1)

C−Φ0 = 0, C−Φ1 =
1√

1 − q2
Φ1, C−Φn =

√
κ − 1

κ(1 − q2)
Φn−1 (n ≥ 2)

C◦Φn = −

√
q2κ

1 − q2
Φn (n ≥ 0)
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We are interested in the asymptotics as κ → ∞ (the growing trees) so we need to take a
suitable balance with q. The reasonable scaling is as follows:

κ → ∞, q
√

κ → γ, q → 0, (9.8)

where γ ∈ R is a constant. Under this scaling limit the limit actions of Cϵ are rather
apparent. In particular, in view of the actions of C±, we expect that the limit is described
in terms of the free Fock space.

We need to discuss the mixed moments:

〈Cϵm · · ·Cϵ1〉q = 〈QΦ0, C
ϵm · · ·Cϵ1Φ0〉,

where the limit actions of Cϵm , . . . , Cϵ1 are redy observed. Consider the vector QΦ0. By
definition

QΦ0 =
∑
x∈V

〈δx, QΦ0〉δx =
∑
x∈V

(Q)xoδx

=
∑
x∈V

q∂(x,o)δx =
∞∑

n=0

∑
x∈Vn

qnδx

=
∞∑

n=0

qn|Vn|1/2Φn

Since |Vn| ∼ κn (see (8.1)), under the scaling limit as in (9.8) the coefficient converges:

qn|Vn|1/2 → γn.

Let (Γfree, {Ψn}, B+, B−) be the free Fock space. For z ∈ C define

Ωz =
∞∑

n=0

znΨn . (9.9)

This is a formal sum but makes a sense as a linear functional on the ∗-algebra Afree generated
by B+, B− and diagonal operators. Namely, for a ∈ Afree,

〈Ωz, aΨ0〉 =
∞∑

n=0

z̄n〈Ψn, aΦ0〉

is a finite sum and
a 7→ 〈Ωz, aΨ0〉

is a linear functional on Afree. We call Ωz is a coherent vector.

Remark 9.3.1 (1) The infinite series (9.9) converges in norm for |z| < 1.

(2) Ωz is an eigenvector of B−, i.e., B−Ωz = zΩz. More precisely, 〈Ωz, B
+Ψn〉 = 〈zΩz, Ψn〉

for n.
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Theorem 9.3.2 (Quantum Central Limit Theorem) Let A = Aκ be the adjacency ma-
trix of Tκ and define Cϵ = Cϵ(κ, q) as in (9.7). Let (Γfree, {Ψn}, B+, B−) be the free Fock
space and set B◦ = −γI (scalar operator). Then

lim 〈Cϵm · · ·Cϵ1〉q = 〈Ωγ, B
ϵm · · ·Bϵ1Ψ0〉free,

where the limit is taken as κ → ∞, q → 0 with q
√

κ → γ ∈ R (constant).

Proof. The proof is already cer by the bove argument.

Corollary 9.3.3 For the normalized adjacency matrix of Tκ we have

lim

〈(
A − κq√
κ(1 − q2)

)m〉
q

= 〈Ωγ, (B
+ + B− − γI)mΨ0〉free, m = 1, 2, . . . .

9.4 Free Poisson Distributions

In this section we meet one of the most basic result on the free Fock space. Let P be the
vacuum projection, i.e.,

PΨ0 = Ψ0, PΨn = 0 (n ≥ 1).

Note that B+B− = I − P .

Lemma 9.4.1 For z ∈ C and m = 1, 2, . . . we have:

〈Ωz̄, (B
+ + B−)mΨ0〉 = 〈Ψ0, (B

+ + B− + zP )mΨ0〉, (9.10)

〈Ωz̄, (B
+ + B− − z)mΨ0〉 = 〈Φ0, (B

+ + B− − zB+B−)mΨ0〉, (9.11)

where Ωz̄ is the coherent vector with parameter z̄.

Proof. (9.11) follows from (9.10). In fact,

〈Ωz̄, (B
+ + B− − z)mΨ0〉

=
m∑

n=0

(
m

n

)
(−z)m−n〈Ωz̄, (B

+ + B−)nΨ0〉

=
m∑

n=0

(
m

n

)
(−z)m−n〈Ψ0, (B

+ + B− + zP )nΨ0〉

= 〈Ψ0, (B
+ + B− + zP − z)mΨ0〉.

Since B+B− = 1 − P , the last expression becomes

= 〈Ψ0, (B
+ + B− − zB+B−)mΨ0〉,

which proves (9.11). The proof of (9.10) is left to the reader.
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In particular, for any γ ∈ R there exists a probability measure µγ such that

〈Ωγ, (B
+ + B− − γ)mΨ0〉 = 〈Ψ0, (B

+ + B− − γB+B−)mΨ0〉 =

∫ +∞

−∞
xmµγ(dx)

for m = 1, 2, . . . . In fact, the Jacobi coefficients of µγ is given by

ω1 = ω2 = · · · = 1, α1 = 0, α2 = α3 = · · · = −γ. (9.12)

Then, Corollary 9.3.3 yields the following

Theorem 9.4.2 (CLT) For the normalized adjacency matrix of Tκ we have

lim

〈(
A − κq√
κ(1 − q2)

)m〉
q

=

∫ +∞

−∞
xmµγ(dx), m = 1, 2, . . . ,

where µγ is uniquely determined by the Jacobi coefficients given by (9.12).

We are now in a good position to give the following

Definition 9.4.3 Let (Γfree, {Ψn}, B+, B−) be the free Fock space and λ > 0 a constant.
The vacuum spectral distribution of (B+ +

√
λ)(B− +

√
λ) is called the free Poisson distri-

bution or Marchenko–Pastur distribution with parameter λ. In other words, the free Poisson
distribution with parameter λ is a probability measure νλ uniquely specified by

〈Ψ0, ((B
+ +

√
λ)(B− +

√
λ))mΨ0〉 =

∫ +∞

−∞
xmνλ(dx), m = 1, 2, . . . . (9.13)

Lemma 9.4.4 (1) mean (νλ) = var (νλ) = λ.

(2) The Jacobi coefficients of νλ are given by

ω1 = ω2 = · · · = λ, α1 = λ, α2 = α3 = · · · = λ + 1. (9.14)

Proof. (1) follows from (2) since mean (νλ) = α1 and var (νλ) = ω1.
(2) Note that

(B+ +
√

λ)(B− +
√

λ) =
√

λB+ +
√

λB− + (λ + B+B−).

Since √
λB+Φn =

√
λ Φn+1 , n ≥ 0,

we obtain ω1 = ω2 = · · · = λ. Similarly, from

(λ + B+B−)Φ0 = λΦ0, (λ + B+B−)Φn = (λ + 1)Φn (n ≥ 1)

we see that α1 = λ and α2 = α3 = · · · = λ + 1.

Comparing (9.12) and (9.14), we claim the following
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Theorem 9.4.5 For γ ̸= 0, µγ is obtained from the free Poisson distribution ν1/γ2 with
parameter 1/γ2 by reflection and normalization. For γ = 0, µγ is the Wigner semicircle law.

Proof. Use Exercise 3.

Remark 9.4.6 The density function of the free Poisson distribution is given explicitly. For
λ > 0 we set

ρλ(x) =


√

4λ − (x − 1 − λ)2

2πx
, (1 −

√
λ)2 ≤ x ≤ (1 +

√
λ)2,

0, otherwise.

The free Poisson distribution with parameter λ is given by{
(1 − λ)δ0 + ρλ(x)dx, 0 < λ < 1,

ρλ(x)dx, λ ≥ 1.

9.5 Exercises

1. Show that var (µκ,q) = κ(1 − q2). [Lemma 9.2.1]

2. Show that

〈Ωz̄, (B
+ + B−)mΨ0〉 = 〈Ψ0, (B

+ + B− + zP )mΨ0〉, z ∈ C, m = 1, 2, . . . .

[Lemma 9.4.1 (1)]

3. Let µ be a probability distribution and ({ωn}, {αn}) the Jacobi coefficients. Show the
following:

(1) The Jacobi coefficients of the translated µ(dx−s) are given by ({ωn}, {αn +s}), s ∈ R.

(2) The Jacobi coefficients of the scaled µ(λ−1dx) are given by ({λ2ωn}, {λαn}), λ ∈ R,
λ ̸= 0.

(3) In particular, the Jacobi coefficients of the reflected µ(−dx) are given by ({ωn}, {−αn}).
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10 Stieltjes Transform and Continued Fraction

10.1 Overview

Let Pfm(R) be the set of probability measures on R having finite moments of all orders.
With each µ ∈ Pfm(R) we associate the moment sequence {M0(µ) = 1,M1(µ),M2(µ), . . . }
defined by

Mm(µ) =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . . (10.1)

By the Gram-Schmidt orthogonalization we consruct the orthogonal polynomials {P0(x) =
1, P1(x), . . . , Pn(x) = xn + · · · } from which we obtain the Jacobi coefficients ({ωn}, {αn}).

For an infinite sequence of real numbers {M0 = 1,M1,M2, . . . } we define the Hankel
determinants by

∆m = det


M0 M1 . . . Mm

M1 M2 . . . Mm+1
...

...
...

Mm Mm+1 . . . M2m

 , m = 0, 1, 2, . . . . (10.2)

Let M be the set of infinite sequences of real numbers {M0 = 1,M1,M2, . . . } satisfying one
of the following two conditions:

(i) [infinite type] ∆m > 0 for all m = 0, 1, 2, . . . ;

(ii) [finite type] there exists m0 ≥ 1 such that ∆0 > 0, ∆1 > 0, . . . , ∆m0−1 > 0 and
∆m0 = ∆m0+1 = · · · = 0.

Let J be the set of pairs of sequences ({ωn}, {αn}) satisfying one of the following condi-
tions:

(i) [infinite type] {ωn} is a Jacobi sequence of infinite type and {αn} is an infinite sequence
of real numbers;

(ii) [finite type] {ωn} is a Jacobi sequence of finite type and {αn} is a finite real sequence
{α1, . . . , αm0}, where m0 ≥ 1 is the smallest number such that ωm0 = 0.

We have the following diagram:

Pfm(R)

M J

¡
¡ª

@
@R

-

surj surj

bij

We shall discuss how to recover µ ∈ Pfm(R) from ({ωn}, {αn}) ∈ J when the uniqueness
holds.
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10.2 Finite Jacobi Matrices

Let ({ωn}, {αn}) ∈ J and set

T = Tn =



α1

√
ω1√

ω1 α2

√
ω2√

ω2 α3

√
ω3

. . . . . . . . .
. . . . . . . . .√

ωn−2 αn−1

√
ωn−1√

ωn−1 αn


, (10.3)

whenever ωn−1 > 0. A matrix of the form (10.3) is called a Jacobi matrix (of finite type).
We set

e0 =


1
0
...
0

 .

Proposition 10.2.1

〈e0, (z − T )−1e0〉 =
1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωn−1

z − αn

. (10.4)

Proof. We set

(z − T )−1e0 = f =


f0

f1
...

fn−1

 .

First note that

〈e0, (z − T )−1e0〉 = 〈e0, f〉 = f0 .

On the other hand, we see from (z − T )f = e0 that
(z − α1)f0 −

√
ω1 f1 = 1,

−
√

ωi fi−1 + (z − αi+1)fi −
√

ωi+1 fi+1 = 0, i = 1, 2, . . . , n − 2,

−
√

ωn−1 fn−2 + (z − αn)fn−1 = 0.

(10.5)

From the first relation in (10.5) we obtain

f0

{
(z − α1) −

√
ω1

f1

f0

}
= 1,
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and hence

f0 =
1

z − α1 −
√

ω1
f1

f0

. (10.6)

Similarly, from (10.5) we obtain

−
√

ωi fi−1 + fi

{
(z − αi+1) −

√
ωi+1

fi+1

fi

}
= 0 ,

and therefore √
ωi

fi

fi−1

=
ωi

z − αi+1 −
√

ωi+1
fi+1

fi

. (10.7)

Finally, from (10.5) we have √
ωn−1

fn−1

fn−2

=
ωn−1

z − αn

. (10.8)

Combining (10.6)–(10.8), we come to

f0 =
1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωn−1

z − αn

,

from which (10.4) follows.

Proposition 10.2.2 For k = 1, 2, . . . , n we define monic polynomials Pk(z) = zk + · · · and
Qk−1(z) = zk−1 + · · · by

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωk−1

z − αk

=
Qk−1(z)

Pk(z)
. (10.9)

Then, the following recurrence relations are satisfied:{
P0(z) = 1, P1(z) = z − α1 ,

Pk(z) = (z − αk)Pk−1(z) − ωk−1Pk−2(z), k = 2, 3, . . . , n,
(10.10){

Q0(z) = 1, Q1(z) = z − α2 ,

Qk(z) = (z − αk+1)Qk−1(z) − ωkQk−2(z), k = 2, 3, . . . , n − 1.
(10.11)

Proof. By induction, see also Exercise 1.

Proposition 10.2.3 (Determinantal formula) For k = 1, 2, . . . , n it holds that

Pk(z) = det



z − α1 −
√

ω1

−
√

ω1 z − α2 −
√

ω2

−
√

ω2 z − α3 −
√

ω3

. . . . . . . . .

−
√

ωk−2 z − αk−1 −
√

ωk−1

−
√

ωk−1 z − αk


= det(z − Tk).
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For k = 2, 3, . . . , n it holds that

Qk−1(z) = det



z − α2 −
√

ω2

−
√

ω2 z − α3 −
√

ω3

. . . . . . . . .

−
√

ωk−2 z − αk−1 −
√

ωk−1

−
√

ωk−1 z − αk


.

Proof. By expanding the determinants in the last column one can check easily that
these determinants satisfy the recurrence relations in (10.10) and (10.11).

We now need spectral properties of the Jacobi matrix T .

Proposition 10.2.4 Every eigenvalue of T = Tn is real and simple. Moreover,

Spec Tn = {λ ∈ C ; Pn(λ) = 0}. (10.12)

Proof. Since T is an n × n real symmetric matrix, it has n real eigenvalues. (10.12)
is obvious from det(z − Tn) = Pn(z), see Proposition 10.2.3.

We prove that every eigenspace of T is of one dimension. Let λ be an eigenvalue of T
and f a correswponding eigenvector. We write

f =


f0

f1
...

fn−1

 .

Then (λ − T )f = 0 is equivalent to the following
(λ − α1)f0 −

√
ω1 f1 = 0,

−
√

ωi fi−1 + (λ − αi+1)fi −
√

ωi+1 fi+1 = 0, i = 1, 2, . . . , n − 2,

−
√

ωn−1 fn−2 + (λ − αn)fn−1 = 0.

(10.13)

Now let h, g be two eigenvectors corresponding to λ. Choose (α, β) ∈ R2, (α, β) ̸= (0, 0),
such that αg0 + βh0 = 0. Since f = αg + βh satisfies (λ − T )f = 0, we have (10.13). Note
that f0 = 0. Then, succesive application of (10.13) implies f1 = · · · = fn−1 = 0. Thus we
have f = 0, which means that g and h are linearly dependent. Consequently, the eigenspace
corresponding to λ is of one dimension.

Proposition 10.2.5 For λ ∈ Spec T we put

f(λ) =


P0(λ)

P1(λ)/
√

ω1

...

Pn−1(λ)/
√

ωn−1 · · ·ω1

 . (10.14)

Then f(λ) ̸= 0 and Tf(λ) = λf(λ). Namely, f(λ) is an eigenvector associated with λ.
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Proof. f(λ) ̸= 0 is obvious since P0(λ) = 1. In view of (10.10) we obtain

P0(λ) = 1,

P1(λ) = λ − α1 ,

Pk(λ) = (λ − αk)Pk−1(λ) − ωk−1Pk−2(λ), k = 2, 3, . . . , n − 1,

0 = (λ − αn)Pn−1(λ) − ωn−1Pn−2(λ).

The last identity comes from Pn(λ) = det(λ − T ) = 0. Then a simple computation yields√
ω1

P1(λ)√
ω1

= λ − α1 = (λ − α1)P0(λ),

√
ωk

Pk(λ)√
ωk · · ·ω1

= (λ − αk)
Pk−1(λ)√
ωk−1 · · ·ω1

−
√

ωk−1
Pk−2(λ)√
ωk−2 · · ·ω1

,

for k = 2, 3, . . . , n − 1, and

0 = (λ − αn)
Pn−1(λ)√
ωn−1 · · ·ω1

−
√

ωn−1
Pn−2(λ)√
ωn−2 · · ·ω1

.

The above relations are combined into a single identity: (λ − T )f(λ) = 0.

Proposition 10.2.6 Define a measure µ on R by

µ =
∑

λ∈Spec T

∥f(λ)∥−2δλ , (10.15)

where f(λ) ∈ Rn is given by (10.14). Then, µ ∈ Pfm(R) and

〈e0, (z − T )−1e0〉 =

∫ +∞

−∞

µ(dx)

z − x
. (10.16)

Proof. Since every eigenvalue of T is simple (Proposition 10.2.4), we see from Propo-
sition 10.2.5 that {∥f(λ)∥−1f(λ) ; λ ∈ Spec T} becomes a complete orthonormal basis of Cn.
Hence

〈e0, (z − T )−1e0〉 =
∑

λ∈Spec T

〈e0, ∥f(λ)∥−1f(λ)〉〈∥f(λ)∥−1f(λ), (z − T )−1e0〉

=
∑

λ∈Spec T

∥f(λ)∥−2〈e0, f(λ)〉〈(z̄ − T )−1f(λ), e0〉

=
∑

λ∈Spec T

∥f(λ)∥−2(z − λ)−1.

where we used 〈e0, f(λ)〉 = P0(λ) = 1 and (z̄ − T )−1f(λ) = (z̄ − λ)−1f(λ). Then, in view of
(10.15) we obtain

〈e0, (z − T )−1e0〉 =
∑

λ∈Spec T

∥f(λ)∥−2

z − λ
=

∫ +∞

−∞

µ(dx)

z − x
,
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which proves (10.16).
We need to show that µ(R) = 1. This may be proved by observing asymptotics of both

sides of (10.16). In fact, with the help of Propositions 10.2.1 and 10.2.2 we see that

lim
z→∞
Re z=0

z〈e0, (z − T )−1e0〉 = lim
z→∞
Re z=0

zQn−1(z)

Pn(z)
= 1, (10.17)

where we applied the fact that both zQn−1(z) and Pn(z) are monic polynomials of degree n.
On the other hand,

lim
z→∞
Re z=0

z

∫ +∞

−∞

µ(dx)

z − x
=

∫ +∞

−∞
µ(dx) = µ(R) (10.18)

by the dominated convergence theorem. We see from (10.17) and (10.18) that µ(R) = 1.

Definition 10.2.7 For any probability measure µ (not necessarily having moments) the
integral

Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
, Im z ̸= 0

converges and Gµ(z) becomes a holomorphic function in {Im z ̸= 0} = C\R. We call Gµ(z)
the (Cauchy-) Stieltjes transform of µ.

Theorem 10.2.8 Let α1, . . . , αn ∈ R and ω1 > 0, . . . , ωn−1 > 0. Then the polynomi-
als P0(z), P1(z), . . . , Pn−1(z) defined by the recurrence relation (10.10) are the orthogonal
polynomials associated with µ defined in (10.15). Therefore, the Jacobi coefficients of µ is
({α1, . . . , αn}, {ω1, . . . , ωn−1}). Moreover, the Stieltjies transform Gµ(z) admits a continued
fraction expansion:

Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
=

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωn−1

z − αn

.

Proof. By using the recurrence formula (10.10) we may see easily that

P0(T )e0 = e0 , Pk(T )e0 =
√

ωk · · ·ω1 ek , k = 1, 2, . . . , n − 1. (10.19)

On the other hand, for any polynomials p, q with real coefficients we have

〈p(T )e0, q(T )e0〉 =
∑

λ∈Spec T

〈p(T )e0, ∥f(λ)∥−1f(λ)〉〈∥f(λ)∥−1f(λ), q(T )e0〉

=
∑

λ∈Spec T

∥f(λ)∥−2〈e0, p(T )f(λ)〉〈q(T )f(λ), e0〉

=
∑

λ∈Spec T

∥f(λ)∥−2p(λ)q(λ)〈e0, f(λ)〉〈f(λ), e0〉

=
∑

λ∈Spec T

∥f(λ)∥−2p(λ)q(λ)

=

∫ +∞

−∞
p(x)q(x)µ(dx).
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Hence, in particular,∫ +∞

−∞
Pj(x)Pk(x)µ(dx) = 〈Pj(T )e0, Pk(T )e0〉 = ωj · · ·ω1〈ej, ek〉

so that P0(z), P1(z), . . . , Pn−1(z) are the orthogonal polynomials associated with µ.

10.3 General Case

Let ({ωn}, {αn}) ∈ J be of infinite type. Then for any n, defining a Jacobi matrix Tn as in
(10.3), we obtain a probability measure µn and the polynomials {P0(x), P1(x), . . . , Pn(x)} as
in the previous section. Since these polynomials are defined by the recurrence relation with
({ωn}, {αn}), {P0(x), P1(x), . . . , Pn(x)} are common for all µm for m ≥ n. Consequently,
given ({ωn}, {αn}), we have an infinite sequence of probability measures mun, and an infinite
sequence polynomials

P0(x) = 1, P1(x), . . . , Pn(x) = xn + · · · , , . . . .

Lemma 10.3.1 Let µ ∈ Pfm(R) be a probability measure whose Jacobi coefficients are
({ωn}, {αn}) ∈ J. Then, for any m = 1, 2, . . . we have

lim
n→∞

Mm(µn) = Mm(µ).

Proof. In general, Mm(ν) is described by the first m terms of the Jacobi coefficients
of ν. Suppose that n ≥ m. Then we see that

Mm(µn) = Mm(µn+1) = · · · = Mm(µ),

from which the assertion is clear.

Theorem 10.3.2 Let µ ∈ Pfm(R) be the solution of a determinate moment problem and
({ωn}, {αn}) be the Jacobi coefficients. Then the Stieltjies transform Gµ(z) admits a contin-
ued fraction expansion:

Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
=

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωn−1

z − αn

,

where the right-hand side converges in {Im z ̸= 0}.

Proof. By Theorem 10.2.8 we have∫ +∞

−∞

µn(dx)

z − x
=

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωn−1

z − αn

.

On the other hand, it follows from Lemma 10.3.1 and the assumption that µn converges to
µ weakly. Since x 7→ 1/(z − x) is a bounded continuous function on R, we have

lim
n→∞

∫ +∞

−∞

µn(dx)

z − x
=

∫ +∞

−∞

µ(dx)

z − x
.

This completes the proof.
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10.4 Exercises

1. Let {an} and {bn} be two sequences of complex numbers. Define a linear fractional
transformations by

τk(w) =
ak

bk + w
, w ∈ C ∪ {∞}.

Define {An} and {Bn} respectively by the following recurrence relations:{
A−1 = 1, A0 = 0,

An = bnAn−1 + anAn−2 , n = 1, 2, . . . ,{
B−1 = 0, B0 = 1,

Bn = bnBn−1 + anBn−2 , n = 1, 2, . . .

Prove that

(1) τ1 · · · τn(w) =
An + An−1w

Bn + Bn−1w

(2)
a1

b1 +

a2

b2 +

a3

b3 + · · ·+
an

bn

=
An

Bn

2. The Kesten distribution with parameters (p, q), p > 0, q ≥ 0, is a probability distri-
bution whose Jacobi coefficients are given by

ω1 = p, ω2 = ω3 = · · · = q, αn ≡ 0.

Prove that the Stieltjes transform is given by

G(z) =
1

z −
p

z −
q

z −
q

z − · · ·
= −1

2

(p − 2q)z + p
√

z2 − 4q

p2 − (p − q)z2
.
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11 Growing Regular Graphs

11.1 Actions of Aϵ Revisited

Let G = (V,E) be a graph of degree κ and o ∈ V a fixed origin. Let

V =
∞⋃

n=0

Vn , A = A+ + A− + A◦

be the stratification and the quantum decomposition of the adjacency matrix A. For n =
0, 1, 2, . . . we define a unit vector by

Φn =
1√
|Vn|

∑
x∈Vn

δx

and denote Γ = Γ(G) by the linear space spanned by {Φ0, Φ1, . . . }.
It is important to study the actions of the quantum components Aϵ on the vectors Φn.

We need notation. For x ∈ V and ϵ ∈ {+,−, ◦} we set

ωϵ(x) = |{y ∈ V ; y ∼ x, ∂(o, y) = ∂(o, x) + ϵ}|.

ω+

−

ω

ω

(x)

(x)

(x)

x

Vn+1

Vn

Vn−1

Figure 11.1: ωϵ(x)

By definition we have√
|Vn|A+Φn =

∑
x∈Vn

A+δx =
∑

y∈Vn+1

ω−(y)δy (11.1)

The mean value of ω−(y), where y runs over Vn+1, is defined by

M(ω−|Vn+1) =
1

|Vn+1|
∑

y∈Vn+1

ω−(y).
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With this (11.1) becomes√
|Vn|A+Φn =

∑
y∈Vn+1

M(ω−|Vn+1)δy +
∑

y∈Vn+1

(ω−(y) − M(ω−|Vn+1))δy

= M(ω−|Vn+1)
√

|Vn+1|Φn+1 +
∑

y∈Vn+1

(ω−(y) − M(ω−|Vn+1))δy .

Hence,

A+Φn = M(ω−|Vn+1)

√
|Vn+1|
|Vn|

Φn+1 + E+Φn (11.2)

where

E+Φn =
1√
|Vn|

∑
y∈Vn+1

(ω−(y) − M(ω−|Vn+1))δy . (11.3)

We regard the first term in the right-hand side of (11.2) as the principal part of the action
of A+ and the second the error part. The norm of the error part is given by

∥E+Φn∥2 =

∥∥∥∥∥∥ 1√
|Vn|

∑
y∈Vn+1

(ω−(y) − M(ω−|Vn+1))δy

∥∥∥∥∥∥
2

=
1

|Vn|
∑

y∈Vn+1

{ω−(y) − M(ω−|Vn+1)}2

=
|Vn+1|
|Vn|

Σ2(ω−|Vn+1), (11.4)

where

Σ2(ω−|Vn+1) =
1

|Vn+1|
∑

y∈Vn+1

{
ω−(y) − M(ω−|Vn+1)

}2

is the variance of ω−(y), where y ∈ Vn+1.

In a similar manner, we have

A−Φn = M(ω+|Vn−1)

√
|Vn−1|
|Vn|

Φn−1 + E−Φn , (11.5)

A◦Φn = M(ω◦|Vn)Φn + E◦Φn , (11.6)

where the error terms are given by

E−Φn =
1√
|Vn|

∑
y∈Vn−1

(ω+(y) − M(ω+|Vn−1))δy .

E◦Φn =
1√
|Vn|

∑
y∈Vn

(ω◦(y) − M(ω◦|Vn))δy .
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The norms of these error terms are

∥E−Φn∥2 =
|Vn−1|
|Vn|

Σ2(ω+|Vn−1), (11.7)

∥E◦Φn∥2 = Σ2(ω◦|Vn). (11.8)

(11.2), (11.5) and (11.6) are unified into the following form:

AϵΦn = M(ω−ϵ|Vn+ϵ)

√
|Vn+ϵ|
|Vn|

Φn+ϵ + EϵΦn , ϵ ∈ {+,−, ◦}. (11.9)

If all the error terms vanish, the actions of the quantum components Aϵ gives rise to an
interacting Fock space structure and the spectral distributions of A is obtained by means of
quantum probabilistic techniques. Such a case happens typically for homogeneous trees and
distance-regular graphs.

When we consider a growing graphs, we may expect the error terms vanish asymptotically.
Slightly more precise, when we consider a growing graph G(ν) = (V (ν), E(ν)), for capturing
the asymptotic properties of A(ν) it is necessarily to take the normalization. Let us consider
the mean and variance of A = A(ν) in a state ϕν :

〈A〉ν = ϕν(A), Σ2
ν(A) = ϕν((A − 〈A〉ν)2).

The normalized adjacency matrix is given by

A − 〈A〉ν
Σν(A)

=
A+

Σν(A)
+

A−

Σν(A)
+

A◦ − 〈A〉ν
Σν(A)

. (11.10)

It follows from (11.9) that

Aϵ

Σν(A)
Φn = M(ω−ϵ|Vn+ϵ)

1

Σν(A)

√
|Vn+ϵ|
|Vn|

Φn+ϵ +
1

Σν(A)
EϵΦn (11.11)

and ∥∥∥∥ 1

Σν(A)
EϵΦn

∥∥∥∥2

=
1

Σ2
ν(A)

|Vn+ϵ|
|Vn|

Σ2(ω−ϵ|Vn+ϵ). (11.12)

If theses errors in (11.12) vanish in the limit, the asymptotiv actions of the quantum compo-
nents in the right-hand side in (11.10) are described in terms of an interacting Fock space.

11.2 An Exampe: ZN as N → ∞
Let us consider the integer lattice ZN . Each x ∈ ZN is expressible in the form:

x = (ξ1, ξ2, . . . , ξN) =
N∑

i=1

ξiei , ξi ∈ Z,
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where e1, . . . , eN are the standard basis. Taking o = (0, 0, . . . , 0) to be the origin, we intro-
duce the stratification and the quantum decomposition of the adjacency matrix:

ZN =
∞⋃

n=0

Vn , A = A+ + A−.

Here we note that A◦ = 0 since there is no edge lying in a stratum Vn.
We consider the vacuum state at o ∈ V . Then,

〈A〉 = 0, Σ2(A) = 〈A2〉 = deg(o) = 2N.

Let us check (11.11) and (11.12). It is clear that ω±(y) is not necessarily constant on each
Vn, but for a large N it is “almost” constant. In fact, for a large N , most generic vertices in
Vn have the form

y = ±ei1 ± ei2 ± · · · ± ein , 1 ≤ i1 < i2 < · · · < in ≤ N, (11.13)

namely, in the right hand side each ei appears with multiplicity at most one. Note that

|Vn| =

(
N

n

)
2n + O(Nn−1) =

(2N)n

n!
+ O(Nn−1), (11.14)

where the principal term corresponds to the number of generic vertices. For a generic y ∈ Vn

we have ω−(y) = n, since a vertex x ∈ Vn−1 which is adjacent to y is obtained by subtracting
one eik from the right hand side of (11.13). Hence,

M(ω−|Vn) = n, M(ω+|Vn) = 2N − n

and

Σ2(ω−|Vn) =
1

|Vn|
(n − 1)2O(Nn−1) = O(N−1).

Moreover, √
|Vn+1|
|Vn|

=

√
2N√

n + 1
+ O(N−1/2)

Then, (11.11) and (11.12) become

A+

√
2N

Φn =
n + 1√

2N

( √
2N√

n + 1
+ O(N−1/2)

)
Φn+1 +

1√
2N

EϵΦn ,∥∥∥∥ 1√
2N

EϵΦn

∥∥∥∥2

=
1

2N

(
2N

n + 1
+ O(1)

)
O(N−1) = O(N−1).

Consequently,
A+

√
2N

Φn =
√

n + 1 Φn+1 + O(N−1/2). (11.15)
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In a similar manner, we obtain

A−√
2N

Φn =
√

n Φn−1 + O(N−1). (11.16)

This means that Γ(ZN) is asymptotically invariant under the (normalized) quantum compo-
nents. It is immediately seen from (11.15) and (11.16), at a formal level at least, that the
actions of normalized quantum components in the limit coincides with those of the annihi-
lation and creation operators of the Boson Fock space ΓBoson = (Γ, {Ψn}, B+, B−), i.e.,

lim
N→∞

A±
N√
2N

= B±.

Hence, still at a formal level, we obtain

lim
N→∞

〈(
AN√
2N

)m〉
= 〈Ψ0, (B

+ + B−)mΨ0〉, m = 1, 2, . . . .

As is well known, the right hand side is the mth moment of the standard Gaussian distribu-
tion. Consequently,

lim
N→∞

〈(
AN√
2N

)m〉
=

1√
2π

∫ +∞

−∞
xme−x2/2dx, m = 1, 2, . . . .

In other words, the asymptotic spectral distribution of the adjacency matrix of the integer
lattice in the vacuum state is the standard Gaussian distribution.

11.3 QCLT for a Growing Regular Graph

We now consider a growing regular graph G(ν) = (V (ν), E(ν)), where each G(ν) is given
an origin oν . The degree is denoted by κ = κν . We are interested in the case where

(A1) limν κ(ν) = ∞.

We will concentrate on the vacuum states at o ∈ V . Then the normalized adjacency matrix
is given by

A√
κ

=
A+

√
κ

+
A−
√

κ
+

A◦
√

κ
.

For notational simplicity we sometimes omit the suffix ν.
Statistics of ωϵ(x) will play a crucial role. Whenever Vn ̸= ∅, we define

M(ωϵ|Vn) =
1

|Vn|
∑
x∈Vn

ωϵ(x),

Σ2(ωϵ|Vn) =
1

|Vn|
∑
x∈Vn

{
ωϵ(x) − M(ωϵ|Vn)

}2
,

L(ωϵ|Vn) = max{ωϵ(x) ; x ∈ Vn}.
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Namely, M(ωϵ|Vn) is the mean value of ωϵ(x) when x runs over Vn, and Σ2(ωϵ|Vn) its variance.
Both Σ2(ωϵ|Vn) and L(ωϵ|Vn) indicate fluctuation of ωϵ(x).

We now claim the essential conditions for our QCT. These conditions are found through
detailed observation of the argument in the previous section.

(A2) For each n = 1, 2, . . . there exists a limit

ωn = lim
ν

M(ω−|V (ν)
n ) < ∞. (11.17)

Moreover,

lim
ν

Σ2(ω−|V (ν)
n ) = 0, (11.18)

Wn ≡ sup
ν

L(ω−|V (ν)
n ) < ∞. (11.19)

(A3) For each n = 0, 1, 2, . . . there exists a limit

αn+1 = lim
ν

M

(
ω◦√
κ(ν)

∣∣∣∣∣V (ν)
n

)
= lim

ν

M(ω◦|V (ν)
n )√

κ(ν)
< ∞. (11.20)

Moreover,

lim
ν

Σ2

(
ω◦√
κ(ν)

∣∣∣∣∣ V (ν)
n

)
= lim

ν

Σ2(ω◦|V (ν)
n )

κ(ν)
= 0, (11.21)

sup
ν

L(ω◦|V (ν)
n )√

κ(ν)
< ∞. (11.22)

Remark 11.3.1 Condition (A2) for n = 1 and (A3) for n = 0 are automatically satisfied.
Note also that ω1 = 1 and α1 = 0.

Remark 11.3.2 If G(ν) happens to be a finite graph, V
(ν)
n = ∅ occurs for some n. Then

M(ωϵ|V (ν)
n ) is defined only up to a certain n. This causes, however, no difficulty for defining

ωn and αn for all n (Exercise 2)

The meaning of (A1) is clear. Condition (A2) means that, in each stratum most of the
vertices have the same number of downward edges, and as the graph grows the fluctuation of
that number tends to zero. Condition (A3) is for edges lying in each stratum. The number of
such edges may increase as the graph grows, but the growth rate is bounded by κ(ν)1/2. We

roughly see from conditions (A1), (11.19) and (11.22) that, for a “generic” vertex x ∈ V
(ν)
n ,

ω+(x) = O(κ(ν)), ω◦(x) = O(κ(ν)1/2), ω−(x) = O(1),

as the graph grows.
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Theorem 11.3.3 (QCLT) Let G(ν) = (V (ν), E(ν)) be a growing regular graph satisfying
conditions (A1)–(A3) and Aν its adjacency matrix. Let (Γ, {Ψn}, B+, B−) be the interacting
Fock space associated with {ωn} and B◦ the diagonal operator defined by {αn}, where {ωn}
and {αn} are given in conditions (A1)–(A3). Then we have

lim
ν

〈
Φ

(ν)
j ,

Aϵm
ν√
κ(ν)

· · · Aϵ1
ν√

κ(ν)
Φ(ν)

n

〉
= 〈Ψj, B

ϵm · · ·Bϵ1Ψn〉, (11.23)

for any ϵ1, . . . , ϵm ∈ {+,−, ◦}, m = 1, 2, . . . , and j, n = 0, 1, 2, . . . .

The proof owes to precise estimates the error terms in terms of the variances Σ2
ν(ωϵ|Vn).

The proof is omitted, instead we only record a noticeable result which is used in the proof.

Lemma 11.3.4 If a growing regular graph G(ν) = (V (ν), E(ν)) satisfies conditions (A1)–
(A3), we have

lim
ν

|V (ν)
n |

κ(ν)n
=

1

ωn · · ·ω1

, n = 1, 2, . . . . (11.24)

11.4 Coxeter Graphs

The Coxeter groups provide interesting examples of growing Cayley graphs. Let Σ be a
countable infinite set. A function m : Σ×Σ → {1, 2, . . . }∪{∞} is called a Coxeter matrix if
(i) m(s, s) = 1 for all s ∈ Σ, and (ii) m(s, t) = m(t, s) ≥ 2 for s ̸= t. Let Σ1 ⊂ Σ2 ⊂ · · · ⊂ Σ
be an increasing sequence of subsets of Σ such that |ΣN | = N and Σ =

⋃
ΣN . For each

N ≥ 1 let GN be the group generated by ΣN subject only to the relations:

(st)m(s,t) = e, s, t ∈ ΣN , (11.25)

where e stands for the unit. In case of m(s, t) = ∞ we understand that st is of infinite order.
The pair (GN , ΣN) is called a Coxeter system of rank N (i.e., |ΣN | = N), and GN is called
a Coxeter group. It is known that each s ∈ ΣN has order two, namely, is not reduced to
the unit (this is not very trivial). The corresponding Cayley graph is denoted by the same
symbol (GN , ΣN). We consider the family of Cayley graphs (GN , ΣN), N = 1, 2, . . . , as a
growing regular graph.

In fact, it is shown that the inclusion ΣN → ΣN+1 extends uniquely an injective ho-
momorphism GN → GN+1. The inductive limit group, denoted simply by G, is called the
infinite Coxeter group associated with a Coxeter matrix {m(s, t)}.

By definition each g ∈ GN , g ̸= e, admits an expression of the form

x = s1s2 · · · sr, si ∈ ΣN .

If r is as small as possible, the expression is called a reduced expression and the number
r = |x| is called the length of x. The length function is well defined on G.

Lemma 11.4.1 For any s ∈ Σ and x ∈ G we have

|sx| = |x| ± 1, |xs| = |x| ± 1.
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Proof. There exists a unique homomorphism (character) χ : G → {±1} such that

χ(s) = −1, s ∈ Σ.

For any x ∈ G, taking a reduced expression x = s1s2 · · · sr, r = |x|, we have

χ(x) = χ(s1)χ(s2) · · ·χ(sr) = (−1)|x|, x ∈ G.

Using this formula, we obtain
χ(sx) = (−1)|sx|,

and
χ(sx) = χ(s)χ(x) = (−1)(−1)|x| = (−1)|x|+1.

Therefore, |sx| ≡ |x| + 1 (mod 2). This must be compatible with the triangle inequality
(Exercise 3)

|x| − 1 ≤ |sx| ≤ |x| + 1, x ∈ G.

Thus |sx| = |x| ± 1 follows.

Lemma 11.4.2 (Deletion condition) Let g ∈ G be expressed in the form

g = s1s2 · · · sm, si ∈ Σ. (11.26)

If |g| < m, then there exist a pair of indices 1 ≤ i < j ≤ m such that

g = s1 · · · ši · · · šj · · · sm,

where š stands for deletion. Therefore, given g ∈ G of the form (11.26), its reduced expression
is obtained by deleting even number of si appearing therein.

The proof is omitted. The deletion condition is quite useful in the study of the Coxeter
groups. Lemma 11.4.1 is also an immediate consequence.

Lemma 11.4.3 If s1, s2, . . . , sn ∈ Σ are mutually distinct, then g = s1s2 · · · sn is a reduced
expression.

Proof. For n = 1 the assertion is obvious since Σ is injectively contained in G. Let
n ≥ 2. Suppose that g = s1s2 · · · sn is not a reduced expression though s1, s2, . . . , sn ∈ Σ are
mutually distinct. Then by Lemma 11.4.2,

s1 · · · sn = s1 · · · ši · · · šj · · · sn

and hence
si = si+1 · · · sj−1sjsj−1 · · · si+1.

Since the right hand side is of length 1, deleting an even number of elements from the right
hand side leads to a reduced expression. The obtained reduced expression should be one of
{si+1, . . . , sj}. This contradicts the assumption that s1, . . . , sn are mutually distinct.

We next study the Coxeter group associated with a Coxeter matrix satisfying m(s, t) ≥ 3
for any pair s ̸= t. In that case, the Cayley graph has no cycle with length less than six, i.e.,
contains neither triangle, square, nor pentagon.
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Lemma 11.4.4 Assume that m(s, t) ≥ 3 for any pair s ̸= t. If s1, . . . , sn ∈ Σ are mutually
distinct and the relation

s1 · · · sn = sx

holds for some s ∈ Σ and x ∈ G of length n − 1, then s = s1.

Proof. We prove the assertion by induction on n. For n = 1 the assertion is obvious.
Assume that s1s2 = sx holds where s1, s2 ∈ Σ are mutually distinct, s ∈ Σ and x ∈ G of
length 1. From s = s1s2x we see easily that s = s1 or s = s2 or s = x. If s = x happens, we
have s1 = s2 which yields contradiction. If s = s2 happens, x = s1 and (s1s2)

2 = e which is
again contradiction. Consequently, s = s1.

Assume that the assertion is valid up to n − 1, n ≥ 2. Since

ss1 · · · sn = x (11.27)

is of length n−1, deleting two elements from the left hand side we obtain a reduced expression
of x. If these two elements are chosen from {s1, . . . , sn}, say, si, sj (i < j), we come back to

s1 · · · ši · · · šj · · · sn = sx = s1 · · · sn,

which is a reduced expression by Lemma 11.4.3. This is contradiction. Hence, to get a
reduced expression of x in (11.27), we need to delete s and si for some i = 1, . . . , n. In that
case we come to

s1 · · · ši · · · sn = x,

and hence
ss1 · · · si−1 = s1 · · · si. (11.28)

If 1 ≤ i ≤ n − 1, by the assumption of induction we have s = s1. Suppose i = n, i.e.,

ss1 · · · sn−1 = s1 · · · sn.

By a simple argument with the deletion condition we see that s ∈ {s1, . . . , sn}. If s = sj,
1 ≤ j ≤ n − 1, then

sn = sn−1 · · · s1sjs1 · · · sn−1,

which implies that sn coincides with some of {s1, . . . sn−1}. But this contradicts the assump-
tion. Hence s = sn, i.e.,

sns1 · · · sn−1 = s1 · · · sn. (11.29)

We shall prove that this does not occur. Note first that (11.29) is equivalent to the following

(sn−2 · · · s1)sn(s1 · · · sn−2)sn−1 = sn−1sn.

Since this is of length 2, deleting an even number of elements from the left hand side, we
obtain a reduced expression of length 2, say, tt′. This is the case of n = 2 so we know that
t = sn−1. But this is impossible.

Consider the Cayley graph (GN , ΣN) with e ∈ GN being an origin. We consider as usual
the stratification

GN =
∞⋃

n=0

V (N)
n .
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Statistics of ω−(x) is of importance. We see from Lemma 11.4.1 that ω◦(x) = 0 for all
x ∈ GN .

Lemma 11.4.5 Assume that m(s, t) ≥ 3 for any pair s, t ∈ Σ, s ̸= t. Then, for any
n = 1, 2, . . . we have

lim
N→∞

|{x ∈ V
(N)
n ; ω−(x) = 1}|
|V (N)

n |
= 1. (11.30)

Lemma 11.4.6 Assume that m(s, t) ≥ 3 for any pair s, t ∈ Σ, s ̸= t. Then ω−(x) ≤ 2 for
all x ∈ G.

The proofs are not difficult and omitted.

Theorem 11.4.7 (QCLT for Coxeter groups) Let (G, Σ) be an infinite Coxeter group
with a Coxeter matrix {m(s, t)} such that m(s, t) ≥ 3 for any pair s, t ∈ Σ, s ̸= t. Let
Σ1 ⊂ Σ2 ⊂ · · · be an increasing sequence of subsets of Σ such that

⋃∞
N=1 ΣN = Σ, and

consider the Cayley graph of the Coxeter group (GN , ΣN) and its adjacency matrix AN .
Then A◦

N = 0 and

lim
N→∞

A±
N√
|ΣN |

= B±,

in the sense of stochastic convergence with respect to the vacuum state, where B± are the
annihilation and creation operators in the free Fock space.

Proof. It is sufficient to show conditions (A1)–(A3). First (A1) is obvious, since the
degree of GN is |ΣN | which tends to the infinity by assumption. Conditions (11.17) and
(11.18) in (A2) follow from Lemma 11.4.5. Moreover, the sequence therein is ωn ≡ 1 so that
the limit is described by the free Fock space. Condition (11.19) in (A2) follows from Lemma
11.4.6 with Wn = 2. Finally, (A3) is obvious since ω◦(x) = 0 for all x ∈ GN . Consequently,
our assertion is an immediate consequence of Theorem 11.3.3.

It is known that the symmetric group S(N) is generated by the successive transpositions

σ1 = (12), σ2 = (23), . . . , σN−1 = (N − 1 N).

We set ΣN = {σ1, σ2, . . . , σN−1}. Then (S(N), ΣN) becomes a Coxeter group. Note that the
Coxeter matrix is given by

m(i, j) =

{
3, |i − j| = 1,

2, |i − j| ≥ 2.
(11.31)

Therefore, Theorem 11.4.7 is not applicable. Instead, we have the following

Theorem 11.4.8 (QCLT for symmetric groups) Let AN be the adjacency matrix of the
Cayley graph (S(N), ΣN). Then A◦

N = 0 and

lim
N→∞

A±
N√

N − 1
= B±,

in the sense of stochastic convergence with respect to the vacuum state, where B± are the
annihilation and creation operators in the Boson Fock space.
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11.5 Exercises

1. Let G = (V,E) be a regular graph with degree κ. Prove that

(1) M(ω+|Vn) + M(ω−|Vn) + M(ω◦|Vn) = κ.

(2) Σ(ω+|Vn) ≤ Σ(ω−|Vn) + Σ(ω◦|Vn).

2. Let G(ν) = (V (ν), E(ν)) be a growing regular graph satisfying conditions (A1)–(A3).
Prove that ({ωn}, {αn}) defined therein is a Jacobi coefficient of infinite type.

3. Let (G, Σ) be a Coxeter group. Prove the following properties for the length function.

(1) |x| = |x−1| for x ∈ G.

(2) For x ∈ G, |x| = 1 if and only if x ∈ Σ.

(3) |x| − |y| ≤ |xy| ≤ |x| + |y| for x, y ∈ G.

(4) |x| − 1 ≤ |sx| ≤ |x| + 1 for x ∈ G and s ∈ Σ.

4. Prove (11.31).
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12 Graph Products

12.1 Motivation

A growing graph models a revolution of networks in the real world.

Figure 12.1: Growing graph

It would be interesting if the growing graph G(ν) is considered as an analogue of an inde-
pendent increment process in classical probability theory. It is our hope that the evolution
is formulated as

G(ν) = G(ν−1) ♯H(ν), (12.1)

where ♯H(ν) is an operation to form a new graph G(ν) and H(ν) is given at each evolution
step. We hope that H(ν) shares a common sprit with independent random variables.

In this chapter we discuss graph products. Given two graphs G1 and G2, we form a new
graph G1 ♯G2 as a “product.” This graph product gives rise to a product of the adjacency
matrices

A = A1 ♯A2 . (12.2)

When the evoluton of graphs is formulated in terms of a graph product, (12.1) yields

A(ν) = A(ν−1) ♯B(ν) = · · · = (· · · ((A(0) ♯B(0)) ♯B(1)) · · · ) ♯B(ν).

We may expect that the spectral properties of A(ν) follow from the study of some interrelation
among B(ν) with respect to the operation ♯. From this aspect various types of independence
in quantum probability would be useful.

12.2 Direct (Cartesian) Products

Definition 12.2.1 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. For (x, y), (x′, y′) ∈
V1 × V2 we write (x, y) ∼ (x′, y′) if one of the following conditions is satisfied:

(i) x = x′ and y ∼ y′;

(ii) x ∼ x′ and y = y′.

Then V1 × V2 becomes a graph in such a way that (x, y), (x′, y′) ∈ V1 × V2 are adjacent if
(x, y) ∼ (x′, y′). This graph is called the direct product of G1 and G2, and is denoted by
G1 × G2.
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Example 12.2.2 C4 × C3

(1,1’ (2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C   C

Lemma 12.2.3 (1) G1 × G2
∼= G2 × G1.

(2) (G1 × G2) × G3
∼= G1 × (G2 × G3).

Proof. Straightforward.

Example 12.2.4 ZN ∼= Z × · · · × Z (N times)

The adjacency matrix Ai acts on C(Vi) by usual matrix multiplication, hence the adja-
cency matrix A of the direct product G1 × G2 acts on C(V1 × V2) ∼= C(V1) ⊗ C(V2), where
the canonical isomorphism is defined by the correspondence of basis δ(x,y) 7→ δx ⊗ δy.

Theorem 12.2.5 As an operator acting on C(V1) ⊗ C(V2), the adjacency matrix A of the
direct product G1 × G2 is of the form:

A = A1 ⊗ E2 + E1 ⊗ A2 , (12.3)

where Ei is the identity matrix on C(Vi).

Proof. We see that

(A1 ⊗ E2)(x,y),(x′,y′) = (A1)xx′(E2)y,y′ =

{
1, if x ∼ x′ and y = y′,

0, otherwise.

Similarly,

(E1 ⊗ A2)(x,y),(x′,y′) = (E1)xx′(A2)y,y′ =

{
1, if x = x′ and y ∼ y′,

0, otherwise.

Since the two conditions (i) x ∼ x′ and y = y′; (ii) x = x′ and y ∼ y′ do not occur
simultaneously, we have

(A1 ⊗ E2 + E1 ⊗ A2)(x,y),(x′,y′) =

{
1, if (x, y) ∼ (x′, y′),

0, otherwise.

This means that A1 ⊗ E2 + E1 ⊗ A2 coincides with the adjacency matrix of G1 × G2.
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Theorem 12.2.6 Let G = G1 × G2. Then,

∂G((x, y), (x′, y′)) = ∂G1(x, x′) + ∂G2(y, y′). (12.4)

Proof. Set s = ∂G((x, y), (x′, y′)). Then we may find a sequence of vertices of G1 ×G2

such that

(x, y) = (x0, y0) ∼ (x1, y1) ∼ (x2, y2) ∼ · · · ∼ (xs−1, ys−1) ∼ (xs, ys) = (x′, y′).

Then, every pair of consecutive vertices in the sequence

x = x0, x1, x2, . . . , xs−1 , xs = x′

are identical or adjacent. Hence, reducing consecutively identical vertices into one vertex,
we obtain a walk connecting x and x′, of which the length is, say, α. Similarly, from

y = y0, y1, y2, . . . , ys−1 , ys = y′

we obtain a walk connecting y and y′, of which the length is, say, β. By the definition of a
direct product graph, xi = xi+1 happens if and only if yi ∼ yi+1. Hence

α + β = s.

Since ∂G1(x, x′) ≤ α and ∂G2(y, y′) ≤ β, we have

∂G1(x, x′) + ∂G2(y, y′) ≤ α + β = s.

That ∂G1(x, x′) + ∂G2(y, y′) ≥ s is shown by constructing a walk.

An interesting consequence is the following

Theorem 12.2.7 Let Q1, Q2 and Q be the Q-matrices of graphs G1, G2 and G = G1 ×G2,
with a common parameter q. Then

Q = Q1 ⊗ Q2 .

Proof. First by definition

(Q)(x,y),(x′,y′) = q∂G((x,y),(x′,y′)).

Applying Theorem 12.2.6, we obtain

= q∂G1
(x,x′)q∂G2

(y,y′) = (Q1)xx′(Q2)yy′ = (Q1 ⊗ Q2)(x,y),(x′,y′).

Therefore, Q = Q1 ⊗ Q2.

Positivity of the Q-matrices are of importance. For a graph G we set

q[G] = {−1 ≤ q ≤ 1 ; Qq is strictly positive definite},
q̃[G] = {−1 ≤ q ≤ 1 ; Qq is positive definite}.
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Theorem 12.2.8 Let G = G1 × G2.

(1) q[G] = q[G1] ∩ q[G2].

(2) q̃[G] = q̃[G1] ∩ q̃[G2].

Proof. We see from Theorem 12.2.7 that the eigenvalues of Q are of the form αβ,
where α and β are eigenvalues of Q1 and Q2, respectively.

(1) Let q ∈ q[G1] ∩ q[G2], namely, Qi = Qi(q) is a strictly positive definite kernel for
Gi. Since the eigenvalues of Qi are all positive. every eigenvalues of Q are also positive.
Therefore, q[G1] ∩ q[G2] ⊂ q[G].

We show that Q contains Q1 as a principal submatrix. Take a vetex o2 ∈ V2 and set

W = {(x, o2) ; x ∈ V1}.

Let H1 be the induced subgraph of G1 × G2 spanned by W . Then, H1 is isomorphic to G1

and ∂H = ∂G1 coincides with the restriction of ∂G to H. Hence Q1 is regarded as a principal
submatrix of Q. The situation is similar for Q2. Now let q ∈ q[G]. Then Q is strictly positive
definite so are all the principal submatrices. In particular, so are Q1 and Q2. Consequently,
q[G] ⊂ q[G1] ∩ q[G2].

(2) The proof is similar. Let q ∈ q̃[G1] ∩ q̃[G2], namely, Qi = Qi(q) is a positive definite
kernel for Gi. Since the eigenvalues of Qi are all non-negative, every eigenvalues of Q are
also non-negative. Therefore, q̃[G1] ∩ q̃[G2] ⊂ q̃[G].

The second half is also similar to the argument in (1).

Example 12.2.9 The Hamming graph H(d,N) is isomorphic to the direct product of d
copies of the perfect graph KN . In fact, for two vertices x = (ξ1, . . . , ξd) and y = (η1, . . . , ηd),
the Hamming distance is one if and only if

ξ1 ∼ η1, ξ2 = η2, ξ3 = η3, . . . ξd = ηd or

ξ1 = η1, ξ2 ∼ η2, ξ3 ∼ η3, . . . ξd = ηd or

· · ·
ξ1 = η1, ξ2 = η2, ξ3 = η3, . . . ξd ∼ ηd.

This condition is equivalent to that x = (ξ1, . . . , ξd) and y = (η1, . . . , ηd) are adjacent in the
direct product KN × · · · × KN (d times).

Theorem 12.2.10 Let G = G1 × G2 be a direct product of two graphs and A = A1 ⊗ E +
E ⊗ A2 be the adjacency matrix expressed as an operator on C(V1) ⊗ C(V2), see Theorem
12.2.5. Then A = A1 ⊗E + E ⊗A2 is a sum of commutative independent random variables
with respect to 〈·〉q.

Proof. The details are omitted. We only observe that

〈(A1 ⊗ E)α(E ⊗ A2)
β〉q = 〈(A1 ⊗ E)α〉q〈(E ⊗ A2)

β〉q .
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In fact, by Theorem 12.2.7 we have

〈(A1 ⊗ E)α(E ⊗ A2)
β〉q = 〈Q(δo ⊗ δo), (A1 ⊗ E)α(E ⊗ A2)

β(δo ⊗ δo)〉
= 〈Q1δo, A

α
1 Eβδo〉〈Q2δo, E

αAβ
2δo〉

= 〈Q1δo, A
α
1 δo〉〈Q2δo, A

β
2δo〉

= 〈Q1δo, A
α
1 δo〉〈Q2δo, δo〉〈Q1δo, δo〉〈Q2δo, A

β
2δo〉

= 〈(A1 ⊗ E)α〉q〈(E ⊗ A2)
β〉q .

12.3 Star Products

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Fix vertices o1 ∈ V1 and o2 ∈ V2.
For (x, y), (x′, y′) ∈ V1 × V2 we write (x, y) ∼ (x′, y′) if one of the following conditions is
satisfied:

(i) x = x′ = o1 and y ∼ y′;

(ii) x ∼ x′ and y = y′ = o2.

Then V1 × V2 becomes a graph in such a way that (x, y), (x′, y′) ∈ V1 × V2 are adjacent if
(x, y) ∼ (x′, y′). This graph is denoted by G̃ for the moment.

Lemma 12.3.1 As an operator on C(V1) ⊗ C(V2) the adjacency matrix of G̃ is given by

Ã = A1 ⊗ P2 + P1 ⊗ A2

where Pi : C(Vi) → C(V2) is the projection defined by

Piδx =

{
δoi

, if x = oi,

0, otherwise.

Definition 12.3.2 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with fixed origins
o1 ∈ V1 and o2 ∈ V2. Set

V1 ⋆ V2 = {(x, o2) ; x ∈ V1} ∪ {(o1, y) ; y ∈ V2}

The induced subgraph of G̃ spanned by V1 ⋆ V2 is called the star product of G1 and G2 (with
contact vertices o1 and o2), and is denoted by G1 ⋆ G2 = G1 o1⋆o2 G2.

Example 12.3.3 C4 ⋆ C3

(1,1’ (2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C      C



42 CHAPTER 12. GRAPH PRODUCTS

Lemma 12.3.4 (1) G1 ⋆ G2
∼= G1 ⋆ G2.

(2) (G1 ⋆ G2) ⋆ G3
∼= G1 ⋆ (G2 ⋆ G3).

Proof. Exercises.

As usual, we regard the adjacency matrix Ai as an operator acting on C(Vi). Then the
adjacency matrix Ã of G̃ is an operator acting on C(V1×V2) = C(V1)⊗C(V2). Since G1 ⋆G2

is an induced subgraph, its adjacency matrix A is a just a submatrix of the adjacency matrix
of the direct product G1 × G2.

Theorem 12.3.5 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with fixed origins
o1 ∈ V1 and o2 ∈ V2. Let A be the adjacency matrix of the star product G1 ⋆ G2. Then, as
an operator acting on C(V1 ⋆ V2) we have

A = (A1 ⊗ P2 + P1 ⊗ A2) ¹C(V1⋆V2)

Proof. It follows from the above argument that A = AG1×G2 ¹C(V1⋆V2). By Theorem
12.2.5 we see that

A = AG1×G2 ¹C(V1⋆V2)= (A1 ⊗ E2 + E1 ⊗ A2) ¹C(V1⋆V2)

It is easily verified by definition that

(A1 ⊗ E2 + E1 ⊗ A2) ¹C(V1⋆V2)= (A1 ⊗ P2 + P1 ⊗ A2) ¹C(V1⋆V2),

which completes the proof.

We now consider the graph distance of the star product.

Lemma 12.3.6 Let G = G1 ⋆ G2. Then,

∂G = ∂G1×G2 ¹V1⋆V2 .

Proof. Take a pair of vertices of G1 ⋆ G2. For (x, o2), (x
′, o2) we have

∂G((x, o2), (x
′, o2)) = ∂G1(x, x′)

= ∂G1(x, x′) + ∂G2(o2, o2)

= ∂G1×G2((x, o2), (x
′, o2)).

For (x, o2), (o1, y) we have

∂G((x, o2), (o1, y)) = ∂G((x, o2), (o1, o2)) + ∂G((o1, o2), (o1, y))

= ∂G1(x, o1) + ∂G2(o2, y)

= ∂G1×G2((x, o2), (o1, y)).
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Theorem 12.3.7 The Q-matrix of the star product G = G1 ⋆G2 is a principal submatrix of
the Q-matrix of G1 × G2 as follows:

QG1⋆G2 = QG1×G2 ¹C(V1⋆V2)

Proof. An immediate consequence from Lemma 12.3.6.

Theorem 12.3.8 Let G = G1 ⋆ G2.

(1) q[G] = q[G1] ∩ q[G2].

(2) q̃[G] = q̃[G1] ∩ q̃[G2].

Proof. (1) Supose q ∈ q[G1] ∩ q[G2]. We see from Theorem 12.2.8 that QG1×G2(q) is
strictly positive definite. Since QG1⋆G2 is a principal submatrix by Theorem 12.3.7, it is also
strictly positive definite. Namely, q[G1] ∩ q[G2] ⊂ q[G].

Conversely, let q ∈ q[G]. Then QG1⋆G2(q) is strictly positive definite. Since Gi is isomet-
rically imbedded in G1 ⋆ G2, its Q-matrix is a principal submatrix of QG1⋆G2(q). Therefore,
QGi

(q) is also a strictly positive definite. Thus, q[G] ⊂ q[G1] ∩ q[G2].
(2) is proved similarly.

Remark 12.3.9 Theorem 12.3.8 was implicitly mentioned in Secton 9.1. The above argu-
ment does not require Theorem 9.1.3.

Theorem 12.3.10 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with fixed origins
o1 ∈ V1 and o2 ∈ V2. Let A be the adjacency matrix of the star product G1 ⋆ G2. Then, as
an operator acting on C(V1 ⋆ V2)

A = (A1 ⊗ P2 + P1 ⊗ A2) ¹C(V1⋆V2)

is a sum of Boolean independent random variables with respect to the vacuum state at (o1, o2),
see also Theorem 12.3.5.

Proof. Detailed argument is left to the reader. We only show that

〈(A1 ⊗ P2)
α(P1 ⊗ A2)

β(A1 ⊗ P2)
γ〉 = 〈(A1 ⊗ P2)

α〉〈(P1 ⊗ A2)
β〉〈(A1 ⊗ P2)

γ〉.

In fact, we first observe that

〈(A1 ⊗ P2)
α(P1 ⊗ A2)

β(A1 ⊗ P2)
γ〉 = 〈δo1 , A

α
1 P1A

γ
1δo1〉〈δo2 , P2A

β
2P2δo2〉. (12.5)

Here P1A
γ
1δo1 = 〈δo1 , A

γ
1δo1〉δo1 so that

〈δo1 , A
α
1P1A

γ
1δo1〉 = 〈δo1 , A

α
1 δo1〉〈δo1 , A

γ
1δo1〉. (12.6)

On the other hand,
〈δo2 , P2A

β
2P2δo2〉 = 〈δo2 , A

β
2δo2〉. (12.7)

Incerting (12.6) and (12.7) into (12.5), we obtain the desired relation.
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12.4 Comb Products

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We fix a vertix o2 ∈ V2. For
(x, y), (x′, y′) ∈ V1×V2 we write (x, y) ∼ (x′, y′) if one of the following conditions is satisfied:

(i) x = x′ and y ∼ y′;

(ii) x ∼ x′ and y = y′ = o2.

Then V1 × V2 becomes a graph in such a way that (x, y), (x′, y′) ∈ V1 × V2 are adjacent if
(x, y) ∼ (x′, y′). This graph is denoted by G1 Bo2 G2 and is called the comb product.

Lemma 12.4.1 As an operator on C(V1) ⊗ C(V2) the adjacency matrix of G1 Bo2 G2 is
given by

A = A1 ⊗ P2 + E1 ⊗ A2

where P2 : C(V2) → C(V2) is the projection onto the space spanned by δo2 and E1 is the
identity matrix acting on C(V1).

Proof. Exercise.

Example 12.4.2 C4 B C3

(1,1’ (2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C      C

The comb product is not commutative, but associative.

Lemma 12.4.3 (G1 B G2) B G3
∼= G1 B (G2 B G3).

Theorem 12.4.4 Let G = G1 B G2.

(1) q[G] = q[G1] ∩ q[G2].

(2) q̃[G] = q̃[G1] ∩ q̃[G2].

Proof. Since

G1 B G2
∼= (· · · ((G1 ⋆

|V1| times︷ ︸︸ ︷
G2) ⋆ G2 ⋆ · · · ) ⋆ G2,

the assertion follows from Theorem 12.3.8.

Theorem 12.4.5 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with fixed origins
o2 ∈ V2. Let A be the adjacency matrix of the comb product G1 B G2. Then, as an operator
acting on C(V1 × V2)

A = A1 ⊗ P2 + E1 ⊗ A2

is a sum of monotone independent random variables with respect to the vacuum state at
(o1, o2), see also Lemma 12.4.1.
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13 Random Graphs

13.1 The Erdős–Rényi Random Graph

For an integer n ≥ 1 we fix a set V of n elements, say,

V = {0, 1, 2, . . . , n − 1}.

We set
G = {G = (V,E) ; E ⊂ V with |E| = 2},

which is the set of graphs whose vertex set is V . Note that

|G| = 2(n
2).

Here we remark that, for example, the following two graphs are distinguished in G though
they are isomorphic.

s
1

s
2

s3

·
·
·
·
·

s
1

s
2

s3

T
T

T
T

T

Given a constant number 0 < p < 1, we define a probability measure on G by

P ({G}) = pe(G)(1 − p)(
n
2)−e(G),

where e(G) stands for the set of edges of G. It is easily checked that P ({G}) > 0 for all
G ∈ G and ∑

P∈G

P ({G}) = 1.

Definition 13.1.1 The probability space (G, P ) is called the Erdős–Rényi random graph
and is denoted by G(n, p).

The random graph G = G(n, p) is generated in such a way that for a pair of vertices
we decide by a coin toss whether to draw an edge or not. This is seen also in terms of the
adjacency matrix. The adjacency matrix of G ∈ G is denoted by AG. Since G is equipped with
a probability P , {AG ; G ∈ G} becomes a random matrix. This random matrix A = (Aij)
possesses the following properties:

(i) Aij is a random variables with values in {0, 1}.
(ii) Aii = 0 for all i.

(iii) Aij = Aji for all i ̸= j.

(iv) P (Aij = 1) = p and P (Aij = 0) = 1 − p for all i ̸= j.
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(v) {Aij ; 0 ≤ i < j ≤ n − 1} is independent.

Lemma 13.1.2 The mean degree of G(n, p) is given by

d̄(G(n, p)) =
1

n

∑
i∈V

E(degG(i)) = (n − 1)p.

Proof. For simplicity we write A = AG and A = (Aij). For i ∈ V we have

degG(i) =
∑
j∈V

Aij .

Hence

d̄(G) =
1

n

∑
i∈V

degG(i) =
1

n

∑
i,j∈V

Aij .

Taking the mean value over G, we come to

E(d̄(G)) =
1

n

∑
i,j∈V

E(Aij) =
1

n

∑
i̸=j

p =
1

n
(n2 − n)p,

which proves the assertion.

13.2 Mean Eigenvalue Distribution

For G ∈ G = G(n, p) let µG denote the eigenvalue distribution. It is known that µG is
characterized by

Mm(µG) =

∫ +∞

−∞
xmµG(dx) =

1

n
Tr (Am), m = 1, 2, . . . .

Since G is a random graph, we may think of the mean eigenvalue distribution:

µn,p = E(µG) =
∑
G∈G

P ({G})µG .

Obviously, µn,p is a finite sum of δ-measures. We are interested in the following questions:

(1) Find a good expression of µn,p.

(2) Asymptotics of µn,p as n → ∞.

(3) In particular, in the sparse limit, i.e., as

n → ∞, p → 0, np → λ (constant). (13.1)

We see from Lemma 13.1.2 that in the sparse limit the number of vertices tends to the
infinity while the mean degree remains finite.
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Lemma 13.2.1 Let o ∈ V be fixed. Let νG be the spectral distribution of G in the vacuum
state at o ∈ V . Namely,

Mm(νG) =

∫ +∞

−∞
xmνG(dx) = 〈δo, A

m
Gδo〉, m = 1, 2, . . . .

Then the mean eigenvalue distribution coincides with E(νG), i.e.,

µn,p = E(µG) = E(νG).

Proof. Let i ∈ V , i ̸= o. Let σ : V → V be the transposition of i and o. Then σ
induces naturally a transformation on G, which is denoted by σ̃. Then,

Aσ̃(G) = σ−1AGσ

so that
G ∼= σ̃(G)

and σ̃ : G → G is measure-preserving, i.e.,

P (σ̃−1(G)) = P (G), G ∈ G.

With these observation, we have

〈δi, A
m
Gδi〉 = 〈δσ(o), A

m
Gδσ(o)〉 = 〈σδo, A

m
Gσδo〉

= 〈δo, σ
−1Am

Gσδo〉 = 〈δo, A
m
σ̃(G)δo〉.

Taking the mean values in both sides and using the invariance of P , we get

E(〈δi, A
m
Gδi〉) = E(〈δo, A

m
σ̃(G)δo〉) = E(〈δo, A

m
Gδo〉).

Consequently,

Mm(µn,p) =
1

n
E(Tr (Am

G )) =
1

n

n−1∑
i=0

〈δi, A
m
Gδi〉

= E(〈δo, A
m
Gδo〉) = Mm(E(νG)).

This proves that µn,p = E(µG) = E(νG).

13.3 Computing the Moments

It follows from Lemma 13.2.1 that

Mm(µn,p) = E((Am)00), m = 1, 2, . . . . (13.2)

The main task is to compute Mm(µn,p). For m = 1 we have obviously,

M1(µn,p) = E((A)00) = 0 (13.3)
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For m = 2 we have

M2(µn,p) = E((A2)00) =
∑
i∈V

E(A0iAi0).

Here we note that A00 = 0 and A0i = Ai0. Moreover, for i ̸= 0, we have A2
0i = A0i. Thus,

M2(µn,p) =
∑
i̸=0

E(A0i) = (n − 1)p. (13.4)

For m = 3 we have

M3(µn,p) = E((A3)00) =
∑
i,j∈V

E(A0iAijAj0).

Because A is the adjacency matrix we need only to take the case 0 ̸= i ̸= j ̸= 0 into account.
This case is equivalent to say that 0, i, j are distinct. Then

M3(µn,p) =
∑

0 ̸=i ̸=j ̸=0

E(A0iAijAj0) =
∑

0 ̸=i ̸=j ̸=0

E(A0i)E(Aij)E(Aj0) = (n − 1)(n − 2)p3.

For a general m we start with

Mm(µn,p) = E((Am)00) =
∑

0 ̸=i1 ̸=···≠im−1 ̸=0

E(A0i1Ai1i2 · · ·Aim−10). (13.5)

Our goal is to obtain a concise expression of (13.5). We need notation. For m ≥ 2 let
W(V,m) be the set of sequences of elements in V of the form:

[i] : (i0 ≡) 0 ̸= i1 ̸= i2 ̸= · · · ≠ im−1 ̸= 0 (≡ im). (13.6)

Given [i] ∈ W(V,m) as in (13.6), let G[i] denote the underlying graph. Namely, its vertex
set V (G[i]) is defined to be the set of elements appearing in the sequence [i] (including 0).
Two distinct vertices j, j′ ∈ V (G[i]) are adjacent by definition if there exists 0 ≤ s ≤ m − 1
such that {is, is+1} = {j, j′}. Thus the edge set E(G[i]) is defined. It is then obvious that [i]
becomes an m-step walk in the graph G[i] starting from and terminating at 0 and passing
through all the edges. We will assign a label to every edge of G[i]. For e = {j, j′} ∈ E(G[i])
define

κ(e) = |{0 ≤ s ≤ m − 1 ; {is, is+1} = {j, j′}}|. (13.7)

Namely, κ(e) is the number of how many times the walk [i] passes through the edge e.

Lemma 13.3.1 For m = 1, 2, . . . we have

E((Am)00) =
∑

[i]∈W(V,m)

pe(G[i]), (13.8)

where e(G[i]) is the number of edges of G[i].
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Proof. Let m ≥ 2 and consider a general term in (13.5):

E(A0i1Ai1i2 · · ·Aim−10), [i] ∈ W(V,m).

On computing the above expectation we need to note that Ajj′ = Aj′j appears with multi-
plicities inside the bracket. So, writing

A0i1Ai1i2 · · ·Aim−10 =
∏

0≤j<j′≤n−1

A
sjj′

jj′ , sjj′ = 0, 1, 2, . . . ,

we apply independence condition (A3) to obtain the factorization:

E(A0i1Ai1i2 · · ·Aim−10) =
∏

0≤j<j′≤n−1

E(A
sjj′

jj′ ).

Obviously, sjj′ ≥ 1 occurs only when {j, j′} ∈ E(G[i]) and sjj′ = κ({j, j′}). In this case,
since Ajj′ is {0, 1}-valued,

E(A
sjj′

jj′ ) = E(Ajj′) = p.

Consequently,

E(A0i1Ai1i2 · · ·Aim−10) = pe(G[i]),

and, taking a sum over [i] ∈ W(V,m), we obtain (13.8).

We proceed to compute the right hand side of (13.8). Let m ≥ 2. A labeled rooted graph
of size m, denoted by L = (V , E , o, κ), consists of

(L1) a connected graph (V , E) with 2 ≤ |V| ≤ m;

(L2) a distinguished vertex o ∈ V which is called the root;

(L3) a map κ : E → {1, 2, . . . ,m} such that
∑

e∈E κ(e) = m.

The map κ is called the label of L. For L = (V , E , o, κ) we set

v(L) = |V|, e(L) = |E|.

We note an obvious inequality:

v(L) − 1 ≤ e(L) ≤ m, (13.9)

where the first one follows by connectivity of (V , E) and the second from (L3).
Two labeled rooted graphs are called isomorphic if there exists a graph-isomorphism

preserving the root and label. Let Λm denote the complete set of representatives of labeled
rooted graphs of size m up to isomorphisms.

For [i] ∈ W(V,m), m ≥ 2, the underlying graph G[i] is naturally equipped with structure
of a labeled rooted graph of size m, which is denoted by L[i] = (G[i], 0, κ), where the label κ
is defined in (13.7). Noting that the product factor in (13.8) is constant on [i]’s generating
isomorphic L[i]’s, we obtain the following



50 CHAPTER 13. RANDOM GRAPHS

Lemma 13.3.2 For m = 1, 2, . . . we have

E((Am)00) =
∑
L∈Λm

|{[i] ∈ W(V,m) ; L[i] ∼= L}|pe(L) (13.10)

Finally, we study the combinatorial number appearing in the above formula. We need
further notation. A unicursal walk on L = (V , E , o, κ) ∈ Λm is a walk on the graph (V, E)
from the root o to itself such that every edge e ∈ E is passed through as many times as
κ(e). It follows from (L3) that a unicursal walk is necessarily of m-step. Let u(L) denote
the number of unicursal walks in L.

Theorem 13.3.3 For m = 1, 2, . . . we have

Mm(µn,p) = E((Am)00) =
∑
L∈Λm

|Aut (L)|−1u(L)t(L; n)pe(L), (13.11)

where

t(L; n) = (n − 1)(n − 2) · · · (n − (v(L) − 1)).

Proof. By Lemma 13.3.2 we need only to show that

|{[i] ∈ W(V,m) ; L[i] ∼= L}| = |Aut (L)|−1u(L)t(L; n), L ∈ Λm.

Let L = (V, E , o, κ) ∈ Λm be fixed. First we choose ϕ : V → V such that ϕ(o) = 0. There
are t(L; n) choices of such maps. Each unicursal walk on L gives rise to [i] ∈ W(V,m). But
the same [i] is obtained with multiplicity |Aut (L)|.

For example,

M4(µn,p) = (n − 1)p + 2(n − 1)(n − 2)p2 + (n − 1)(n − 2)(n − 3)p4

M5(µn,p) = 5(n − 1)(n − 2)p3

+ 5(n − 1)(n − 2)(n − 3)p4 + (n − 1)(n − 2)(n − 3)(n − 4)p5

Formulae equivalent to (13.11) have been implicitly or explicitly used in computation of
moments of a random matrix, see e.g., Bauer–Golinelli (2001), Hiai–Petz (2000), Wigner
(1955, 1957, 1958).

13.4 The Sparse Limit.

Using Theorem 13.3.3 we will calculate the sparse limit:

Mm = lim Mm(µn,p),

where the limit is taken as (13.1). In view of (13.11) we need only to consider

(n − 1)(n − 2) · · · (n − (v(L) − 1)) pe(L) ∼ nv(L)−1−e(L)(np)e(L). (13.12)
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If L is not a tree, i.e., contains a cycle, then we have v(L) ≤ e(L) and (13.12) vanishes in
the sparse limit. If L is a tree, we have v(L) = e(L) + 1. In this case, (13.12) implies that

lim(n − 1)(n − 2) · · · (n − (v(L) − 1)) pe(L) = λe(L).

Thus, we have

Mm = lim Mm(µn,p) =
∑
L∈Λ∗

m

|Aut (L)|−1u(L) λe(L),

where

Λ∗
m = {L ∈ Λm ; L is a tree }.

Since a tree admits no unicursal walk of odd steps, for an odd m we have u(L) = 0 so the
odd moments vanish.

Theorem 13.4.1 Let Mm be the sparse limit of the m-th moment of mean spectral distri-
bution the Erdős–Rényi random graph G(n, p). Then for an odd m we have

Mm = 0,

and for an even m,

Mm =
∑
L∈Λ∗

m

|Aut (L)|−1u(L) λe(L). (13.13)

We have

M2 = λ, M4 = λ + 2λ2, M6 = λ + 6λ2 + 5λ3

13.5 Partition Statistics and Approximations.

There is another expression for Mm in Theorem 13.4.1. In fact, we are interested only in
the moments of even orders. Using Lemma 13.3.1 we start with

M2m = lim
∑

[i]∈W(V,2m)

pe(G[i]). (13.14)

Taking Theorem 13.4.1 into account, for the limit in the right hand side it is sufficient to
take the sum over [i] ∈ W(V, 2m) whose underlying graph G[i] is a tree.

Let [i] ∈ W(V, 2m) be given as

[i] : 0 ≡ i0 ̸= i1 ̸= i2 ̸= · · · ̸= i2m−1 ̸= i2m ≡ 0,

and assume that G[i] is a tree. We associate a partition ϑ of {1, 2, . . . , 2m}. For s, t ∈
{1, 2, . . . , 2m} we write s ∼ t if {is−1 , is} = {it−1 , it}. Then s ∼ t becomes an equivalence
relation, which in turn yields a partition of {1, 2, . . . , 2m}, denoted by ϑ = ϑ[i]. Let PT(2m)
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denote the set of all partitions of {1, 2, . . . , 2m} obtained in this way. Obviously, for ϑ = ϑ[i]
we have e(G[i]) = |ϑ|. Then (13.14) becomes

M2m = lim
∑

ϑ∈PT(2m)

∑
[i]∈W(V,2m)

ϑ[i]=ϑ

p|ϑ|

= lim
∑

ϑ∈PT(2m)

(n − 1)(n − 2) · · · (n − |ϑ|) p|ϑ|

=
∑

ϑ∈PT(2m)

λ|ϑ|.

Summing up,

Theorem 13.5.1 The sparse limit of the 2m-th moment of mean spectral distribution of the
Erdős–Rényi random graph G(n, p) is given by

M2m =
∑

ϑ∈PT(2m)

λ|ϑ|. (13.15)

It is obvious by construction that each block of ϑ ∈ PT(2m) consists of even number of
points. Let PNC(2m) be the set of non-crossing partitions of {1, 2, . . . , 2m} and set

PTNC(2m) = {ϑ ∈ PNC(2m) ; each v ∈ ϑ consists of even number of points}.

It is then shown that PTNC(2m) ⊂ PT(2m). However, PT(2m) contains some crossing parti-
tions too. This would hinder us from getting an explicit expression of the limit distribution.
An analytical approach, which yields also an implicit description of the limit distribution, is
found in Dorogovtsev–Goltsev–Mendes–Samukhin (2003).

We show two approximations for the limit distribution whose m-th moment is Mm.

Proposition 13.5.2 Let πλ/2 be the free Poisson distribution with parameter λ/2 and π∨
λ/2

its reflection, i.e., π∨
λ/2(dx) = πλ/2(−dx). Then

M2m−1(πλ/2 ¢ π∨
λ/2) = 0, M2m(πλ/2 ¢ π∨

λ/2) =
∑

ϑ∈PTNC(2m)

λ|ϑ|. (13.16)

Proof. The free Poisson distribution πλ/2 is characterized by the constant free cumu-
lants rk(πλ/2) = λ/2. Then, rk(π

∨
λ/2) = (−1)kλ/2 and

rk(πλ/2 ¢ π∨
λ/2) = rk(πλ/2) + rk(π

∨
λ/2) =

{
λ, k is even,

0, k is odd.

Applying the free moment–cumulant formula:

Mk =
∑

ϑ∈PNC(k)

∏
v∈ϑ

r|v| ,
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we have
M2m−1 = 0, M2m =

∑
ϑ∈PTNC(2m)

λ|ϑ|,

which completes the proof.

Comparing (13.15) and (13.16), we can expect that the sparse limit of mean spectral
distribution of the Erdős–Rényi random graph is a kind of deformation of the free Poisson
distributions.

Next we look for the leading term of M2m for a large λ. In fact,

M2m =
m∑

k=1

|{ϑ ∈ PT(2m) ; |ϑ| = k}|λk

= |{ϑ ∈ PT(2m) ; |ϑ| = m}|λm + O(λm−1)

= |PNCP(2m)|λm + O(λm−1),

where PNCP(2m) stands for the set of non-crossing pair partitions of {1, 2, . . . , 2m}. The
number |PNCP(2m)| is well known as the Catalan number and is the 2m-th moment of the
Wigner semicircle law.

Proposition 13.5.3 For the m-th moment of mean spectral distribution the Erdős–Rényi
random graph G(n, p) we have

lim
λ→∞

lim λ−m/2Mm(µn,p) =
1

2π

∫ +2

−2

xm
√

4 − x2 dx, m = 1, 2, . . . ,

where the second limit is the sparse limit as in (13.1).
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14 Quantum Walks

14.1 From Random Walks to Quantum Walks

A random walk on Z is defined by a transition matrix T , a matrix indexed by Z × Z
satisfying

(T )ij ≥ 0,
∑
i∈Z

(T )ij = 1 for all j ∈ Z.

j i

Tij

An isotropic random walk is defined by T = 1
2
A, where A is the adjacency matrix.

i+1i i

Definition 14.1.1 Let µ be a probability distribution on Z. Then,

µt = et(T−E)µ (14.1)

where µ is identifined with a vector indexed by Z, is called the distribution of the continuous
time random walk Zt on Z with an initial distribution µ. Namey,

P (Zt = x) = µt(x).

Let us examine tht right-hand side in (14.1) defines a probability distribution on Z. By
definition,

etT µ(x) =
∞∑

n=0

tn

n!
T nµ(x).

Since T is a transition matrix, T nµ is a prpbability distribution so that∑
x∈Z

etT µ(x) =
∞∑

n=0

tn

n!

∑
x∈Z

T nµ(x) =
∞∑

n=0

tn

n!
= et.

Hence,

e−t
∑
x∈Z

etT µ(x) = 1,

which shows that et(T−E)µ is a probability distribution on Z.
Differentiating both sides of (14.1) by t, we obtain

d

dt
µt = (T − E)et(T−E)µ = (T − E)µt .
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Therefore, µt is the solution of the initial value problem:

d

dt
µt = (T − E)µt , µ0 = µ. (14.2)

In particular, for T = 1
2
A we see that

(T − E)µt =
1

2
(A − 2E)µt .

We note that

1

2
(A − 2E)µt(x) =

1

2
(µt(x + 1) + µt(x − 1) − 2µ(x)) =

1

2
∆µt(x),

where ∆ = A − 2E is the discrete Laplacian. Thus, (14.2) becomes

∂

∂t
µt =

1

2
∆µt , (14.3)

which is known as the heat equation.
What is a quantum counter part? A plausible candidate is obtained by transferring (14.3)

into the Schrödinger equation:

i~
∂ϕt

∂t
= Hϕt.

Let us consider the Hamiltonian H = −∆ in view of (14.3) and set ~ = 1. Then the
Schrödinger equation becomes

i
∂ϕt

∂t
= −∆ϕt ,

or equivalently,
∂ϕt

∂t
= i∆ϕt = i(A − 2E)ϕt. (14.4)

Given an initial state ϕ, the solution to (14.4) is given by

ϕt = eit∆ϕ = e−2iteitAϕ. (14.5)

In the classical case, we have

P (Zt = x) = µt(x) = e
t
2

∆µ(x) = e
t
2

(A−2E)µ(x).

In the quantum case, from (14.5) we set

P (Xt = x) = |ϕt(x)|2 = |eit∆ϕ(x)|2 = |eitAϕ(x)|2. (14.6)

Since eitA is unitary (this is an informal statement, we need to check the selfadjointness of
A), we have ∥eitAϕ∥2 = ∥ϕ∥2 = 1. Hence∑

x∈Z

|ϕt(x)|2 = ∥ϕt∥2 = ∥e−2iteitAϕ∥2 = ∥ϕ∥2 = 1,

which means that (14.6) defines a probability distribution on Z.
Now we give the following
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Definition 14.1.2 Let A be the adjacency matrix of a graph G = (V,E) and ϕ ∈ ℓ2(V )
with ∥ϕ∥ = 1. A (cotinuous-time) quantum walk on G with an initial state ϕ is a “stochastic
process” {Xt} such that

P (Xt = x) = |eitAϕ(x)|2 = |〈δx, e
itAϕ〉|2, x ∈ V.

Here eitAϕ is called the amplitute wave function.

Remark 14.1.3 The quantum walk {Xt} is not defined as a stochastic process but only
time evolution of probability measures is specified.

We shall study the case when the initial state is the vacuum state: ϕ = δo, where o ∈ V
is a fixed origin. In that case

P (Yt = n) =
∑
x∈Vn

|〈δx, e
itAδo〉|2, Vn = {x ∈ V ; ∂(x, o) = n},

is also interesting.

14.2 Method of Quantum Decomposition

Let µ be the spectral distribution of A in the vacuum state δo, namey,

〈δo, A
mδo〉 =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . . (14.7)

According to the stratification:

V =
∞⋃

n=0

Vn

we define a unit vector by

Φn =
1√
|Vn|

∑
x∈Vn

δx , n = 0, 1, 2, . . . ,

and let Γ(G) ⊂ ℓ2(V ) be the subspace spanned by them. Moreover, the adjacency matrix
admits a quantum decomposition:

A = A+ + A− + A◦.

We assume

(H1) Γ(G) is invariant under the actions of the quantum components A+, A−, A◦.

This is a condition for a graph and the choice of an origin. Under (H1) we find a Jacobi
coefficient ({ωn}, {αn}) in such a way that

A+Φn =
√

ωn+1 Φn+1 ,

A−Φ0 = 0, A−Φn =
√

ωn Φn−1 ,

A◦Φn = αn+1Φn.
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The spectral distribution µ is also determined by the Jacobi coefficient ({ωn}, {αn}) ap-
pearing in the famous three-term recurrence relation satisfied by the orthogonal polynomials
{Pn(x)}.

We pose the second condition for the graph G under consideration.

(H2) For any n = 0, 1, 2, . . . and k = 1, 2, . . . the number of k-step walks from o to x ∈ Vn

does not depend on the choice of x but depends only on n and k.

For example, (H2) is satisfied if G is rotationally symmetric around o, i.e., for any pair
x, y ∈ V with ∂(x, o) = ∂(y, o) there exists an automorphism α ∈ Aut (G) such that α(o) = o
and α(x) = α(y). In particular, (H2) is satisfied by a distance-transitive graph.

Theorem 14.2.1 Notations and assumptions being as above, the amplitude wave function
is given by

〈δx, e
itAδ0〉 =

1

∥Pn∥
√

|Vn|

∫ +∞

−∞
Pn(s)eitsµ(ds), x ∈ Vn . (14.8)

Moreover,

〈Φn, e
itAΦ0〉 =

1

∥Pn∥

∫ +∞

−∞
Pn(s)eitsµ(ds), n = 0, 1, 2, . . . . (14.9)

Proof. We note first that

〈δx, e
itAδo〉 =

∞∑
k=0

(it)k

k!
〈δx, A

kδo〉 =
∞∑

k=0

(it)k

k!
|{o → x ; k-step walk}|

does not depend on the choice of x ∈ Vn by (H2). Hence we have

〈δx, e
itAδo〉 =

1

|Vn|
∑
y∈Vn

〈δy, e
itAδo〉 =

1√
|Vn|

〈Φn, e
itAΦ0〉. (14.10)

Using the isometry Γ(G) → L2(R, µ) defined by Φn 7→ ∥Pn∥−1Pn, the last expression becomes

=
1√
|Vn|

∥Pn∥−1〈Pn, e
itsP0〉µ =

1

∥Pn∥
√

|Vn|

∫ +∞

−∞
Pn(s)eitsµ(dx).

Thus, we obtain (14.8). (14.9) is already clear.

Corollary 14.2.2 Under the same assumptions as in Theorem 14.2.1 we have

P (Y (t) = n) = |〈Φn, e
itAΦ0〉|2.

Proof. In fact, by (14.10) we obtain

P (Y (t) = n) =
∑
x∈Vn

|〈δx, e
itAδo〉|2 = |〈Φn, e

itAΦ0〉|2.
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14.3 Growing Regular Graphs

Let G(ν) = (V (ν), E(ν)) be a growing regular graph. As in Section 11.3 we assume that
Γ(G(ν)) is asymptotic invariant, i.e., the following three conditions:

(A1) limν κ(ν) = ∞, where κ(ν) is the degree of G(ν).

(A2) For each n = 1, 2, . . . the limit

ωn = lim
ν

M(ω−|V (ν)
n ) < ∞

exists and
lim

ν
Σ2(ω−|V (ν)

n ) = 0, sup
ν

max(ω−|V (ν)
n ) < ∞.

(A3) For each n = 0, 1, 2, . . . the limit

αn+1 = lim
ν

M(ω◦|V (ν)
n )√

κ(ν)
< ∞

exists and

lim
ν

Σ2(ω◦|V (ν)
n )

κ(ν)
= 0, sup

ν

max(ω◦|V (ν)
n )√

κ(ν)
< ∞.

Theorem 14.3.1 Notations and assumptions being as above, let (Γ, {Ψn}, B+, B−) be the
interacting Fock space associated with {ωn} and B◦ the diagonal operator defined by {αn},
where {ωn} and {αn} are given in conditions (A1)–(A3). Then we have

lim
ν

〈
Φ(ν)

n ,
Aϵm

ν√
κ(ν)

· · · Aϵ1
ν√

κ(ν)
Φ

(ν)
j

〉
= 〈Ψn, B

ϵm · · ·Bϵ1Ψj〉, (14.11)

for any ϵ1, . . . , ϵm ∈ {+,−, ◦}, m = 1, 2, . . . , and j, n = 0, 1, 2, . . . .

Let µ be a probability distribution on R whose Jacobi coefficient is given by ({ωn}, {αn}),
or equivalently the vacuum spectral distribution of B+ + B− + B◦. Let {Pn(s)} be the
orthogonal polynomials associated with µ. Note that ({ωn}, {αn}) does not necessarily
determine µ uniquely, but {Pn(s)} uniquely. Then (14.11) implies that

lim
ν

〈
Φ(ν)

n ,

(
Aν√
κ(ν)

)m

Φ
(ν)
0

〉
=

1

∥Pn∥

∫ +∞

−∞
Pn(s)smµ(ds), (14.12)

for any m = 1, 2, . . . and n = 0, 1, 2, . . . . Therefore, for any polynomial f(s) we have

lim
ν

〈
Φ(ν)

n , f

(
Aν√
κ(ν)

)
Φ

(ν)
0

〉
=

1

∥Pn∥

∫ +∞

−∞
Pn(s)f(s)µ(ds). (14.13)

We should like to replace f(s) with eits. Among others, a simple possible case is stated in
the following
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Theorem 14.3.2 Notations and assumptions being as above, we assume in addition that µ
is supported by a compact interval [−L,L]. If ∥Aν∥ ≤

√
κ(ν) L for all ν, then (14.13) holds

for any continuous function f ∈ C(R). In particular,

lim
ν

〈
Φ(ν)

n , exp

(
it

Aν√
κ(ν)

)
Φ

(ν)
0

〉
=

1

∥Pn∥

∫ +∞

−∞
Pn(s)eitsµ(ds). (14.14)

Proof. Given f ∈ C(R), we may choose a polynomial g(s) which approximates f(s)
uniformly on the interval [−L,L], say |f(s) − g(s)| < ϵ for |s| ≤ L. Then∣∣∣∣∣

〈
Φ(ν)

n , f

(
Aν√
κ(ν)

)
Φ

(ν)
0

〉
−

〈
Φ(ν)

n , g

(
Aν√
κ(ν)

)
Φ

(ν)
0

〉∣∣∣∣∣
≤

∥∥∥∥∥ f

(
Aν√
κ(ν)

)
− g

(
Aν√
κ(ν)

) ∥∥∥∥∥ ≤ sup

{
|f(s) − g(s)| ; |s| ≤ ∥Aν∥√

κ(ν)

}
.

By assumption the last quantity is bounded by ϵ independently of ν. Then, by an obvious
application of triangle inequality we get (14.13).

Corollary 14.3.3 Notations and assumptions being as in Theorem 14.3.2, we have

lim
ν

P

(
Y (ν)

(
t√
κ

)
= n

)
=

1

∥Pn∥2

∣∣∣∣∫ +∞

−∞
Pn(s)eitsµ(ds)

∣∣∣∣2 .

Example 14.3.4 A growing homogeneous tree Tκ satisfies conditions (A1)–(A3) with ωn ≡
1 and αn ≡ 0. The corresponding distribution µ is the famous Wigner semicircle law,
supported by [−2, 2] and having the density

√
4 − s2/2π. The corresponding orthogonal

polynomilas {Ũn(s)} are given by

Ũn(s) = Un

(s

2

)
, Un(cos θ) =

sin(n + 1)θ

sin θ
,

where {Un(x)} are called the Chebychev polynomials of the second kind. Note that ∥Ũn∥ = 1.
Then (14.14) becomes

lim
κ→∞

〈
Φ(κ)

n , exp

(
it

Aκ√
κ

)
Φ

(κ)
0

〉
=

1

2π

∫ 2

−2

Ũn(s) eits
√

4 − s2 ds.

The last integral is computed, by direct application of Gegenbauer’s integral formula for the
Bessel function:

1

2π

∫ 2

−2

Ũn(s) eits
√

4 − s2 ds = (n + 1) in
Jn+1(2t)

t
.

Consequently,

lim
κ→∞

P (Y (t) = n) = (n + 1)2 J2
n+1(2t)

t2
, (14.15)

where informally,

Y (t) = lim
κ→∞

Y (κ)

(
t√
κ

)
.
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Remark 14.3.5 For the distribution obtained in (14.15) we have further the asymptotics
for a large t. The distribution of Y (t)/t as t → ∞ is given by

x2

π
√

4 − x2
χ[0,2)(x)dx.

The proof due to Konno is by characteristic function, i.e., based on the identity:

lim
t→∞

E
(

exp

(
iz

Y (t)

t

))
=

∫ 2

0

eizx x2

π
√

4 − x2
dx.

14.4 Open Questions (Proposals)

1. Modify the argument in Example 14.3.4 to get concrete results for deformed vacuum
states (Haagerup states).

2. Formulate the argument in Section 14.3 for a deformed vacuum states for a general
growing regular graphs.

3. Concrete computation for Hamming graphs, Johnson graphs, and other distance-
regular graphs. Some results are known for H(d, 2) (d-dimensional hypercube) as d → ∞,
CN and KN as N → ∞, see Konno”s lecture notes.

4. Limit theorems for discrete-time quantum walks on homogeneous trees Tκ.

5. Relationship between discrete-time and continuous-time quantum walks.

6. Relation to a quantum random walk introduced by Biane.
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