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8 Homogeneous Trees
8.1 Main Problems

Definition 8.1.1 A connected graph is called a tree is it has no cycles. A tree is called
homogeneous if it is regular.

Figure 8.1: Homogeneous tree of degree 4

Let T, be the homoeeous tree of deree kK > 2 and A = A, be the adjacency matrix. We
choose and fix a vertex o € T,; as an origin (root). Our first interest lies in

(A™) oo = (0o, A™6,) = [{m-step walks from o to itself}|.
In particular, we will study

(1) Integral representation of (A™),,:

+o0o
(A™)po = / ™ (dz), m=1,2,...,

o0

where p,.(dx) is a probability distribution on R.
(2) Asymptotic behavior of (A™),, for a large k.

We call p,, the vacuum spectral distribution of the homogeneous tree 7.

8.2 Vacuum Spectral Distribution

As usual, we start with the stratification of the vertex set V' of T:

V=V, Vu={yeV;dox)=n}
n=0

It is easy to see that

Vol =1, Vil =k, |Val=k(k—1), ..., [Vu|=r(k—1)""" (8.1)
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Figure 8.2: Stratification of T}

Define a unit vector @, in ¢*(T}) by

(I)n - |Vv’n|_1/2 Z 51’

€V,

and let I'(T}) be the linear span of {®q, ®q,...}.
Now let A = AT + A~ be the quantum decomposition of the adjacency matrix A = A,..
Let us observe the actions of A* on I'(T}). First, since

|Vn|1/2A+<bn = Z A+5m - Z 5y = |Vn+1|1/2q)n+17

eV YyEVni1

A 1/2
AtT®, = (’ !V+I1‘) D -

we obtain

In view of (8.1) we obtain

AYDy = \/k Dy, AT®,=\/k—1D,, (n>1). (8.2)
In a similar manner, we consider
Vo' PA=®, = Y A6,
:EEVn

For n > 2 there are x — 1 vertices in V,, which have a common end-vertex in V,,_;. Hence,
for n > 2

Val'"PA @, =Y A0, =(k=1) > 6, = (k- 1)V,

x€eVy, yeEVn_1
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While, for n = 1 we have

Vi['PA ) = > A6, = Kb, = Ky .

zeV]

Then, in view of (8.1) we obtain
A D=0, A D =kdy, AP, =vk—10,_; (n>2). (8.3)

We see from (8.2) and (8.3) also that I'(T},) is invariant under the actions of A*.
Summing up,

Proposition 8.2.1 Notations being as above, (I'(T,),{®,}, AT, A7) is an interacting Fock
space associated with the Jacobi sequence

Wi=K, W=w3=--=k—1.

The vacuum spectral distribution pu, is a probability measure whose Jacobi coefficients
are

Wy =K, Wy=wg=-=K-=—1, o =g =---=0.
In fact, we have
+o0
(Bg, A" D) = (D, (AT + A7)"Dg) = / ™ (dr), m=12.... (8.4)
We also note that i, in (8.4) is uniquely determined since Carleman’s condition
> -
n=1 Wn
is satisfied.

Summing up,

Proposition 8.2.2 The vacuum spectral distribution of Ty is a probability distribution pu.
characterized uniquely by its Jacobi coefficients

w1 = R, C()Q:w3:...:,{_]_7 0512042:“-20_
Remark 8.2.3 An explicit form of pu, is known:

k Ak —1) —a?

pr(de) = o ORI 1 w1 2y (7)dz.

— X

The detail will be discussed later.
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8.3 Asymptotic Spectral Distribution
We are interested in the asymptotic behavior of u, as kK — o0o. Note first that

mean ([, ) = /+°° zp(dr) = (A) = 0,

—00

var(iu) = [ (o — mean(p))jua(dr) = (42), = deg(o) =

o0

Therefore,
A AT AT

==+
VE VE VK
is a reasonable scaling for k — oo.

It follows from (8.2) and (8.3) that

A Rl
\/_ (I)Q (I)l, \/_ n+1 n > 1) (85)
A Ly

By = 0, O, = ®y, ne (n>2) (8.6)

R T

The actions of —= in the limit as Kk — oo are now easily expected.

NG

Definition 8.3.1 An interacting Fock space associated with the Jacobi sequence w,, =1 is
called the free Fock space. Let (Tgee, {¥,}, BT, B7) be a free Fock space. Then,

B+(I)n = (I)n+1 (n 2 0), B_(I)Q = O, B_(I)n == (I)n—l (TL Z 1) (87)

Theorem 8.3.2 (Quantum Central Limit Theorem) For any €,...,¢, € {£} and
m=1,2,... we have

Aﬁm Ael
thgo <¢)07 \/E \/%q)0> — <\I/0,B€m ,..Bs1\1,0>

For short, we say that
-

A
lim —& = B*

K—00 \/_

in the sense of stochastic convergence.

ProoOF. More generally, we may prove that

I < Ar Ay > (U;, B -~ B, (8.8)
1m iy o« e is mo o, ., . . .
Pl \/— \/— J

for any ¢,7 > 0. The proof is by induction on m. For m = 1 we need to prove that

Ag
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for any i,j > 1 and €; = £. Suppose that ¢, = +. By (8.5),

At
lim <q)z, —Hq)0> = lim <<D“q>1> = <\I/“\I/1> = <\IJZ',B+\I[0>,

K—00 \/E
, Af ‘ k—1 N
nhg)lo D, ﬁ ®; ) = ,}1}010 T (@i, @j1) = (¥, Ujpa) = (¥, BT ),
where j > 1. Thus, (8.9) is shown for ¢; = 4. The case of ¢, = — is similar.
We now come toe the induction step, but the idea is similar. The detailed proof is left
to the reader. |

8.4 Vacuum Distribution of Free Fock Space
Let (Tgee, {¥n}, BT, B™) be a free Fock space.
Lemma 8.4.1 Form=1,2,...,

(To, (B + B~ 1) = 0, (8.10)
(2m)!

(Wo, (BT + B7)""¥) = mi(m+ 1)l

(8.11)

Proor. We start with
(W, (BY + B )FWo) =) e, e € {£}(Tg, B -+ BU),

where
1, if B%... B2, = U,

Uy, B*--- B1Wg) =
o o) {O, otherwise.

Then (8.10) follows immediately from the actions of B* in (8.7). For k = 2m, B%m ... B1¥, =
Vg occurs if and only if

61207
€1+€220,

€1+62+"'+€2m_120,
€1+ €+ -+ €ap_1 + €0 = 0.

Such a sequence (€1, €, . . ., €2) € {+, —}*™ is called a Catalan path of length 2m and denote
by C,, the set of such Catalan paths. With this notation we come to

<\I]07 (B+ + B*)2m\1j0> = ‘Cm’
It is then sufficient to show that

Cml = m!(m + 1)1

The proof is given separately. |
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Lemma 8.4.2 Form =1,2,... we have

(2m)!

Cnl = i+ D1

PROOF. We set

Cm:{€:(€17627-.-7€2m)€{+’_}2m;61_’_...+€2m20}‘

Obviously, C,, C Cn. Each € € C,, corresponds to a path connecting the vertices

(0,0), (1,€1), (2,€1 +€2), ..., (2m, €1+ €2+ -+ €3) = (2m,0)

in order. Since we have

5 2m (2m)!

Cml = = ol

m m!m!
for |Cp| it is sufficient to count the number of paths in Cm \ Cpn. By definition a path
€ = (€1,€9,...,€2y) in Cp, \ C,, has one or more vertices with negative ordinates. Let k be
the abscissa of the first such vertex. Then 1 < kK < 2m —1. If K = 1 we have ¢ = —1.
Otherwise,
6120, 61+62207 ceey €1+"'+€k—1:07

El+"'+€k—1+€k:_1~

Let L be the horizontal line passing through (0, —1). Then € has one or more vertices which
lie on L and (k,—1) is the first one. Define € to be the path obtained from € by reflecting
the first part of € up to (k,—1) with respect to L (see Fig. 8.3). Then € becomes a path

(0,0)

0,-1)

0,-2)

Figure 8.3: Counting the Catalan number

from (0, —2) to (2m, 0) passing through (k, —1) as the first meeting point with L. It is easily
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verified that € < € is a one-to-one correspondence between C,, \ C,, and the set of paths
connecting (0, —2) and (2m,0). Obviously, the number of such paths is

( am ): (2m)! =G\ Cal

m+ 1 (m+1)l(m—1)
Hence
Co| = (2m)! (2m)! _ (2m)!
" mim!l (m+DIm =1 ml(m+ 1)
which completes the proof. |

Definition 8.4.3 We call

the mth Catalan number.

Theorem 8.4.4 We have

1 +2
(U, (BT + B7)™¥g) = —/ z™V4 — 22 dz, m=12.... (8.12)

2 ),

Proor. By direct computation we may obtain

+2
S 2?4 — 22 dx =0,
2m ),
+2 ]
i x2m~/4—x2daszﬂ.
21 ), m!(m + 1)!
Then the assertion follows by combining Lemma 8.4.1. |

Definition 8.4.5 The probability distribution

1
— /4 — 221 d
o V4 — 2?19 (v)d
is called the Wigner semicircle law. This is normalized to have mean 0 and variance 1.

Theorem 8.4.6 (Central Limit Theorem) Let A, be the adjacency matriz of a homoge-
neous tree T,.. We have

A\ 1 [
lim al = — V4 — x? dx, m=1,2,....
K—00 \/E " 2 J_o
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PROOF. We start with
A\ At AT\
o =(DQy,| =+ —= P, ).
() ) (oo (G 2) o)
A+

A_ m
Expanding (— + 7) and applying Theorem 8.3.2 (QCT), we obtain
K

NG
A m
lim = = \I/(), B+—|—B_ m\PO .
n{(5) ). - e

Then with the help of Theorem 8.4.4, we get the assertion. |

The Wigner semicircle law is a unique probability distribution satisfying (8.12). In other
words, the Wigner semicircle law is the solution of a determinate moment problem. In fact,
its moments of even orders are given by

(2m)!
M. m — C'm -
2 m!(m + 1)!
and satisfies Carleman’s condition:
. 1
> M, = +oo.
m=1

Then by a general result on the weak convergence of probability measures, we conclude the
following
Corollary 8.4.7 Let . be the vacuum spectral distribution of T,.. Then

+oo

i [ ()it = o [ @A

K—0QO
—00

for all f € Cpaa(R). In other words, the scaled fi.(dx) = p.(v/k dz) converges weakly to the
Wigner semicircle law as k — 00.

8.5 Exercises

1. Complete the proof of Theorem 8.3.2.

2. Prove that the Wigner semicircle law is the solution of a determinate moment problem.



9 Deformed Vacuum States and Free Poisson Distri-
butions

9.1 (@Q-Matrix

Let G = (V, E) be a graph and 0(z,y) denotes the graph distance between two verices
z,y € V. For =1 < ¢ <1 we define a matrix () = ), with elements

(@ = .

By definition Qg = I. We call Q) the Q-matriz of G.
Let o € V be a fixed origin of the graph GG. A linear functional on the adjacency algebra
A defined by

A3 a— (a), = (Qd,, ad,)

is called a deformed vacuum functional.

Proposition 9.1.1 The deformed vacuum functional is a state if
(i) QA= AQ;
(i) @ is a positive definite kernel on' V', i.e.,
> F@)d? T fy) =0
z,yeV

for all f:V — R with finite supports.

Theorem 9.1.2 The deformed vacuum functional (-), on the homogeneous tree T}, is a state
forall =1 < ¢ < 1.

PrROOF. We check the conditions (i) and (ii) in Proposition 9.1.1. First, (i) is clear
because T} is distance-regular. For (ii) it is sufficient to show that the @-matrix of a finite
tree is positive definite for all —1 < ¢ < 1. We employ Bozejko’s theorem. |

Theorem 9.1.3 (Bozejko) Let V be a set which is a union of two subsets Vi, Va whose

intersection consists of a single point, say o € V.. Namely,
V=Wul, VinV={o}

Fori = 1,2 let K; be a positive definite kernel on V; and assume that K1(o,0) = Ks(0,0) = 1.
Define a C-valued function K on'V xV by

Ki(z,y), if v,y € Vi,
K(z,y) = Ky(z,y), Z:fw,yEVQ,

Ki(z,0)Ks(0,y), ifxeVi,yels,

Ky(z,0)Ki(o,y), ifxeVy, yeV.

Then K s a positive definite kernel on V.
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ProOF. Let f € Co(V). We may write f = fi + fo with f; € Cy(V;) though uniqueness
does not hold for V; N V5 = {o}. Then,

Zf(ZL‘)K(:L‘ Zfl leyfl()
z,yeV z,yeVh
+ Z f2 ) Ka(z,y) f2(v)
z,yeVa
+ Y A@ K@y hy)
zeV1,yeVa
+ Y h@@) K@y hy. (9.1)
zeVa,yeVy

We now observe that
2

> @) Ki(w,9)8.(y)| - (9.2)

z,yeVy

Zfl Kll’O =

zeVy

Since K7 is a positive definite kernel on Vj, the right-hand side in (9.2) is the square of the
inner product

(000, = Y Filw) Kiz, y)d0(y).

z,yeVy
Then by the Schwarz inequality we have

|<f1a 50>K1|2 S <.f1a fl>K1 <5oa 50>K1

Namely,
2
Zfl ) Ki(z,0)| < Ki(0,0) Zfl ) Ky (x,y) f1(y)
ey z,yeVy
Z fi(2) Ki(z,9) f1(y). (9.3)
z,yeVy
Similarly,
S hW) Ka(y.0)| < Y falw) Ka(z,y) fa(y). (9.4)
yeVa z,yeVs

On the other hand, by definition we have

Z mK(%y)fz(?J)

eV, yeVs
= Y (@) Ki(z,0)Ks(0,y) fay)
zeVr,yeVs
=3 fil@) Ki(2,0) Y Kalo,y) fo(y)
zeVy yeVa
—Zfl K1$02f2 ) Ka(y, o). (9.5)

zeVy yeVa
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Similarly,

Y R@) K@y h) =Y [) Ki(z,0) ) f2y) Ky, o). (9.6)

z€Va,yeVh zeV] yeVa

Combining (9.3)—(9.6), we see that (9.1) becomes

ZWKI Zfl KlfL'O

2

Zf2 ) Ka(y, 0

z,yeV zeV] yeVs
+Zf1 K1$02f2 ) K»(y,0)
zeVy yeVa
+Zf1 leo ng K2y7
eV yeVa

2

Z'fl K1IO +Zf2 K2 y, ) ZO
zeV] yeV2
This completes the proof. i

Definition 9.1.4 Let G; = (V4, E1) and Gy = (Va, Ey) be two graphs with fixed origins
01 € V) and oy € V5. The star product of G and G5 is obtained by glueing 0, and 0y, and is
denoted by G * Gs.

Figure 9.1: Star product G; x G»

Theorem 9.1.5 Let Gy = (V4, Es) and Gy = (Vi, Ey) be two graphs with with distance
functions Og, and Og,, respectively. Taking origins 0, € Vi and oy € Vi, we form the
star product G = G1 x Gy = (V, E), the distance function of which is denoted by Og. The
Q-matrices of G1, Go and G are defined by

Ql = (qacl(a:’y)):c,yGVu Q2 - (anQ ($7y))$,y€V27 Q - (qac(x’y)%t,yev-

If both Q1 and Qo are positive definite kernels (for some q) on Vi and Vs, respectively, then
50 18 Q.
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PROOF. It is easy to see by definition of a star product that

9, (2,y), if v,y € V1,
0 if V
aG(x7y>:: G2(x7y>7 ? T,y € Va,
aGlﬁu(h)+_aG20b7y)a 1fx<€lﬁ,y<§¥§,
an(x702>+aG1(Olay)7 ifxe‘/%ye‘/l-
Then @, @1, Q) satisfy the conditions of Theorem 9.1.3. |

PROOF OF THEOREM 9.1.2 (CONT.) For the graph 7} (e—e) the Q-matrix takes the

form:
_ |t q
Q_Lz 1}'

It is straightforward to see that @ is positive definite for all ¢ € [—1,1]. Since any finite tree
is obtained from T} by repeated application of star products, the ()-matrix of a finite tree is
positive definite for all ¢ € [—1,1] by Theorem 9.1.5.

Now consider T}, and f € Cy(T,). We may choose a finite sub tree of T}, say G, such
that f vanishes outside G. Note that the distance function 0g is just the restriction of that
of T,.. Hence the ()-matrix of GG, say ()¢, is the restriction of that of T,.. Therefore,

> F@ V) = f@) T fy),

z,ycVv z,yeG

which is > 0 since ()¢ is positive definite by the above argument. |

Definition 9.1.6 The deformed vacuum state (-), on the adjacency algebra of 7T} is called
the Haagerup state. In fact, Theorem 9.1.2 is originally due to Haagerup, while our proof is
based on Bozejko’s argument.

9.2 Spectral Distributions in Haagerup States

Let T, be the homogeneous tree of degree x and consider the Haagerup states (-), with
—1 < ¢ < 1. We are interested in the asymptotics of the spectral distribution y, , determined
by

+oo
(A™), = / 2™ s o (d), m=1,2,....

o

It is reasonable to call p,. , a deformed Kesten distribution.
We first note the following

Lemma 9.2.1 (1) mean (u,,) = (A), = Kq.

(2) var (pueq) = X2(A) = w(1 — ¢%).
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Proor. (1) By definition
(A)g = (Qdo, Ad,) = (d, QAG,) = (QA)0o

= (Qoa(A)zo =D Qo = > _ 4"

zeV T~o T~o

=q{r e V;z~ o} =gx.

(2) Since
Ba(A) = (A7), — (A),

q
by definition, we need to compute (A?),. In a similar manner as in (1) we see that

(A%)g = k(K — 1)¢* + &,
from which the assertion follows. |

Lemma 9.2.1 suggests that a reasonable object to study is not A itself but the normalized

adacency matrix defined by
A—(A),  A-nkqg

Se(4) Vel —¢)

<(M>m> o om=1,2,....
k(1 —¢?) .

9.3 Asymptotic Spectral Distribution

We will study

Having already chosen an origin o of Tk, we have the natural stratification and the
quantum decomposition of A = AT + A~ (A° = 0 for a tree). Accordingly, the normalized
adjacency matrix is decomposed into three parts:

A—kq At L A~ I
VEQ=¢) Ve(l—=¢) Ve(l—¢) r(l—¢%)

For simplicity we introduce C¢ = C*(k, q) by

AT A~ —Kq
R O . S o P S 9.7
VE(l = ¢?) VE(l—¢?) k(1= ¢?) 0
In view of the actios of A* on I'(T}) given in (8.2) and (8.3), we have
+ + k— 1
C (I)O \/1: O @ = 1 n+1 ’)’L > ]_)
_ _ k—1
C 9y = 0@12— 15 ¢, = Wq}n—l (n>2)

(n>0)
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We are interested in the asymptotics as k — oo (the growing trees) so we need to take a
suitable balance with ¢q. The reasonable scaling is as follows:

k—00, qWEk—7v  q—0, (9.8)

where v € R is a constant. Under this scaling limit the limit actions of C° are rather
apparent. In particular, in view of the actions of C'+, we expect that the limit is described
in terms of the free Fock space.

We need to discuss the mixed moments:

(Com - O, = (QDy, O - - - C1 ),

where the limit actions of C°" ... C are redy observed. Consider the vector Q®,. By
definition

Q(I)O = Z<6m Q(DO>5:E = Z(Q)xodz

z€eV zeV
_ an(m,o)éx _ Z Z q"0
xeV n=0 zcV,

= an“/n’lﬂq)n
n=0

Since |V,| ~ k" (see (8.1)), under the scaling limit as in (9.8) the coefficient converges:
qn|Vn|1/2 N ,yn

Let (Tee, {¥n}, BT, B™) be the free Fock space. For z € C define
Q. =) 2", (9.9)

This is a formal sum but makes a sense as a linear functional on the x-algebra Ay, generated
by BT, B~ and diagonal operators. Namely, for a € Agee,

o0

(e, aWo) = Y 2"(V,,, ady)

n=0

is a finite sum and

a— (Q,,aVy)
is a linear functional on Age... We call ), is a coherent vector.
Remark 9.3.1 (1) The infinite series (9.9) converges in norm for |z| < 1.

(2) €, is an eigenvector of B™, i.e., B~Q, = zQ,. More precisely, (Q,, BtVU,) = (2Q,,¥,,)
for n.
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Theorem 9.3.2 (Quantum Central Limit Theorem) Let A = A, be the adjacency ma-
triz of T, and define C¢ = C(k,q) as in (9.7). Let (Tgee, {V,}, BT, B™) be the free Fock
space and set B° = —~I (scalar operator). Then

hm <CEW e Cq)q - <Q,y, Bem te BEI\IJO)free;

where the limit is taken as kK — 0o, ¢ — 0 with g/k — v € R (constant).

PrROOF. The proof is already cer by the bove argument. |

Corollary 9.3.3 For the normalized adjacency matriz of T, we have

A _ m
lim <(—"“-’)> > = (0, (BY + B =A™ U)pee,  m=12,....
q

k(1 —¢?

9.4 Free Poisson Distributions

In this section we meet one of the most basic result on the free Fock space. Let P be the
vacuum projection, i.e.,

Note that BtfB~ =1 — P.

Lemma 9.4.1 For z € C and m = 1,2,... we have:

(s, (B + B™)™Uy) = (Uy, (B + B~ + 2P)™), (9.10)
(s, (B + B~ — 2)™U) = (¥, (B + B~ — zB*B~)™T,), (9.11)

where 5 is the coherent vector with parameter Z.

Proor. (9.11) follows from (9.10). In fact,
(Q, (BT + B~ — 2)"¥,)

(1) ayrie (B + 5w

n

I
NE

=0

Y (T:) (—2)™ " (Uy, (B" + B~ + 2P)" W)

3

n—=

= (Ug, (Bt + B~ + 2P — 2)™¥).
Since BT B~ = 1 — P, the last expression becomes
= <\I/0, (B+ + B — ZB+B_>m\I/0>,

which proves (9.11). The proof of (9.10) is left to the reader. |
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In particular, for any v € R there exists a probability measure p, such that

+o0
(Q,, (BT + B~ —9)"Wy) = (Vy,(BT + B~ —yB*B™)") = / "™y (d)
for m =1,2,.... In fact, the Jacobi coefficients of 1, is given by
Wy =wyg=---=1, ar=0, ag=az3=--=—7. (9.12)

Then, Corollary 9.3.3 yields the following

Theorem 9.4.2 (CLT) For the normalized adjacency matriz of T, we have

A- " oo
lim S = / "y (dx), m=1,2 ...,
rl=¢?)) [, -

where p., is uniquely determined by the Jacobi coefficients given by (9.12).
We are now in a good position to give the following

Definition 9.4.3 Let (I'fee, {¥,}, BT, B™) be the free Fock space and A > 0 a constant.
The vacuum spectral distribution of (B* 4+ v/A)(B~ 4 v/A) is called the free Poisson distri-
bution or Marchenko—Pastur distribution with parameter \. In other words, the free Poisson
distribution with parameter A is a probability measure v, uniquely specified by

+00
(Wo, (B + VA (B~ + V)" W) / o(dr), m=1,2,.... (9.13)
Lemma 9.4.4 (1) mean (v,) = var (1)) = .
(2) The Jacobi coefficients of vy are given by
wlzwgz---:)\, 041:)\, (IQZO[gz"':)\+1. (914)

Proor. (1) follows from (2) since mean (v,) = al and var (v,) = wl.
(2) Note that

(B* + VA (B~ +VA) =VAB" +VAB +(A\+B'B").

Since
VABT®, =VA®,., n>0,
we obtain w; = wy = -+ = A. Similarly, from
(A + BTB™)®q = A\, A+B*TB)®,=\A+1)®, (n>1)
we see that oy = Aand ay =ag =--- = A+ 1. |

Comparing (9.12) and (9.14), we claim the following
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Theorem 9.4.5 For v # 0, p, is obtained from the free Poisson distribution vy, with
parameter 1/~* by reflection and normalization. For v =0, u, is the Wigner semicircle law.

ProoF. Use Exercise 3. |

Remark 9.4.6 The density function of the free Poisson distribution is given explicitly. For
A > 0 we set

palz) = = (zxﬂ; L VR <a< 4V,

0, otherwise.

The free Poisson distribution with parameter A is given by

(1 —=X)dp + pa(x)de, 0< A<,
pa(z)d, A> 1.

9.5 Exercises
1. Show that var (i, ,) = k(1 — ¢*). [Lemma 9.2.1]
2. Show that
(Q, (BT + B7)"Wy) = (Uy, (Bt + B~ +2P)"V), 2e€C, m=1,2,....

[Lemma 9.4.1 (1)]

3. Let u be a probability distribution and ({w,}, {an}) the Jacobi coefficients. Show the
following;:

(1) The Jacobi coefficients of the translated p(dz —s) are given by ({w,}, {an+s}), s € R.

(2) The Jacobi coefficients of the scaled u(A~'dz) are given by ({Nw,}, { \a,}), A € R,
A # 0.

(3) In particular, the Jacobi coeflicients of the reflected p(—dz) are given by ({w,, }, {—au}).
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10 Stieltjes Transform and Continued Fraction

10.1 Overview

Let P (R) be the set of probability measures on R having finite moments of all orders.
With each p € Pan(R) we associate the moment sequence {My(u) = 1, My(u), Ma(p), ...}
defined by

M, (1) :/ Ooxmu(dx), m=12,.... (10.1)

By the Gram-Schmidt orthogonalization we consruct the orthogonal polynomials {Py(z) =
1, P (x),...,P,(x) =a™ +---} from which we obtain the Jacobi coefficients ({w,}, {a,}).

For an infinite sequence of real numbers {My = 1, My, Ms, ...} we define the Hankel
determinants by

My M, ... M,
M, M, ... M,

A, =det | = 7 L m=0,1,2,.. . (10.2)
M, My ... Moy,

Let 9 be the set of infinite sequences of real numbers {My = 1, My, M,, ... } satisfying one
of the following two conditions:

(i) [infinite type] A,, > 0 for all m =0,1,2,...;

il) |finite type| there exists mg > 1 such that Ay > 0,A; > 0,...,A,,,—1 > 0 and
(i) [ yp : A
Apy = A1 =+ =0.

Let J be the set of pairs of sequences ({w,}, {a,}) satisfying one of the following condi-
tions:

(i) [infinite type] {w,} is a Jacobi sequence of infinite type and {a,,} is an infinite sequence
of real numbers;

(ii) [finite type] {w,} is a Jacobi sequence of finite type and {a,,} is a finite real sequence
{ai, ..., g}, where my > 1 is the smallest number such that w,,, = 0.

We have the following diagram:

Spfm(R)
surj / \iurj
m —— 3

bij

We shall discuss how to recover p € P (R) from ({wn}, {an}) € J when the uniqueness
holds.
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10.2 Finite Jacobi Matrices
Let ({wn}, {an}) € J and set
631 \/w—l

N N
Vo o o

19

: (10.3)

whenever w,,_1 > 0. A matrix of the form (10.3) is called a Jacobi matriz (of finite type).

We set
1
0
€o = |.
0
Proposition 10.2.1
1 n,
(o, (z — T)eg) = 1 2 Wnol
Z—Q—Z—Qy—2Z—Q3— " —2Z—Qp
Proor. We set
Jo
f
(z-T)'eo=f=]|"
fnfl

First note that
(e, (2 = T)eo) = (eo, f) = fo-
On the other hand, we see from (z — T') f = ey that
(z — 1) fo— Ve fr = 1,
—Vw; fic1 + (2 — 1) fi = V/wisr fir1 =0, 1=1,2,...,n—-2,
—an_g + (z — an) fno1 = 0.

From the first relation in (10.5) we obtain

p{iemm v}

(10.4)

(10.5)
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and hence 1
fo= 7 (10.6)
Z— 1 — /W1 —1
Jo
Similarly, from (10.5) we obtain
—Vwi fi-1 + fi {(Z — Qiy1) — VWil %} =0,
and therefore
\ Wi ffZ = Wi f (107)
S V Wit1 ?1
Finally, from (10.5) we have
fnfl Wn—1
v/ Wr = 10.8
nt fnf2 Z = O ( )
Combining (10.6)—(10.8), we come to
1 w1 Wy Wn—1
fO = )
Z—1—Z—Qy—Z—Q3— " —Z—Qp
from which (10.4) follows. i
Proposition 10.2.2 For k =1,2,...,n we define monic polynomials Py(z) = 2% +--- and
Qk—l(z) = zk_l + .. by
1 _ _
w1 w2 Wk-1 Qk 1(2) . (10.9)
Z—Q—Z—Qy—Z— Qg —— 2 — Pi(z)
Then, the following recurrence relations are satisfied:
P =1, P =z—
0(2) ) 1(2) =2 —an, (10.10)
Pi(2) = (2 —ag)Pe1(2) —wr—1Pr—a(2), k=2,3,...,n,
Qo(z) =1, Qi(z)=2z—as, (10.11)
Qr(2) = (2 — ary1)Qr-1(2) — wrQr—2(2), k=2,3,...,n—1
PrRoOOF. By induction, see also Exercise 1. |
Proposition 10.2.3 (Determinantal formula) For k =1,2,...,n it holds that
[ Z — (1 —1/ W1 i
—1/ W1 zZ — Q9 —1/ Wy
—1/ W2 Z — (O3 —1/ W3
Pk(Z) = det = det(z - Tk)

—VWk—2 2 — Qf_1

-\ Wk—1

—V Wk—1

Z— O |
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Fork=2,3,...,n it holds that

et~/ )
—\/60_2 & — Qg —\/00_3
Qr—1(z) = det

—VWg—2 201 T/ W1

—V Wk-1 2= O

PROOF. By expanding the determinants in the last column one can check easily that
these determinants satisfy the recurrence relations in (10.10) and (10.11). |

We now need spectral properties of the Jacobi matrix T'.
Proposition 10.2.4 Fvery eigenvalue of T'=T,, is real and simple. Moreover,
SpecT,, ={\ € C; P,(\) =0}. (10.12)

PROOF. Since T is an n X n real symmetric matrix, it has n real eigenvalues. (10.12)
is obvious from det(z — T,) = P,(2), see Proposition 10.2.3.

We prove that every eigenspace of T is of one dimension. Let A be an eigenvalue of T’
and f a correswponding eigenvector. We write

Jo
r-| "
Jn—1
Then (A —T)f = 0 is equivalent to the following
A —a1)fo— w1 =0,
V@i ficr + (A= @) fi = Vwis firn =0, i=1,2,...,n—2, (10.13)
—anﬁ + (A=) fao1 =0.

Now let h,g be two eigenvectors corresponding to A\. Choose (o, ) € R?, («a, 3) # (0,0),
such that agg + Bho = 0. Since f = ag + fh satisfies (A — T') f = 0, we have (10.13). Note

that fo = 0. Then, succesive application of (10.13) implies f; = --- = f,_1 = 0. Thus we
have f = 0, which means that g and h are linearly dependent. Consequently, the eigenspace
corresponding to A is of one dimension. |

Proposition 10.2.5 For \ € SpecT" we put
Fy(N)

Pi(N)/ /w1

fA) = (10.14)

Pn_l()\)/\/wn_l et

Then f(A) # 0 and Tf(X) = Af(\). Namely, f(\) is an eigenvector associated with A.
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PROOF. f(A) # 0 is obvious since Py(\) = 1. In view of (10.10) we obtain

Pl()\) )\ aq .,
Pk )\) ( —Oék)Pk_l(/\) —wk_lPk_g()\), ]{?:273,...,’@— 1,

0=A\—an)Pr1(N) —wn_1Pra(N).

The last identity comes from P, (\) = det(A — T') = 0. Then a simple computation yields

Vwr A 5 ar = (A — 1) Py(N),

V Wi
Pr(A Pr_1(A Pr_o(A
SR B e Ry
wk/‘...wl wk*l...wl CL)ka"'CUl
for k=2,3,...,n—1, and
P,_1(A P,_o(A
0:()\_%)#_ wn_lﬁ-
Wp—1"" W1 Wp—2 W1
The above relations are combined into a single identity: (A —T)f(\) = 0. |
Proposition 10.2.6 Define a measure u on R by
p= > IFOI7%6, (10.15)
AeSpec T
where f(\) € R™ is given by (10.14). Then, p € P (R) and
—+00 d
{eg, (z —T)eg) :/ M. (10.16)
oo 2 X

PROOF. Since every eigenvalue of T is simple (Proposition 10.2.4), we see from Propo-
sition 10.2.5 that {||f(A\)[|7'f(\); A € SpecT'} becomes a complete orthonormal basis of C™.
Hence

(eo, (2 =T)tea) = Y Leo, IS FONUSOITHFN), (2 = T)'ea)

AeSpecT

= S0 e, SO = T) 7 F (N, )
AeSpecT

= 3 1FWIE-N

A€SpecT

where we used (eg, f(A\)) = Bp(A\) =1and (z—T)1f(\) = (z = X)"1f(N\). Then, in view of
(10.15) we obtain

{eg, (z —T) eg) = Z Hf(_)”)\ _/_OOM

AeSpecT
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which proves (10.16).
We need to show that p(R) = 1. This may be proved by observing asymptotics of both
sides of (10.16). In fact, with the help of Propositions 10.2.1 and 10.2.2 we see that

2Qn-1(2)

lim z(eg, (z — T) 'eg) = lim =1, (10.17)
Re 220 Fery ()

where we applied the fact that both zQ,,_1(z) and P,(z) are monic polynomials of degree n.

On the other hand,
+oo d +oo
lim z / pldr) _ / u(dr) = p(R) (10.18)

Re 2=0 o 27X 0o
by the dominated convergence theorem. We see from (10.17) and (10.18) that u(R) = 1.
|

Definition 10.2.7 For any probability measure p (not necessarily having moments) the

integral
+oo d
Gu(z) = / () : Imz #0

z—XT

converges and G, (z) becomes a holomorphic function in {Im z # 0} = C\R. We call G,(z)
the (Cauchy-) Stieltjes transform of p.

Theorem 10.2.8 Let ay,...,a, € R and w; > 0,...,w,_1 > 0. Then the polynomi-
als Py(z), Pi(2), ..., Po_1(2) defined by the recurrence relation (10.10) are the orthogonal
polynomials associated with p defined in (10.15). Therefore, the Jacobi coefficients of u is

({ar,...,an}, {wi,...,wu_1}). Moreover, the Stieltjies transform G, (z) admits a continued
fraction expansion:
Go(2) /+O° p(dx) 1 Wy Wy Wh_1
z) = = :
. e 22— 2 —Z—Qp—Z— Q33— — 2 — Qp

PROOF. By using the recurrence formula (10.10) we may see easily that

Py(T)eg = ey, Pu(T)eg = /wi-+-wiex, k=1,2,....,n—1. (10.19)

On the other hand, for any polynomials p, ¢ with real coefficients we have

(p(T)eo,a(T)eo) = Y (p(T)eo, [FON FON AT N, alT)eo)

AESpecT

= > IFOI 0. p(T) FONa(T) £ (), eo)

AESpecT

= > IIFIZ(NaN) eo, SN (FA), e0)

A€SpecT

= > IFWIp(Na()

AESpec T

= [ p@ateutan),

oo
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Hence, in particular,
—+oco
| Bl)Rdaalde) = (BT PT)er) = -+ wnles. )

so that Py(z), Pi(2),..., Ph,_1(2) are the orthogonal polynomials associated with pu. |

10.3 General Case

Let ({wn}, {an}) € J be of infinite type. Then for any n, defining a Jacobi matrix 7,, as in
(10.3), we obtain a probability measure yu,, and the polynomials { Py(z), Pi(x), ..., P,(z)} as
in the previous section. Since these polynomials are defined by the recurrence relation with
{wnt, {an}), {Po(z), Pi(x),...,P,(z)} are common for all p,, for m > n. Consequently,
given ({wy}, {a,}), we have an infinite sequence of probability measures mu,,, and an infinite
sequence polynomials

Py(x)=1, Pi(z),....,P(x)=2a"4+---, ,....

Lemma 10.3.1 Let p € P (R) be a probability measure whose Jacobi coefficients are
({wn}, {an}) € 3. Then, for any m =1,2,... we have

im M, (pn) = My (1)

n—oo

PROOF. In general, M,,(v) is described by the first m terms of the Jacobi coefficients
of v. Suppose that n > m. Then we see that

Mm(“ﬂ) - Mm(/vbn+1) == Mm(ﬂ)a

from which the assertion is clear. |

Theorem 10.3.2 Let p € P (R) be the solution of a determinate moment problem and
({wn}, {an}) be the Jacobi coefficients. Then the Stieltjies transform G, (z) admits a contin-
ued fraction erpansion:

+00
() :/ p(dx) _ 1 Wy Wy Wh_1

2= - —Z—Qp—Z—Q3—-—2—Qy

o0

where the right-hand side converges in {Im z # 0}.

Proor. By Theorem 10.2.8 we have
/+°° pn(dz) 1 wy Woy Wh_1

o 2T 20 —Z—0—Z—Q3—-r—Z— 0y

On the other hand, it follows from Lemma 10.3.1 and the assumption that u, converges to
w weakly. Since x — 1/(z — z) is a bounded continuous function on R, we have

T p(dz) / o p(da)

lim
n—oo _ z — X

. z—x

o0

This completes the proof. |
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10.4 Exercises

1. Let {a,} and {b,} be two sequences of complex numbers. Define a linear fractional

transformations by

Qg
T(w) = ,
r(w) T

Define {A,} and {B,} respectively by the following recurrence relations:

w e CU{oo}.

A,l = 1, AO - O,
An :bnAn,1+anAn,2, n = 1,2,...,

B,l = 0, BO == 1,
Bn = ann,1 + CLan,Q y n = 17 2, e

Prove that
An+An_1w
1 Ty _n T A1
(1) 7o maw) = Fo
a; ay as a, Ay

9y L 2 28 no_
@ bi+ba+bg+---+by By

2. The Kesten distribution with parameters (p,q), p > 0, ¢ > 0, is a probability distri-
bution whose Jacobi coefficients are given by

w1:p7 w2:w3:...:q’ anzo

Prove that the Stieltjes transform is given by

G(z):1 P q q B 1(p—2Q)Z+p\/z2—4q_

Z—z—z—z— 2 P> —(p—q)z?
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11 Growing Regular Graphs

11.1 Actions of A° Revisited
Let G = (V, E) be a graph of degree k and o € V' a fixed origin. Let

V=V, A=A"+A4 +4A

be the stratification and the quantum decomposition of the adjacency matrix A. For n =
0,1,2,... we define a unit vector by

and denote I' = I'(G) by the linear space spanned by {®q, 1, ... }.
It is important to study the actions of the quantum components A€ on the vectors &,,.
We need notation. For z € V and € € {+, —, 0o} we set

we(z)={yeV;y~x, do,y) =0(o,x)+ €}|.

Figure 11.1: w.(x)

By definition we have

VIVl AT, =3 A6, = 3w ()5, (11.1)

€V, YEVn+1

The mean value of w_(y), where y runs over V,,;1, is defined by

M(ocfVo) = e 2 w-(0)
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With this (11.1) becomes

VIVal ATO, = Z M(w_|Vii1)d, + Z (w-(y) — M(W—|Vn+1))5y

YEVni1 YyEVnt1
= M(wflanrl) |Vn+1’ (I)n—H + Z (w* (y) - M(w*|Vn+1))5y .
YEVni41
Hence,
Va
AT®, = M(w_[Voya) % ®,41+ EYD, (11.2)
where

Et®, =

L ST (w0 (y) = M(w|Vayn)dy (11.3)

We regard the first term in the right-hand side of (11.2) as the principal part of the action
of AT and the second the error part. The norm of the error part is given by

2

|E*®,|* = Al w-(y) = M(w-[Vi11))dy
|v y€Vn+1
’V‘ Z {w w |Vn+1)}2
ern+l
‘Vn 1|
‘V+| ( *‘VnJrl) (114)
where
2w |Vi) = > {w-(v) M- Var)Y’
|Vn+1| YEVni1
is the variance of w_(y), where y € V,,,.
In a similar manner, we have
A, =M Vo -
n — (W+|Vn_1) |V | @n—l + E Cbn, (115)
AP, = M(w.|V,) P, + E°D,, , (11.6)

where the error terms are given by

E o, =

wl? S (@ily) = M Va1))dy

W S (wely) — M(wol V)3,

yeVy,

EO
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The norms of these error terms are

_ Vi
1B, 2 = % 2004 Vi), (1L7)
HE°<I>nH2 = Zz(wo]Vn). (11.8)

(11.2), (11.5) and (11.6) are unified into the following form:

Vite
Aeq)n — M(w7€|vn+e) %Q)nﬂ —|—E€CI)n’ € c {+,—,O}. (119)

If all the error terms vanish, the actions of the quantum components A€ gives rise to an
interacting Fock space structure and the spectral distributions of A is obtained by means of
quantum probabilistic techniques. Such a case happens typically for homogeneous trees and
distance-regular graphs.

When we consider a growing graphs, we may expect the error terms vanish asymptotically.
Slightly more precise, when we consider a growing graph G = (V(”), E(”)), for capturing
the asymptotic properties of A®) it is necessarily to take the normalization. Let us consider
the mean and variance of A = A® in a state ¢,

<A>V = QO,,(A), 212/(‘4) = QO,,((A - <A>u)2)

The normalized adjacency matrix is given by

= 11.1
S S TS TS (1110
It follows from (11.9) that
A€ 1 [Viael
®, = M(w_|V, .. b, . +——FED, 11.11
N R R VA [ AR O N
and )
1 1 |Vn+6| 2
— F®,|| = —— Y w_e|Vite). 11.12
H&(A) s2(A) v, el (1112)

If theses errors in (11.12) vanish in the limit, the asymptotiv actions of the quantum compo-
nents in the right-hand side in (11.10) are described in terms of an interacting Fock space.

11.2 An Exampe: Z" as N — oo

Let us consider the integer lattice Z. Each x € Z" is expressible in the form:

N
r=(E,6, . EN) =) &Gei, G EL
=1
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where ey, ..., ey are the standard basis. Taking o = (0,0,...,0) to be the origin, we intro-
duce the stratification and the quantum decomposition of the adjacency matrix:

N =JV., A=AT+A
n=0
Here we note that A° = 0 since there is no edge lying in a stratum V,.
We consider the vacuum state at o € V. Then,
(A) =0, Y2(A) = (A?) = deg(o) = 2N.

Let us check (11.11) and (11.12). It is clear that wi(y) is not necessarily constant on each
V,, but for a large N it is “almost” constant. In fact, for a large IV, most generic vertices in
V,, have the form

y=ce;, ke, k- te, 1<ip<ip<---<ip <N, (11.13)

namely, in the right hand side each e; appears with multiplicity at most one. Note that

(2N)"

Tt O(N™1), (11.14)

Vil = (Z) 2" + O(N"!) =

where the principal term corresponds to the number of generic vertices. For a generic y € V,
we have w_(y) = n, since a vertex = € V,,_; which is adjacent to y is obtained by subtracting
one e;, from the right hand side of (11.13). Hence,

M(w_|V,) =n, M(wi|V,) =2N —n

and
2w (Vi) = |é—n’(n —12O(N"Y) = O(NY).

Moreover,

‘VnJrl‘ _ VY 2N + O(N—l/Q)
Vo] vn+1

Then, (11.11) and (11.12) become

At n+1 V2N 1
—— P, = +ONY2) | @iy + —— ED,, ,
V2N V2N <\/n T1 ( )] P V2N

1
— E9,
H V2N

Consequently,

_ % <n2juv1 + 0(1)) O(N"1) = O(NY),

A+

O, =\/n+1®,, +O(N?). (11.15)

E
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In a similar manner, we obtain

A ®, =+/n &1+ O(NY). (11.16)

Nony

This means that T'(Z") is asymptotically invariant under the (normalized) quantum compo-
nents. It is immediately seen from (11.15) and (11.16), at a formal level at least, that the
actions of normalized quantum components in the limit coincides with those of the annihi-
lation and creation operators of the Boson Fock space I'goson = (I, {¥,,}, BT, B7), i.e.,

+

Y = B*

lim

N—oo /2N

Hence, still at a formal level, we obtain

Av \™
lim — = (Uy, (Bt 4+ B )™0U,), m=12,....
Nﬂw<( gﬁ) > (W, ( )

As is well known, the right hand side is the mth moment of the standard Gaussian distribu-
tion. Consequently,

lim <(ﬂ)m> —L/Jrooa:me_ﬁﬂdx m=1,2
Jim N Vs ) , 2,

In other words, the asymptotic spectral distribution of the adjacency matrix of the integer
lattice in the vacuum state is the standard Gaussian distribution.

11.3 QCLT for a Growing Regular Graph

We now consider a growing regular graph G = (V®) E®)) where each G™ is given
an origin o,. The degree is denoted by x = k,,. We are interested in the case where

(A1) lim, k(v) = oc.

We will concentrate on the vacuum states at o € V. Then the normalized adjacency matrix
is given by
A At AT A°
—= =t =t =
VE  VE  VE VR
For notational simplicity we sometimes omit the suffix v.
Statistics of we(x) will play a crucial role. Whenever V,, # @, we define

MV = = 3 w.fa),

L(w|V,) = max{w(z); v € V,,}.
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Namely, M (w,|V},) is the mean value of w.(x) when x runs over V,,, and ¥%(w|V},) its variance.
Both ¥?(w|V,,) and L(w,|V},) indicate fluctuation of w(z).

We now claim the essential conditions for our QCT. These conditions are found through
detailed observation of the argument in the previous section.

(A2) For each n =1,2,... there exists a limit

wy = lim M (w_|V.") < oc. (11.17)
Moreover,

lim X% (w_ V) = 0, (11.18)

W, = sup L(w_|V,") < co. (11.19)

(A3) For each n =0,1,2,... there exists a limit

. M (wo| V")
gy = lim M| —2— | @) | = tim M@elVa ) (11.20)
v K(v) v k()
Moreover,
we 22 (w,|[Vit)
lim %2 V| =lim —— "~ =, (11.21)
v (V) v K(v)
L(wo| V1"
sup (wolVa ) < 00. (11.22)
v K(v)

Remark 11.3.1 Condition (A2) for n = 1 and (A3) for n = 0 are automatically satisfied.
Note also that w; = 1 and a; = 0.

Remark 11.3.2 If G happens to be a finite graph, V") = @ occurs for some n. Then
M (we]Vn(V)) is defined only up to a certain n. This causes, however, no difficulty for defining
wp, and a, for all n (Exercise 2)

The meaning of (A1) is clear. Condition (A2) means that, in each stratum most of the
vertices have the same number of downward edges, and as the graph grows the fluctuation of
that number tends to zero. Condition (A3) is for edges lying in each stratum. The number of
such edges may increase as the graph grows, but the growth rate is bounded by x(v)'/2. We

roughly see from conditions (A1), (11.19) and (11.22) that, for a “generic” vertex x € v,
wi(z) = O(k(v),  wolz) = O(k(1)'?),  w_(z)=0(1),

as the graph grows.
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Theorem 11.3.3 (QCLT) Let G = (V¥ EW) be a growing reqular graph satisfying
conditions (A1)-(A3) and A, its adjacency matriz. Let (T',{¥,}, BT, B™) be the interacting
Fock space associated with {w,} and B° the diagonal operator defined by {c,}, where {w,}
and {a,} are given in conditions (A1)-(A3). Then we have

) Aem Ag
1im<c1>§.>, v v c1>,g”>>=<\1/j,Bfm---Bﬂ\1fn>, (11.23)

v VEW)  e()

forany ey, ... €m € {+,—, 0}, m=1,2,..., and j,n=0,1,2,....

The proof owes to precise estimates the error terms in terms of the variances 2 (w|V;,).
The proof is omitted, instead we only record a noticeable result which is used in the proof.

Lemma 11.3.4 If a growing regular graph G¥) = (V@) EW®) satisfies conditions (A1)~
(A3), we have
v 1
lim =

VR wnwn

. on=1,2,.... (11.24)

11.4 Coxeter Graphs

The Coxeter groups provide interesting examples of growing Cayley graphs. Let X be a
countable infinite set. A function m : ¥ x ¥ — {1,2,... }U{oo} is called a Cozeter matriz if
(i) m(s,s) =1 for all s € 3, and (ii) m(s,t) = m(t,s) > 2 for s #¢t. Let ¥y C ¥y C--- C X
be an increasing sequence of subsets of ¥ such that |[Xy| = N and ¥ = [JXy. For each
N > 1 let Gy be the group generated by >y subject only to the relations:

(st)y™D =e st e Ny, (11.25)

where e stands for the unit. In case of m(s,t) = oo we understand that st is of infinite order.
The pair (Gn, Xy) is called a Cozeter system of rank N (i.e., |[Xn| = N), and Gy is called
a Cozeter group. It is known that each s € Xy has order two, namely, is not reduced to
the unit (this is not very trivial). The corresponding Cayley graph is denoted by the same
symbol (Gy,Xy). We consider the family of Cayley graphs (Gy,Xy), N = 1,2,..., as a
growing regular graph.

In fact, it is shown that the inclusion X — Ypyy; extends uniquely an injective ho-
momorphism Gy — Gyiq. The inductive limit group, denoted simply by G, is called the
infinite Cozeter group associated with a Coxeter matrix {m(s,t)}.

By definition each g € Gy, g # e, admits an expression of the form

T = 8182 Sp, $; € XN.

If r is as small as possible, the expression is called a reduced expression and the number
r = |z| is called the length of x. The length function is well defined on G.

Lemma 11.4.1 For any s € ¥ and x € G we have

|sz| = |z| £ 1, |zs| = |z| £ 1.
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PROOF. There exists a unique homomorphism (character) x : G — {£1} such that
X(s) = —1, s € X.
For any x € G, taking a reduced expression & = $189- - S, r = |z|, we have

x(@) = x(s1)x(s2) - x(s,) = (=), 2 e€q.

Using this formula, we obtain
X(sz) = (1),
and
X(57) = x{s)x(z) = (~1)(~1)¥ = (~1)1+1
Therefore, |sx| = |z| + 1 (mod2). This must be compatible with the triangle inequality

(Exercise 3)
x| — 1 <|sz| <|z|+1, x € G.

Thus |sz| = |z| £ 1 follows. l |

Lemma 11.4.2 (Deletion condition) Let g € G be expressed in the form
g = 8182 Sm;, s; € 2. (11.26)

If |g| < m, then there exist a pair of indices 1 < i < j < m such that

g:51"'<§i"'§j"'5ma
where § stands for deletion. Therefore, given g € G of the form (11.26), its reduced expression
15 obtained by deleting even number of s; appearing therein.

The proof is omitted. The deletion condition is quite useful in the study of the Coxeter
groups. Lemma 11.4.1 is also an immediate consequence.

Lemma 11.4.3 If s1,89,...,5, € X are mutually distinct, then g = s1S9--- S, 1S a reduced
ETPTESSION.

PrROOF. For n = 1 the assertion is obvious since Y is injectively contained in G. Let
n > 2. Suppose that g = s185- - - s, is not a reduced expression though sq,ss,...,s, € 2 are
mutually distinct. Then by Lemma 11.4.2,

51"'3n:31"‘3i"'3j"'3n

and hence
Si = Si+1 1 8j-15585-1" " Sit1-
Since the right hand side is of length 1, deleting an even number of elements from the right

hand side leads to a reduced expression. The obtained reduced expression should be one of
{Si+1,...,5;}. This contradicts the assumption that sy, ..., s, are mutually distinct. |

We next study the Coxeter group associated with a Coxeter matrix satisfying m(s,t) > 3
for any pair s # t. In that case, the Cayley graph has no cycle with length less than six, i.e.,
contains neither triangle, square, nor pentagon.
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Lemma 11.4.4 Assume that m(s,t) > 3 for any pair s #t. If s1,...,s, € ¥ are mutually
distinct and the relation
S1++* Sy, = ST

holds for some s € ¥ and v € G of length n — 1, then s = sy.

ProOF. We prove the assertion by induction on n. For n = 1 the assertion is obvious.
Assume that s;s9 = sz holds where sq,s9 € ¥ are mutually distinct, s € ¥ and x € G of
length 1. From s = sysox we see easily that s = s; or s = s5 or s = . If s = x happens, we
have s; = sy which yields contradiction. If s = s, happens, z = s; and (s152)* = e which is
again contradiction. Consequently, s = s;.

Assume that the assertion is valid up to n — 1, n > 2. Since

881+ Sy =1 (11.27)

is of length n—1, deleting two elements from the left hand side we obtain a reduced expression
of x. If these two elements are chosen from {sq,...,s,}, say, s;,s; (i < j), we come back to

Sl...si...sj...sn:S:L':Sl...sn,

which is a reduced expression by Lemma 11.4.3. This is contradiction. Hence, to get a
reduced expression of = in (11.27), we need to delete s and s; for some ¢ = 1,...,n. In that
case we come to

51"'52""8n:x7

and hence
§S1+Si—1 = S1°°*85;. (1128)

If 1 <¢ < n—1, by the assumption of induction we have s = s;. Suppose i = n, i.e.,
881---Sn_1 :S]_".Sn-

By a simple argument with the deletion condition we see that s € {s1,...,s,}. If s = s;,
1<j5<n-—1,then

Sp = Sp—1""51581 """ Sp—1,
which implies that s,, coincides with some of {sy,...s,_1}. But this contradicts the assump-

tion. Hence s = s, i.e.,
SpS1 " Sp_1 = 81" Sp. (11.29)

We shall prove that this does not occur. Note first that (11.29) is equivalent to the following
(Sn—Q e Sl)sn(sl T Sn—Z)Sn—l = Spn—15n-

Since this is of length 2, deleting an even number of elements from the left hand side, we
obtain a reduced expression of length 2, say, t#’. This is the case of n = 2 so we know that
t = s,_1. But this is impossible. |

Consider the Cayley graph (G, Xy) with e € G being an origin. We consider as usual
the stratification

Gy = O VN,
n=0
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Statistics of w_(z) is of importance. We see from Lemma 11.4.1 that w,(z) = 0 for all
x € GN.

Lemma 11.4.5 Assume that m(s,t) > 3 for any pair s,t € 3, s # t. Then, for any
n=1,2,... we have

N
o ee ™o @ =13
N—oo |Vn(N)| ’

(11.30)

Lemma 11.4.6 Assume that m(s,t) > 3 for any pair s,t € ¥, s #t. Then w_(x) < 2 for
all z € G.

The proofs are not difficult and omitted.

Theorem 11.4.7 (QCLT for Coxeter groups) Let (G,X) be an infinite Coxeter group
with a Cozeter matriz {m(s,t)} such that m(s,t) > 3 for any pair s,t € ¥, s # t. Let
¥ C Xo C -+ be an increasing sequence of subsets of 3 such that Jy_, En = 3, and

consider the Cayley graph of the Cozeter group (Gy,Xy) and its adjacency matriz Ay.

Then A% =0 and
+
N +

i —
N—o0 |ZN|

in the sense of stochastic convergence with respect to the vacuum state, where B* are the

annihilation and creation operators in the free Fock space.

)

Proor. It is sufficient to show conditions (A1)—(A3). First (A1) is obvious, since the
degree of Gy is |Xy| which tends to the infinity by assumption. Conditions (11.17) and
(11.18) in (A2) follow from Lemma 11.4.5. Moreover, the sequence therein is w,, = 1 so that
the limit is described by the free Fock space. Condition (11.19) in (A2) follows from Lemma
11.4.6 with W,, = 2. Finally, (A3) is obvious since w,(z) = 0 for all z € G. Consequently,
our assertion is an immediate consequence of Theorem 11.3.3. |

It is known that the symmetric group S(N) is generated by the successive transpositions
0'1:(]_2), 0'2:(23>, ceey O'N_lz(N—]_N).
We set Xy = {01,09,...,0ny-1}. Then (S(N),Xy) becomes a Coxeter group. Note that the

Coxeter matrix is given by

m(i, j) = {3’ i=Jl=1, (11.31)

2, |i—jl =2
Therefore, Theorem 11.4.7 is not applicable. Instead, we have the following

Theorem 11.4.8 (QCLT for symmetric groups) Let Ay be the adjacency matriz of the
Cayley graph (S(N),Xy). Then A%, =0 and
+

lim —2~Y _ — B*
N=oo /N — 1

Y

in the sense of stochastic convergence with respect to the vacuum state, where B* are the
annithilation and creation operators in the Boson Fock space.
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11.5 Exercises

1. Let G = (V, E) be a regular graph with degree x. Prove that
(1) M(wy|Vy) + M(w_|V,,) + M (ws|V,) = k.
(2) Elw|Va) < Blw-[Va) + X(wo| Va).

2. Let G = (VW E®) be a growing regular graph satisfying conditions (A1)-(A3).
Prove that ({w,},{a,}) defined therein is a Jacobi coefficient of infinite type.

3. Let (G, %) be a Coxeter group. Prove the following properties for the length function.
(1) |z| = |a™} for z € G.

(2) For x € G, |z| =1 if and only if z € X.
(3) |z = |yl < |zyl < |x| + [y] for 2,y € G.
(4)

4) |z| =1 <|sz| <|z|+1for z € G and s € 3.

4. Prove (11.31).
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12 Graph Products
12.1 Motivation

A growing graph models a revolution of networks in the real world.

Figure 12.1: Growing graph

It would be interesting if the growing graph G*) is considered as an analogue of an inde-
pendent increment process in classical probability theory. It is our hope that the evolution

is formulated as
GV =GV W), (12.1)

where # H") is an operation to form a new graph G*) and H® is given at each evolution
step. We hope that H®) shares a common sprit with independent random variables.

In this chapter we discuss graph products. Given two graphs GG; and G5, we form a new
graph G 1G5 as a “product.” This graph product gives rise to a product of the adjacency
matrices

When the evoluton of graphs is formulated in terms of a graph product, (12.1) yields
AW = A=V B0 — .. = (--- ((A(O) ﬁB(O)) uB(l)) ) t B®,

We may expect that the spectral properties of A®) follow from the study of some interrelation
among B") with respect to the operation §. From this aspect various types of independence
in quantum probability would be useful.

12.2 Direct (Cartesian) Products
Definition 12.2.1 Let Gy = (V4, E;) and Gy = (V3, E») be two graphs. For (z,y), (¢, ) €

Vi x Va we write (x,y) ~ (2/,y') if one of the following conditions is satisfied:
(i) x=2"and y ~ ¥/;
(i) x ~2"and y =y
Then V; x V5 becomes a graph in such a way that (x,y), (2/,y) € Vi x V; are adjacent if

(x,y) ~ («/,y'). This graph is called the direct product of G; and G, and is denoted by
Gl X GQ.
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Example 12.2.2 4 x (3

1,3)
4 3 3’ \-
I
A. = o
@1) 319
1 2 1 >
11) 21)
C4 C?, CyX CS
Lemma 12.2.3 (1) Gy x Gy = Gy x Gy.
(2) (Gl X Gg) X Gg = G1 X (GQ X Gg)
PrROOF. Straightforward. |

Example 12.2.4 ZN 27 x --- x Z (N times)

The adjacency matrix A; acts on C'(V;) by usual matrix multiplication, hence the adja-
cency matrix A of the direct product G; x Gs acts on C(V; x V) = C(V;) ® C(V3), where
the canonical isomorphism is defined by the correspondence of basis 6, ,) — 0, ® 9.

Theorem 12.2.5 As an operator acting on C(V) @ C(Va), the adjacency matriz A of the
direct product G1 x Gy is of the form:

A:A1®E2+E1®A2, (123)

where E; is the identity matriz on C(V;).

Proor. We see that

A1 ® By @) = (A1)aar (B2)yy
(Ay 2)( ), (2 y") (A1)za (Ea)y,y 0, otherwise.

{1, ifx ~2 and y =19/,
Similarly,

1, ife=2"and y ~ vy,
(BL ® A2) @y () = (B)aw (A2)yy

I
——
\_O

otherwise.

Since the two conditions (i) x ~ 2’ and y = ¢/; (ii) * = 2/ and y ~ y/ do not occur
simultaneously, we have

L, if (z,y) ~ (2',y),

Ay @ By + By © Ag)(ay) (a0 w) =
( 1 2 1 2)( ) ('y") {0, otherwise.

This means that A; ® Ey + 1 ® Ay coincides with the adjacency matrix of G x Gs. |
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Theorem 12.2.6 Let G = G X G5. Then,
8(;(($, y)? (xla y,)) = aG1 (ZL‘, .17,) + an(ya y,)' (124)

PROOF. Set s = dg((z,y), (2',y")). Then we may find a sequence of vertices of G; x G
such that

(l’,y) = (950>y0) ~ (xlayl) ~ (x27y2) ~e (:Csflaysfl) ~ (msayS) = (xl7y,>'

Then, every pair of consecutive vertices in the sequence

/
T = Xo, Ty, T, R LTs—1, s =1

are identical or adjacent. Hence, reducing consecutively identical vertices into one vertex,
we obtain a walk connecting x and 2/, of which the length is, say, «. Similarly, from

Y = Yo, Y1, Y2, R Ys—1, ys:y,

we obtain a walk connecting y and 3/, of which the length is, say, 5. By the definition of a
direct product graph, x; = x;,; happens if and only if y; ~ y;11. Hence

a+ [ =s.
Since Jg, (z,2') < a and 0g, (y,y') < 3, we have
gy (2, 2') + gy (y,y) < a+ B = s.

That Og, (x,2") + 0g,(y,y) > s is shown by constructing a walk. |

An interesting consequence is the following

Theorem 12.2.7 Let Q)1, Q2 and Q be the Q-matrices of graphs G, G5 and G = G| X G,
with a common parameter q. Then

Q=0120Q.
ProoF. First by definition

(Q) @), @) = gPo @),

Applying Theorem 12.2.6, we obtain

_ qacl(x,x/)qacg(y,y’) = (Ql)m’(Qz)yy’ = (Ql ® QQ)(m,y),(w’,y/)-

Therefore, Q = Q1 ® Q. i

Positivity of the @)-matrices are of importance. For a graph G we set

q|G] ={-1< ¢ <1; Q, is strictly positive definite},
Gl ={-1<¢<1;Q,is positive definite}.
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Theorem 12.2.8 Let G = G x Gs.

ProoOF. We see from Theorem 12.2.7 that the eigenvalues of () are of the form af,
where o and ( are eigenvalues of ()7 and (), respectively.

(1) Let ¢ € q[G1] N q[G3], namely, Q; = @Q;(q) is a strictly positive definite kernel for
G;. Since the eigenvalues of Q); are all positive. every eigenvalues of () are also positive.
Therefore, ¢[G1] N q[G2] C q[G].

We show that () contains (); as a principal submatrix. Take a vetex oy € V5 and set
W ={(x,00); x € V1 }.

Let H; be the induced subgraph of GGy x G5 spanned by W. Then, H; is isomorphic to G;
and Jg = Og, coincides with the restriction of g to H. Hence @) is regarded as a principal
submatrix of ). The situation is similar for Q3. Now let ¢ € ¢[G]. Then @ is strictly positive
definite so are all the principal submatrices. In particular, so are J; and ). Consequently,
q[G] C q[G1] N q[G].

(2) The proof is similar. Let g € ¢[G1] N ¢[G3], namely, Q; = Q;(q) is a positive definite
kernel for GG;. Since the eigenvalues of (); are all non-negative, every eigenvalues of () are
also non-negative. Therefore, ¢[G1] N ¢[G2] C ¢[G].

The second half is also similar to the argument in (1). |

Example 12.2.9 The Hamming graph H(d, N) is isomorphic to the direct product of d
copies of the perfect graph K. In fact, for two vertices x = (£1,...,&) andy = (01, ..., 14),
the Hamming distance is one if and only if

Si~m, S=m, &=mn, ... & =mnq oOr
Si=m, & ~mn, &~mn3, ... Ea=mng or
Si=m, S&=m, §&=mn, ... &4~

This condition is equivalent to that z = (&1,...,&;) and y = (ny,...,n4) are adjacent in the
direct product Ky X - -+ x Ky (d times).

Theorem 12.2.10 Let G = G1 X Gy be a direct product of two graphs and A = A1 ® E +
E ® Ay be the adjacency matriz expressed as an operator on C(Vy) ® C(Va), see Theorem
12.2.5. Then A=A ® E+ E® Ay is a sum of commutative independent random variables
with respect to ().

PrROOF. The details are omitted. We only observe that

(A1 ® B)* (B ® A2)7)g = (A1 @ B)*)o((E ® A2)”),.
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In fact, by Theorem 12.2.7 we have
(A1 ® E)*(E © A3)°)g = (Q(d, © 6,), (A1 © E)*(E @ A)° (6, ® 6,))

= (Q16., AaEﬁé o) (Q20,, E“A55,)

= (Q100, AT6,)(Q20,, A5 5,)

= (Q160, A05)(Q205, 6,)(Q100, 00) (Q20,, A5 5,)

= (A1 ® B)*)((E® A3)"), .

12.3 Star Products

Let G; = (V4, E1) and Gy = (Va, Es) be two graphs. Fix vertices 0 € Vi and 0y € V5.
For (x,y),(z',y) € Vi x V4 we write (z,y) ~ (2/,9') if one of the following conditions is
satisfied:

(i) z=a"=0; and y ~ ¥/;
(ii) x ~ 2" and y = ¢ = 0s.

Then Vi x V; becomes a graph in such a way that (z,y), (z',y') € Vi x V; are adjacent if
(x,y) ~ (2/,y). This graph is denoted by G for the moment.

Lemma 12.3.1 As an operator on C(V;) @ C(V3) the adjacency matriz of G is given by
A=A 0P+P®A

where P; : C(V;) — C(V3) is the projection defined by
R(Sz: {501'7 me:Oia

0, otherwise.

Definition 12.3.2 Let G; = (14, E1) and Gy = (Va, Ey) be two graphs with fixed origins
01 € Vi and oy € V5. Set

Vix Vo ={(z,00); x € Vi} U{(01,y); y € Va}

The induced subgraph of G spanned by V; x Vs is called the star product of Gy and Gs (with
contact vertices 0; and 09), and is denoted by G1 x Gy = G »%0, Go.

Example 12.3.3 C4 x (3

13)

.
e

12)] .

b

’( D) - (3,1

1) 1)
C4 Cg Cyix C3
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Lemma 12.3.4 (1) G; xGs 2 Gy * G.
(2) (Gl * Gg) * G3 = Gl * (G2 * G3)

PROOF. Exercises. |

As usual, we regard the adjacency matrix A; as an operator acting on C'(V;). Then the
adjacency matrix A of G is an operator acting on C(Vi x V) = C(V1) @ C(V4). Since Gy xGo
is an induced subgraph, its adjacency matrix A is a just a submatrix of the adjacency matrix
of the direct product G; x Gs.

Theorem 12.3.5 Let G; = (Vi, E1) and Gy = (Va, E3) be two graphs with fized origins
01 € V1 and oy € V5. Let A be the adjacency matrixz of the star product G; x G5. Then, as
an operator acting on C'(Vy x Va) we have

A — (A]_ ® P2 + P]_ ® AQ) rC(V1*V2)

Proor. It follows from the above argument that A = Aq «q, [ci«). By Theorem
12.2.5 we see that

A = AGl X Go rC(Vl*Vg): (Al X E2 + El & AQ) rC(V1*V2)
It is easily verified by definition that
(A1 ® Ey + E1 ® As) Tovievs)= (A1 @ Po + PL ® A3) [c(vieva)

which completes the proof. |

We now consider the graph distance of the star product.
Lemma 12.3.6 Let G = Gy x Gy. Then,
aG = aGlXGQ er*Vz .

PROOF. Take a pair of vertices of G; x G. For (x,05), (z/,02) we have
8@((1’, 02)’ (lj, 02)) = g, (.I', l‘/)
= aGl (I, ZU/) + an <027 02)

== aG1 XGQ((ma 02)7 (xla 02))'
For (z,09), (01,y) we have

Oc(w,05), (01, 9)) = D (2, 02), (01,02)) + (01, 02), (01, 9))
= 0, (x,01) + g, (02, Y)
= Oa,xa, ((2,02), (01,7)).
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Theorem 12.3.7 The Q-matrix of the star product G = G1* G5 is a principal submatrix of
the Q-matriz of G1 x Gy as follows:

Qayxc, = Qayxay Tovis)

PROOF. An immediate consequence from Lemma 12.3.6. |

Theorem 12.3.8 Let G = G+ Gs.

(1) qlG] = qlG1] N q[G].
(2) glG] = qlGi1] N q[Gy].

PROOF. (1) Supose ¢ € ¢[G1] N q[Gs]. We see from Theorem 12.2.8 that Qg,xa,(q) is
strictly positive definite. Since (¢, xq, is @ principal submatrix by Theorem 12.3.7, it is also
strictly positive definite. Namely, ¢[G1] N ¢[Gs] C q[G].

Conversely, let ¢ € ¢[G]. Then Q¢,«c,(q) is strictly positive definite. Since G; is isomet-
rically imbedded in Gy x Ga, its Q-matrix is a principal submatrix of Qg,+q,(q). Therefore,

Qc,(q) is also a strictly positive definite. Thus, ¢[G] C ¢[G1] N q[G3].
(2) is proved similarly. i

Remark 12.3.9 Theorem 12.3.8 was implicitly mentioned in Secton 9.1. The above argu-

ment does not require Theorem 9.1.3.

Theorem 12.3.10 Let Gy = (Vi, Ey) and Gy = (Va, Ey) be two graphs with fized origins
01 € V1 and oy € V5. Let A be the adjacency matrixz of the star product Gy x G5. Then, as
an operator acting on C'(Vy % V3)

A - (Al ® PQ + Pl ® AQ) rC(Vl*VZ)

is a sum of Boolean independent random variables with respect to the vacuum state at (01, 09),
see also Theorem 12.3.5.

PrROOF. Detailed argument is left to the reader. We only show that
(A1 @ P)* (P ® Ag) (A1 @ P2)7) = (A1 © Po)*){(Pr @ A2)”) (A1 © Py)").
In fact, we first observe that
(A1 @ Po)*(Py @ A2)P (A1 @ Po)) = (60, AL PLA] G0, ) (00, P2AG Pady). (12.5)
Here Py A6y, = (o, A]do, )00, sO that
(00, ATPLATO,) = (001, AT G0y ) (doy; Al by )- (12.6)

On the other hand,
(80y, PoaAS Pobo,) = (04, AJS,,). (12.7)

Incerting (12.6) and (12.7) into (12.5), we obtain the desired relation. 1
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12.4 Comb Products
Let G; = (V4, Ey) and Gy = (Vi, Ey) be two graphs. We fix a vertix o, € V,. For
(x,y), (z,y) € Vi x Vo we write (z,y) ~ (2',y') if one of the following conditions is satisfied:
(i) z =2 and y ~ v/;
(ii) z ~ 2" and y = ¢ = 0,.
Then V] x V5 becomes a graph in such a way that (x,y), (2/,y) € Vi x V4 are adjacent if
(x,y) ~ (2/,y"). This graph is denoted by G >,, G2 and is called the comb product.

Lemma 12.4.1 As an operator on C(Vy) ® C(V3) the adjacency matriz of Gy >,, Gy is
given by
A=A 0P+ E ®A
where Py : C(Va) — C(Va) is the projection onto the space spanned by d,, and Ey is the
identity matriz acting on C (V7).
PRroor. Exercise. i

Example 12.4.2 C, > O3

4 3 3’ - \-
1,2) / \ ' /
A 1) G1)
1 2 1 2
1,1 1)
C. C, Ci=C

The comb product is not commutative, but associative.
Lemma 12.4.3 (G1 > Gy) > G3 =2 Gy > (G > G3).
Theorem 12.4.4 Let G = G > Gs.

(1) 4q[G] = q[G1] N q[Go].
(2) ¢|G] = q[G:1] N q[Ga.

PROOF. Since

[V1] times
7\

Gi> Gy (- ((Gyx Go) *k Gk ) * Ga,

the assertion follows from Theorem 12.3.8. |

Theorem 12.4.5 Let G; = (Vi, Ey) and Gy = (Va, Ey) be two graphs with fized origins
09 € Vo. Let A be the adjacency matrix of the comb product Gy > Go. Then, as an operator
acting on C(Vy x V3)

A=A QP +E ® A,

15 a sum of monotone independent random wvariables with respect to the vacuum state at
(01,09), see also Lemma 12.4.1.
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13 Random Graphs
13.1 The Erdos—Rényi Random Graph
For an integer n > 1 we fix a set V' of n elements, say,
V={0,1,2...,n—1}

We set
G={G=(V,E); ECV with |E| = 2},

which is the set of graphs whose vertex set is V. Note that
6] = 2(2).

Here we remark that, for example, the following two graphs are distinguished in G though
they are isomorphic.

1 2 1 2

Given a constant number 0 < p < 1, we define a probability measure on G by

PHay) =9 p) @,
where e(G) stands for the set of edges of G. It is easily checked that P({G}) > 0 for all

G € G and
SO PHGH = 1.

Peg

Definition 13.1.1 The probability space (G, P) is called the Erdds—Rényi random graph
and is denoted by G(n, p).

The random graph G = G(n,p) is generated in such a way that for a pair of vertices
we decide by a coin toss whether to draw an edge or not. This is seen also in terms of the
adjacency matrix. The adjacency matrix of G € G is denoted by Ag. Since G is equipped with
a probability P, {Ag; G € G} becomes a random matrix. This random matrix A = (4;;)
possesses the following properties:

(i) Aj; is a random variables with values in {0, 1}.
(ii) Ay =0 for all 7.
(iii) A;; = Aj; for all ¢ # j.

)

(iv) P(A;; =1) =pand P(A;; =0)=1—p for all i # j.
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(v) {Ai;; 0<i<j<n-—1}isindependent.

Lemma 13.1.2 The mean degree of G(n,p) is given by
1 .
— LS Bldegg (i) = (n 1.
ieV
PRrROOF. For simplicity we write A = Ag and A = (A;;). For ¢ € V' we have
degq(7) Z Aij .
JeEV

Hence

Z degq (1) Z Ajj .

zeV 1,j€V

Taking the mean value over G, we come to
S By == p= -
z]GV z;é]

which proves the assertion. |

13.2 Mean Eigenvalue Distribution

For G € G = G(n,p) let ug denote the eigenvalue distribution. It is known that pg is
characterized by

+o0 1
Mm(ug):/ () = T (AT, m=12,

[e.9]

Since G is a random graph, we may think of the mean eigenvalue distribution:

pnp =E(uc) =Y PUGHua

Geg
Obviously, ji,, is a finite sum of 5-measures. We are interested in the following questions:

(1) Find a good expression of j, .
(2) Asymptotics of p,, as n — oo.

(3) In particular, in the sparse limit, i.e., as
n—o0, p—0, np— A (constant). (13.1)

We see from Lemma 13.1.2 that in the sparse limit the number of vertices tends to the
infinity while the mean degree remains finite.
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Lemma 13.2.1 Let o € V be fized. Let vg be the spectral distribution of G in the vacuum
state at o € V.. Namely,

+o0
M, (vg) = / 2"vg(dx) = (0o, A2 d0), m=12,....

o0

Then the mean eigenvalue distribution coincides with E(vg), i.e.,
Hnp = E(MG) = E(VG)-

Proor. Leti € V,i # o. Let 0 : V — V be the transposition of 7 and o. Then o
induces naturally a transformation on G, which is denoted by . Then,

A;,(G) = U_lAgd

so that

With these observation, we have

(65, AZ26) = (S(o), Alt6 (o)) = (000, AL5S,)
= (80, 0 ABOT,) = (S0, AT 50)-

Taking the mean values in both sides and using the invariance of P, we get

E({(0i, Ag0:)) = E({0,, AZ()00)) = E({0o, AG0,)).

Consequently,
1 15~
M (pinp) = — B(Tr (Ag)) = — > _(0;, AG;)
i=0
= E((0s, AG00)) = M (E(vc)).
This proves that p,, = E(ue) = E(vg). i

13.3 Computing the Moments

It follows from Lemma 13.2.1 that
Moy (penp) = E((A™)00), m=1,2.... (13.2)
The main task is to compute M,, (i, ). For m =1 we have obviously,

M (pnp) = E((A)oo) = 0 (13.3)
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For m = 2 we have

My(pinp) = E((A%)00) = ZE(AOiAiO)-

eV

Here we note that Agg = 0 and Ag; = Aj. Moreover, for i # 0, we have A2, = Ag;. Thus,

My (jnp) = Y BE(Ag;) = (n = 1)p. (13.4)
1#0

For m = 3 we have

M(pnp) = E((A3)00) = Z E(AgiAijAjo)-

ijev

Because A is the adjacency matrix we need only to take the case 0 # i # j # 0 into account.
This case is equivalent to say that 0,4, 7 are distinct. Then

Ms(pnp) = Y E(AuAzAj) = Y E(Au)E(A;)E(Aj) = (n—1)(n - 2)p".

07£i£j#0 07£i£j#0

For a general m we start with

My (ptnp) = E((A™)o0) = > E(Aoi, Aiyiy =+ + Aiyu_i0)- (13.5)
0Fi1 -+ Fim 170

Our goal is to obtain a concise expression of (13.5). We need notation. For m > 2 let
W(V,m) be the set of sequences of elements in V' of the form:

(i : (i0 =) 0F ix iz # -+ Fim1 # 0 (S im). (13.6)

Given [i] € W(V,m) as in (13.6), let G[i] denote the underlying graph. Namely, its vertex
set V(GJi]) is defined to be the set of elements appearing in the sequence [i| (including 0).
Two distinct vertices j, j € V(G[i]) are adjacent by definition if there exists 0 < s <m — 1
such that {is, 7511} = {J,7'}. Thus the edge set E(G]i]) is defined. It is then obvious that [i]
becomes an m-step walk in the graph G[i] starting from and terminating at 0 and passing
through all the edges. We will assign a label to every edge of G[i]. For e = {7, j'} € E(G[i])
define

kle) = {0 <s<m—1; {isisa} = {5, 7'}}. (13.7)

Namely, k(e) is the number of how many times the walk [i] passes through the edge e.

Lemma 13.3.1 Form =1,2,... we have

E((A™)o0) = Z pe(GM)> (13.8)

[F1ew(V,m)

where e(G[i]) is the number of edges of G[i.
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PROOF. Let m > 2 and consider a general term in (13.5):
E (Ao, Aiyiy -+ Aiyu_10), [i] € W(V,m).

On computing the above expectation we need to note that A;; = Aj; appears with multi-
plicities inside the bracket. So, writing

Aoiy Aiyiy +++ Aiyy 0 = H A sjjr =0, 1,2,

0<j<j'<n—1

we apply independence condition (A3) to obtain the factorization:

E(AOi1Ai1’ig e Aim—lo) = H E(Aj;zl)

0<j<j’'<n—1

Obviously, sj; > 1 occurs only when {7, j'} € E(GJi]) and s, = x({7,5'}). In this case,
since A;; is {0, 1}-valued,
E(A7) = E(Aj;) = p.
Consequently,
E(Aoi, Aiyiy - Aiyy_10) = pe(G[i])a

and, taking a sum over [i| € W(V,m), we obtain (13.8). 1
We proceed to compute the right hand side of (13.8). Let m > 2. A labeled rooted graph

of size m, denoted by £ = (V, &, 0, k), consists of

(L1) a connected graph (V,€&) with 2 < |V| < m;

(L2) a distinguished vertex o € V which is called the root;

(L3) amap x: & — {1,2,...,m} such that ) _. x(e) = m.

The map « is called the label of L. For L = (V, €, 0, k) we set
v(£) =] elL) =[E].
We note an obvious inequality:
v(L)—1<e(L) <m, (13.9)

where the first one follows by connectivity of (V, £) and the second from (L3).

Two labeled rooted graphs are called isomorphic if there exists a graph-isomorphism
preserving the root and label. Let A,, denote the complete set of representatives of labeled
rooted graphs of size m up to isomorphisms.

For [i] € W(V,m), m > 2, the underlying graph G[i] is naturally equipped with structure
of a labeled rooted graph of size m, which is denoted by L[i] = (G[i], 0, ), where the label
is defined in (13.7). Noting that the product factor in (13.8) is constant on [i]’s generating
isomorphic L[i]’s, we obtain the following
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Lemma 13.3.2 Form =1,2,... we have
E((A™)o) = Y Wl € W(V.m); L[i) = L}p"? (13.10)
LEAR

Finally, we study the combinatorial number appearing in the above formula. We need
further notation. A wunicursal walk on L = (V,€,0,k) € A,, is a walk on the graph (V, &)
from the root o to itself such that every edge e € £ is passed through as many times as
k(e). It follows from (L3) that a unicursal walk is necessarily of m-step. Let u(L) denote
the number of unicursal walks in L.

Theorem 13.3.3 Form =1,2,... we have

M (pinp) = E((A™)oo) Z |Aut (£ (L)L ”) (13.11)

LEAM
where

HLin) = (n—1)(n—2)---(n — (v(£) — 1))

Proor. By Lemma 13.3.2 we need only to show that
i) e W(V,m); L[i] = L} = |Aut (L)| " u(L)t(L;n), Lel,,.

Let £ = (V,&,0,k) € A,,, be fixed. First we choose ¢ : V — V such that ¢(o) = 0. There
are t(L;n) choices of such maps. Each unicursal walk on £ gives rise to [i] € W(V,m). But
the same [i] is obtained with multiplicity |Aut (£)]. |

For example,

My(pinp) =
M5(M )

(n—Dp+2(n—1)(n—2)p* + (n—1)(n—2)(n — 3)p’
5(n —1)(n —2)p’
+5(n—1)(n—2)(n—3)p*+(n—1)(n—2)(n—3)(n—4)p°

Formulae equivalent to (13.11) have been implicitly or explicitly used in computation of
moments of a random matrix, see e.g., Bauer—Golinelli (2001), Hiai-Petz (2000), Wigner
(1955, 1957, 1958).

13.4 The Sparse Limit.

Using Theorem 13.3.3 we will calculate the sparse limit:
M,, = lim My, (ftn,p),
where the limit is taken as (13.1). In view of (13.11) we need only to consider

(= 1)(n—2)- - (n — (v(£) — 1)) p &) ~ 0O 1) ()6, (13.12)
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If £ is not a tree, i.e., contains a cycle, then we have v(L£) < e(£) and (13.12) vanishes in
the sparse limit. If £ is a tree, we have v(£) = e(£) + 1. In this case, (13.12) implies that

lim(n —1)(n —2)--- (n — (v(£) = 1)) p?©) = X,

Thus, we have

My, =1 My, (pinp) = > |Aut (L) (L) X,
LEAS,

where

A ={LeA,,; Lis atree}.

Since a tree admits no unicursal walk of odd steps, for an odd m we have u(L£) = 0 so the
odd moments vanish.

Theorem 13.4.1 Let M, be the sparse limit of the m-th moment of mean spectral distri-
bution the Erdds—Rényi random graph G(n,p). Then for an odd m we have

Mmzoa

and for an even m,

My = [Aut (£)] " u(L) A9, (13.13)

LeEA?,

We have
My = )\, My = N+ 2)%, Mg = A+ 6X\2 +5\3

13.5 Partition Statistics and Approximations.

There is another expression for M,, in Theorem 13.4.1. In fact, we are interested only in
the moments of even orders. Using Lemma 13.3.1 we start with

Moy, =1lim Yy pfeid, (13.14)
[]EW(V,2m)

Taking Theorem 13.4.1 into account, for the limit in the right hand side it is sufficient to
take the sum over [i] € W(V, 2m) whose underlying graph G[i] is a tree.
Let [i]] € W(V,2m) be given as

[2]05207&217&@27&#ZQm—l%TQmEO)

and assume that G[i] is a tree. We associate a partition ¢ of {1,2,...,2m}. For s,t €
{1,2,...,2m} we write s ~ t if {is_1,is} = {i4_1,4;}. Then s ~ ¢ becomes an equivalence
relation, which in turn yields a partition of {1,2,...,2m}, denoted by ¥ = 9[i]. Let Pr(2m)
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denote the set of all partitions of {1,2,...,2m} obtained in this way. Obviously, for ¢ = [i
we have e(G[i]) = [9|. Then (13.14) becomes

Mo, = lim Z Z pl19|

dePr(2m) [{leWw(V,2m)

W[i]=1
=lim Y  (n—1)(n-2)-(n—[d])p"
YEPT(2m)
= ) A
IePr(2m)

Summing up,

Theorem 13.5.1 The sparse limit of the 2m-th moment of mean spectral distribution of the
Erdbs—Rényi random graph G(n,p) is given by

Moy = Y AL (13.15)

dEPT(2m)

It is obvious by construction that each block of ¥ € Pr(2m) consists of even number of
points. Let Pyc(2m) be the set of non-crossing partitions of {1,2,...,2m} and set

Prnc(2m) = {¥ € Pnc(2m) ; each v € 9 consists of even number of points}.

It is then shown that Prnc(2m) C Pr(2m). However, Pr(2m) contains some crossing parti-
tions too. This would hinder us from getting an explicit expression of the limit distribution.
An analytical approach, which yields also an implicit description of the limit distribution, is
found in Dorogovtsev—Goltsev—Mendes—Samukhin (2003).

We show two approximations for the limit distribution whose m-th moment is M,,.

Proposition 13.5.2 Let w2 be the free Poisson distribution with parameter /2 and 7'(')\//2
its reflection, i.e., WX/Q(da:) = my2(—dx). Then

Moy 1 (/2 B 77)\//2) =0, Map(mr2 B W;\//Q) = Z AL (13.16)
ﬁE'PTNc(Zm)

Proor. The free Poisson distribution )/, is characterized by the constant free cumu-
lants ry(my/2) = A/2. Then, ry(my,5) = (—=1)kX/2 and

A,k is even,

Tk(ﬂ/2 =a WX/z) = Tk(ﬂ')\/Q) + Tk(ﬂ';\//2> = {0 L is odd

Applying the free moment—cumulant formula:

M, = Z HT\U\,

V€PN (k) veD
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we have

MQm—l - 07 M2m = Z Ahﬂa

JEPTNC(2m)
which completes the proof. |

Comparing (13.15) and (13.16), we can expect that the sparse limit of mean spectral
distribution of the Erdés—Rényi random graph is a kind of deformation of the free Poisson
distributions.

Next we look for the leading term of My, for a large \. In fact,

My, = Z {9 € Pr(2m); [J] = k}| A¥
k=1

= {9 € Pr(2m); [9] = m} A" + O(A" 1)
= [Pxcp(2m)| A" + O(A" 1),

where Pycp(2m) stands for the set of non-crossing pair partitions of {1,2,...,2m}. The
number |Pxcp(2m)| is well known as the Catalan number and is the 2m-th moment of the
Wigner semicircle law.

Proposition 13.5.3 For the m-th moment of mean spectral distribution the Erdds—Rényi
random graph G(n,p) we have

1 +2
lim lim )\_m/2Mm(un’p) = —/ "4 — 22 dux, m=12 ...,

A—00 2 _9

where the second limit is the sparse limit as in (13.1).
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14 Quantum Walks
14.1 From Random Walks to Quantum Walks

A random walk on Z is defined by a transition matrix 7', a matrix indexed by Z x Z
satisfying
(T)Z] Z O, Z(T)Z] =1 for allj €.

iE€EZ

An isotropic random walk is defined by T = %A, where A is the adjacency matrix.

/2 1/2

VN
— @ L 4 L 4 L 4

-1 l i+1

Definition 14.1.1 Let p be a probability distribution on Z. Then,

e = et=E)y, (14.1)

where p is identifined with a vector indexed by Z, is called the distribution of the continuous
time random walk Z; on 7Z with an initial distribution p. Namey;,

P(Zy = x) = ().

Let us examine tht right-hand side in (14.1) defines a probability distribution on Z. By
definition,

() = 3 5 T ).

Since T is a transition matrix, 7" u is a prpbability distribution so that

tT " n " t
Ze p(z) = Z ZT —Zon'—e.

€L "t e’

Hence,

Y e Tua) ~ 1

T€EZ

which shows that e!"=#)y; is a probability distribution on Z.
Differentiating both sides of (14.1) by ¢, we obtain

d

7= (T = B)e! B = (T = By
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Therefore, y; is the solution of the initial value problem:
=T =B, po=p (14.2)
In particular, for T' = %A we see that

(T~ B)ue = (A~ 2E)pu

We note that
(A= 2B)u(x) = 3 (e 1) gl — 1) = 2(2) = S Agu(a),

where A = A — 2F is the discrete Laplacian. Thus, (14.2) becomes

0

1
— - 4.
T Lt 2Aut , (14.3)

which is known as the heat equation.
What is a quantum counter part? A plausible candidate is obtained by transferring (14.3)
into the Schrodinger equation:

., Opy
h— = Hy;.
Mo T
Let us consider the Hamiltonian H = —A in view of (14.3) and set h = 1. Then the
Schrédinger equation becomes
- O0py
Tt A
? at Pt
or equivalently,
0
_ait = iAp; = i(A - 2E)p;. (14.4)

Given an initial state ¢, the solution to (14.4) is given by
o = B — g itgitA (14.5)
In the classical case, we have
P(Z =) = u(z) = 2 p(z) = e2 42D (x),
In the quantum case, from (14.5) we set

P(X; = 7) = |pe(2)? = [e"2p(2)* = | p(a) . (14.6)

4 is unitary (this is an informal statement, we need to check the selfadjointness of

HAGIJE = ]2 = 1. Hence

D (@) = ll@dll® = e e o)* = [lo)* = 1,
TEZ

Since e
A), we have ||e

which means that (14.6) defines a probability distribution on Z.
Now we give the following
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Definition 14.1.2 Let A be the adjacency matrix of a graph G = (V, E) and ¢ € ¢*(V)
with ||p|| = 1. A (cotinuous-time) quantum walk on G with an initial state ¢ is a “stochastic
process” {X,} such that

P(X; =) = [e"p(@)* = [(0:, @), weV.

Here ey is called the amplitute wave function.

Remark 14.1.3 The quantum walk {X;} is not defined as a stochastic process but only
time evolution of probability measures is specified.

We shall study the case when the initial state is the vacuum state: ¢ = 9, where 0 € V
is a fixed origin. In that case

P(Y,=n)= > [(6,,¢5)>,  Vi={z€V;a(r,0)=n},

$€Vn

is also interesting.

14.2 Method of Quantum Decomposition

Let p be the spectral distribution of A in the vacuum state J,, namey,

+oo
(00, A™6) = / ™ p(dx), m=1,2.... (14.7)

e}

According to the stratification:
o
V=W
n=0
we define a unit vector by

1
d, Oz, n=20,1,2,...,
wwz:

mEVn

and let T'(G) C (V) be the subspace spanned by them. Moreover, the adjacency matrix
admits a quantum decomposition:

A=A"+ A"+ A°
We assume
(H1) T'(G) is invariant under the actions of the quantum components A™, A~ A°.

This is a condition for a graph and the choice of an origin. Under (H1) we find a Jacobi
coefficient ({wy, }, {an}) in such a way that

A+(I)n = Wn41 (I)n—i-l )

A_(I)O = 07 A_(I)n = Wy ©pq ’

Ao¢n - an+1®n.
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The spectral distribution pu is also determined by the Jacobi coefficient ({w,}, {an}) ap-
pearing in the famous three-term recurrence relation satisfied by the orthogonal polynomials

{Pa(2)}.

We pose the second condition for the graph G under consideration.

(H2) For any n=0,1,2,... and k = 1,2,... the number of k-step walks from o to z € V,
does not depend on the choice of = but depends only on n and k.

For example, (H2) is satisfied if G is rotationally symmetric around o, i.e., for any pair
z,y € V with d(z, 0) = 9(y, 0) there exists an automorphism o € Aut (G) such that a(o) = o
and a(z) = a(y). In particular, (H2) is satisfied by a distance-transitive graph.

Theorem 14.2.1 Notations and assumptions being as above, the amplitude wave function
s given by

(6, €480) = e u(ds), reV,. (14.8)

150 ||\/|7/ :

Moreover,

+oo
(P, ) =P H/ e u(ds), n=0,1,2,.... (14.9)

PROOF. We note first that

© eitA5>_i(it)k (5 A'€5>_§:M|{o—>x-k—ste walk}|
@00l = 2 Ty e 0 = 2 P

does not depend on the choice of z € V,, by (H2). Hence we have

(6,,€™18,) |V| > (0, €"5,) m( n, €1AD). (14.10)

yeVy

Using the isometry T'(G) — L?*(R, i) defined by ®,, — || P,|| ' P,, the last expression becomes

1 A +°°
— ||Pn||—1<Pn’eztsP0> / zts dl’)
|Val "R, ||\/|V
Thus, we obtain (14.8). (14.9) is already clear. |

Corollary 14.2.2 Under the same assumptions as in Theorem 14.2.1 we have
P(Y (t) = n) = |(®,, e dg)|?.
PRrROOF. In fact, by (14.10) we obtain

PY(t)=n)= ) (s, €8> = (P, e Py) .

CCEVn
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14.3 Growing Regular Graphs

Let G = (VW) E®™) be a growing regular graph. As in Section 11.3 we assume that
['(G™) is asymptotic invariant, i.e., the following three conditions:

(A1) lim, k(v) = oo, where k(v) is the degree of G™).
(A2) For each n =1,2,... the limit

Wy = lim M (w_|V") < oo

exists and
lim X2(w_[V)) = 0, sup max(w_ V")) < cc.

(A3) For each n =0,1,2,... the limit

n+1 1/ /_/£<V)
exists and : )
22 (wo| Va” o|Vn
v k() v k(v)

Theorem 14.3.1 Notations and assumptions being as above, let (I',{¥,}, BT, B~) be the
interacting Fock space associated with {w,} and B° the diagonal operator defined by {c,},
where {wy,} and {a,} are given in conditions (A1)-(A3). Then we have

l1m< v A A <>> (U, B - BY), (14.11)

"R VW)
forany ey, ... €n € {+,—, 0}, m=1,2,..., and j,n=0,1,2,....

Let p be a probability distribution on R whose Jacobi coefficient is given by ({w,}, {an}),
or equivalently the vacuum spectral distribution of BT + B~ + B°. Let {P,(s)} be the
orthogonal polynomials associated with u. Note that ({w,}, {an}) does not necessarily
determine p uniquely, but {P,(s)} uniquely. Then (14.11) implies that

115n<q>7<;>,(%)m ( > T2 /m )s™ u(ds), (14.12)

for any m =1,2,... and n =0, 1,2,.... Therefore, for any polynomial f(s) we have

li£n<q>g/)’f( i@) 0> i /+°° )(ds). (14.13)

We should like to replace f(s) with e*. Among others, a simple possible case is stated in
the following
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Theorem 14.3.2 Notations and assumptions being as above, we assume in addition that u
is supported by a compact interval [—L, L]. If ||A,|| < \/k(v) L for all v, then (14.13) holds
for any continuous function f € C(R). In particular,

) A T b (et
lim ( @, exp (it —V> > / e u(ds 14.14
> < I{(V) 0 |P || ) ( )

ProOOF. Given f € C(R), we may choose a polynomial g(s) which approximates f(s)
uniformly on the interval [—L, L], say |f(s) — g(s)| < € for |s| < L. Then

(i (s ) - (o0 )

< Hf(%) —g(%) ' < sup{|f<s> —g(s)]; Isl < %—“>}

By assumption the last quantity is bounded by € independently of v. Then, by an obvious
application of triangle inequality we get (14.13). |

N

Corollary 14.3.3 Notations and assumptions being as in Theorem 14.3.2, we have

Example 14.3.4 A growing homogeneous tree T}, satisfies conditions (A1)—(A3) with w,, =
1 and a,, = 0. The corresponding distribution p is the famous Wigner semicircle law,
supported by [—2,2] and having the density /4 — s?/2w. The corresponding orthogonal
polynomilas {U,(s)} are given by

2

Un(s) =U, (g) , Un(cosf) =

where {U,(x)} are called the Chebychev polynomials of the second kind. Note that ||U,| = 1.
Then (14.14) becomes

A, . 1 [? - .
,}Lrgo <<I>£f),exp (zt ﬁ) QD( )> =5 /_2 Un(s) e™V4 — s2ds.

The last integral is computed, by direct application of Gegenbauer’s integral formula for the
Bessel function:

sin(n + 1)6
sin

1 (7= : 2
— [ U.(s)e™ Va4 —s2ds=(n+1) Z"M :
-2

2m t
Consequently,

lim P(Y(t) = n) = (n+ 1) Jr1(2)

K—00 12 ’

Y(t) = lim y " (%) .

(14.15)

where informally,
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Remark 14.3.5 For the distribution obtained in (14.15) we have further the asymptotics
for a large t. The distribution of Y'(t)/t as t — oo is given by

l’2

g o)

The proof due to Konno is by characteristic function, i.e., based on the identity:

tlim E (exp <z

14.4 Open Questions (Proposals)

)L

1. Modify the argument in Example 14.3.4 to get concrete results for deformed vacuum
states (Haagerup states).

2. Formulate the argument in Section 14.3 for a deformed vacuum states for a general
growing regular graphs.

3. Concrete computation for Hamming graphs, Johnson graphs, and other distance-
regular graphs. Some results are known for H(d,2) (d-dimensional hypercube) as d — oo,
Cy and Ky as N — 00, see Konno”s lecture notes.

4. Limit theorems for discrete-time quantum walks on homogeneous trees T.
5. Relationship between discrete-time and continuous-time quantum walks.
6. Relation to a quantum random walk introduced by Biane.
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