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1 Introduction

These lectures entitled:

Quantum Probability and Applications to Complex Networks

are intended to present a quantum probabilistic approach to spectral analysis of complex
networks. For a technical reason these lectures are divided into two parts:

Part 1 (March–April) Quantum Probabilistic Aspect of Adjacency Algebras

Keywords: adjacenct matrix, characteristic polynomial, spectrum, adjacency algebra,
distance-regular graph, quantum decomposition, interacting Fock space, orthogonal
polynomial, continued fraction, Cauchy-Stieltjes transform, etc.

Part 2 (May-June) Spectral Analysis of Large Complex Networks

Keywords: tree, Wigner semicircle law, growing graph, quantum central limit theorem,
asymptotic spectrum, random graph, Watts–Strogatz model, etc.

1.1 Complex Networks

In the real world one finds networks in their basic form as interrelations among objects.
Such networks are described in terms of graph theory, namely, objects under consderation
being set as points in a plane and two objects in interrelation being connected by an arc
therein, we obtain a geometric description of the network called a graph (in fact, the math-
ematical definition of a graph makes us to abandon even such a geometric image).

The graph theory, tracing back to Euler’s famous problem on seven bridges in Königsberg,
has become one of the main subjects in discrete mathematics. From mathematical point of
view most attention has been paid to “beautiful” graphs, e.g., reasonable size for handling
and/or possessing nice symmetry, but little to very large graphs in the real world because
of being “dirty” or “complex.” Examples of such dirty graphs are telephone networks, the
internet (physical connections among PC’s), the WWW (hyperlinks of webpages), Hollywood
costars, coauthors of articles, human or social relations, biological networks, etc.

During the last decade as the development of computer technology, some characteristics
became computable for very large networks in the real world. As a few physical quantities are
used efficiently for description of gas in stead of the set of huge number of Newton equations,
we believe reasonably that such large networks can be captured in terms of a small number of
statistical characteristics carefully chosen. Up to now the prevailing characteristics of large
complex networks in the real worlds are:

1. Small world phenomenon dating back to Stanley Milgram’s small world experiment
(1967), saying that the mean distance of two vertices is small O(log n) relative to the
large number n of vertices.

2. Large cluster coefficient (C ≥ 0.7), i.e., locally most vertices are connected each other.

3. Existence of hubs, as indicated by the long tail of the power law degree distribution
p(k) ∝ k−γ (γ > 1).
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Figure 1.1: The internet

Mathematical models for complex networks were proposed in the following epoch-making
papers:

[1] D. J. Watts and S. H. Strogatz: Collective dynamics of ‘small-world’ networks, Nature
393 (1998), 440–442.

[2] A.-L. Barabási and R. Albert: Emergence of scaling in random networks, Science 286
(1999), 509–512.

Since then up to now many papers have been published with only few mathematical rigorous
results. Our intention is to develop mathematical study of those models as well as to propose
new models. For a mathematical model of a large complex network, a single graph seems to
be not suitable. In order to capture characteristics of their large size we reasobnably take a
growing graph and study its asymptotic behavior. And for characteristics of its complexity it
is natural to consider statistical quantities of a random ensemble of graphs. In these lectures,
therefore, one should keep in mind that a graph is intended to grow and/or to be random.

1.2 Quantum Probability = Noncommutative Probability

Quantum probability theory provides a framework of extending the measure-theoretical
(Kolmogorovian) probability theory. The idea traces back to von Neumann (1932), who,
aiming at the mathematical foundation for the statistical questions in quantum mechanics,
initiated a parallel theory by making a selfadjoint operator and a trace play the roles of a
random variable and a probability measure, respectively.

One of the main purposes of these lectures is to test the quantum probabilistic techniques
in the study of large complex networks, in particular, their spectral properties.
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Figure 1.2: Paul Erdös’ coauthors

1.3 From Coin-toss to Graph Spectrum

1.3.1 Classical probabilistic model

The toss of a fair coin is modelled by a random variable X on a probability space (Ω,F , P )
satisfying the property:

P (X = +1) = P (X = −1) =
1

2

Rather than the random variable itself more essential is the probability distribution of X
defined by

µ =
1

2
δ−1 +

1

2
δ+1 (1.1)

The moment sequence is one of the most fundamental characteristics of a probability
measure. For µ in (1.1) the moment sequence is calculated with no difficulty as

Mm(µ) =

∫ +∞

−∞
xmµ(dx) =

{
1, if m is even,

0, otherwise.
(1.2)

When we wish to recover a probability measure from the moment sequence, we meet in
general a delicate problem called determinate moment problem. For the coin-toss there is no
such an obstacle and we can recover the Bernoulli distribution from the moment sequence.
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Figure 1.3: High school dating

1.3.2 Quantum probabilistic (matrix) model

We set

A =

[
0 1
1 0

]
, e0 =

[
0
1

]
, e1 =

[
1
0

]
. (1.3)

Then {e0, e1} is an orthonormal basis of the two-dimensional Hilbert space C2 and A is a
selfadjoint operator acting on it. It is straightforward to see that

〈e0, A
me0〉 =

{
1, if m is even,

0, otherwise,
(1.4)

which coincides with (1.2). In other words, the coin-toss is modeled also by using the
two-dimensional Hilbert space C2 and the matrix A. In our terminology, letting A be the
∗-algebra generated by A, the coin-toss is modeled by an algebraic random variable A in an
algebraic probability space (A, e0). We call A an algebraic realization of the random variable
X.

1.3.3 Noncommutative Structure

Once we come to an algebraic realization of a classical random variable, we are naturally
led to the non-commutative paradigm. Let us consider the decomposition

A = A+ + A− =

[
0 1
0 0

]
+

[
0 0
1 0

]
, (1.5)
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which yields a simple proof of (1.4). In fact, note first that

〈e0, A
me0〉 = 〈e0, (A

+ + A−)me0〉 =
∑

ϵ1,...,ϵm∈{±}

〈e0, A
ϵm · · ·Aϵ1e0〉. (1.6)

Let G be a connected graph consisting of two vertices e0, e1. Observing the obvious fact that
(1.6) coincides with the number of m-step walks starting at and terminating at e0 (see the
figure below), we obtain (1.4).
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Thus, computation of the mth moment of A is reduced to counting the number of certain
walks in a graph through (1.5). This decomposition is in some sense canonical and is called
the quantum decomposition of A.

1.3.4 Relation to Graph

We now note that A in (1.3) is the adjacency matrix of the graph G. Having established
the identity

〈e0, A
me0〉 =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . , (1.7)

we say that µ is the spectral distribution of A in the state e0. In other words, we obtain an
integral expression for the number of returning walks in the graph by means of such a spectral
distribution. A key role in deriving (1.7) is again played by the quantum decomposition.

1.4 Quantum Probabilistic Approach

For (in particular, asymptotic) spectral analysis some techniques peculiar to quantum
probability seem to be useful. They are

(a) quantum decomposition (using noncommutative structure behind)

(b) various concepts of independence and corresponding quantum central limit theorems

(c) partition statistics for computing the moments of spectral distributions

A basic reference throughout these lectures is:

[3] A. Hora and N. Obata: Quantum Probability and Spectral Analysis of Graphs, Springer,
2007.
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2 Graphs and Adjacency Matrices

2.1 Graphs

Definition 2.1.1 Let V be a non-empty set and E a subset of {{x, y} ; x, y ∈ V, x ̸= y}.
Then the pair G = (V,E) is called a graph with vertes set V and the edge set E. An element
of V is called a vertex and an element of E an edge. We say that two vertices x, y ∈ V are
adjacent, denoted by x ∼ y, if {x, y} ∈ E.

A geometric representation of a graph G = (V,E) is a figure obtained by assigning each
x ∈ V to a point in a plane and drawing a line (or an arc) between two planer points if they
are adjacent in G. Appearance of the geometric representation of a graph varies widely. For
example, the following two figures represent the same graph.

Figure 2.1: Two geometric representation of the Petersen graph

Definition 2.1.2 A graph G = (V,E) is called finite if V is a finite set, i.e., |V | < ∞.

Definition 2.1.3 For a vertex x ∈ V of a graph G we set

deg(x) = degG(x) = |{y ∈ V ; y ∼ x}|,

which is called the degree of x.

Definition 2.1.4 A graph G = (V,E) is called localy finite if deg(x) < ∞ for all x ∈ V .

Definition 2.1.5 A graph G = (V,E) is called regular if every vertex has a constant finite
degree, i.e., if there exists a constant number κ such that deg(x) = κ for all x ∈ V . To be
more precise, such a graph is called κ-regular.

Definition 2.1.6 A finite sequence of vertices x0, x1, . . . , xn ∈ V is called a walk of length
n if

x0 ∼ x1 ∼ · · · ∼ xn , (2.1)

where some of x0, x1, . . . , xn may coincide. A walk (2.1) is called a path of length n if
x0, x1, . . . , xn are distinct from each other. A walk (2.1) is called a cicle of length n ≥ 3 if
x0, x1, . . . , xn−1 are distinct from each other and xn = x0.
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In usual we do not consider an orientation of a path. Namely, if (2.1) is a path,

xn ∼ xn−1 ∼ · · · ∼ x0

is the same path. For a cycle, we do not consider the initial vertex either. Namely, if
x0 ∼ x1 ∼ · · · ∼ xn−1 ∼ x0 is a cycle, then x1 ∼ x2 ∼ · · · ∼ xn−1 ∼ x0 ∼ x1 stands for the
same cycle.
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Figure 2.2: P5: path of length 4 (left). C5: cycle of length 5 (right)

Definition 2.1.7 A graph G = (V,E) is connected if every pair of distinct vertices x, y ∈ V
(x ̸= y) are connected by a walk (or equivalently by a path).

Definition 2.1.8 Two graphs G = (V,E) and G′ = (V ′, E ′) are called isomorphic if there
exists a bijection f : V → V ′ satisfying

x ∼ y ⇐⇒ f(x) ∼ f(y).

In that case we write G ∼= G′.

2.2 Adjacency Matrices

2.2.1 Definition

Let V and V ′ be arbitrary non-empty set. A function a : V × V ′ → R is regarded
as a matrix A indexed by V × V ′ in the sense that the matrix element of A is defined by
(A)xy = a(x, y). In this case we write A = (axy) too.

Definition 2.2.1 Let G = (V,E) be a graph. A matrix A = (axy) indexed by V × V is
called the adjacency matrix of G if

axy =

{
1, if x ∼ y,

0, otherwise.

Lemma 2.2.2 Let V be a non-empty set. A matrix A indexed by V × V is the adjacency
matrix of a graph G with V being the vertex set if and only if

(i) (A)xy ∈ {0, 1};
(ii) (A)xy = (A)yx;

(iii) (A)xx = 0.



8 CHAPTER 2. GRAPHS AND ADJACENCY MATRICES

Proof. Obvious.

A matrix S indexed by V × V ′ is called a permutation matrix if

(i) (S)xy′ ∈ {0, 1};
(ii)

∑
y′∈V ′(S)xy′ = 1 for all x ∈ V ;

(iii)
∑

x∈V (S)xy′ = 1 for all y′ ∈ V ′.

If S is a permutation matrix, it is necessary that |V | = |V ′|.
The transposed matrix ST is defined in a usual manner: (ST )y′x = Sxy′ for x ∈ V and

y′ ∈ V ′. Then ST = S−1 in the sense that SST is the identity matrix indexed by V × V and
ST S is the identity matrix indexed by V ′ × V ′.

Lemma 2.2.3 Let A and A′ be the adjacency matrices of graphs G = (V,E) and G′ =
(V ′, E ′), respectively. Then G ∼= G′ if and only if there exists a permutation matrix S
indexed by V × V ′ such that A′ = S−1AS

Proof. Suppose that G ∼= G′. We choose an isomorphism f : V → V ′ and define a
matrix S indexed by V × V ′ by

(S)xy′ =

{
1, if y′ = f(x),

0, otherwise.

We see easily that S is a permutation matrix satisfying SA′ = AS.
Conversely, suppose that a permutation matrix S indexed by V ×V ′ verifies A′ = S−1AS.

Then a bijection f : V → V ′ is defined by the condition that

(A)xy =

{
1, if y = f(x),

0, otherwise.

It is then easy to see that f becomes an isomorphism betwen G and G′.

2.2.2 Representing the Adjacency Matrix in a Usual Form

In order to represent the adjacency matrix A of a graph G = (V,E) in a usual form of
n × n square matrix, where n = |V |, we need numbering the vertices. This is performed by
taking a bijection f : V → {1, 2, . . . , n} = V ′. Then we obtain a graph G′ = (V ′, E ′) in such
a way that {i, j} ∈ E ′ if and only if {f−1(i), f−1(j)} ∈ E. By definition we have G ∼= G′.
The adjacency matrix A′ of G′ is indexed by V ′ × V ′ and admits a usual expression of a
square matrix. It follows from Lemma 2.2.3 that A and A′ are related as A = SA′S−1.

Consider another numbering, that is, another bijection f1 : V → {1, 2, . . . , n} = V ′.
Then we obtain another square matrix A′

1 as the adjacency matrix of G′
1, which is related

to A as A = S1A
′
1S

−1
1 . Then we have

S1A
′
1S

−1
1 = SA′S−1

so that
A′

1 = S1SA′(S1S)−1.

Note that S1S is a usual permutation matrix on {1, 2, . . . , n}. Consequently,
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Lemma 2.2.4 Let A,A′ be the adjacency matrices of a graph G obtained from two ways of
numbering the vertices. Then there exists a permutation matrix on {1, 2, . . . , n}, n = |V |,
such that A′ = S−1AS.

Example 2.2.5 We obtain “different” adjacency matrices by different numbering the ver-
tices of the same graph.

s1

s
2

s
3

s 4

¡
¡

¡
¡


0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0


s3

s
4

s
1

s 2

¡
¡

¡
¡


0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0



2.2.3 Some Properties in Terms of Adjacency Matrices

All the information of a graph (up to isomorphism) are obtained from its adjacency
matrix.

(1) A graph G = (V,E) is not connected if and only if there exists a numbering the
vertices such that the adjacency matrix admits a block diagonal expression of the form:

A =

[
A1 O
O A2

]
(A1, A2 are square matrices)

In this case A1 and A2 are the adjacency matrices of subgraphs of G which are not connected.

(2) A graph is called complete if every pair of vertices are connected by an edge. A
comlete graph with n vertices is denoted by Kn. A graph is complete if and only if the
adjacency matrix is of the form:

A =


0 1 1 · · · 1
1 0 1 · · · 1
...

. . .
...

1 · · · 0 1
1 · · · 1 0


(3) A graph G = (V,E) is called bipartite if V admits a partition V = V1∪V2, V1∩V2 = ∅,

V1 ̸= ∅, V2 ̸= ∅, such that any pair of vertices in a common Vi does not constitute an edge.
A graph is bipartite if and only if the adjacency matrix admits a block diagonal expression
of the form:

A =

[
O B
BT O

]
(two zero matrices are square matrices).
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(4) A graph G = (V,E) is called complete bipartite if it is bipartite and every pair of
vertices x ∈ V1, y ∈ V 2 constitute an edge. In that case we write G = Km,n with m = |V1|
and n = |V2|. In particular, K1,n is called a star.

A graph is complete bipartite if and only if the adjacency matrix is of the form:

A =

[
O B
BT O

]
(all elements of B are 1).

Figure 2.3: Bipartite graph, complete bipartite graph K4,5, star K1,6

2.2.4 Generalization of Graphs

(1) Directed graph. One may consider naturally the case where every edge of a graph is
given a direction. Such an object is called a directed graph. In terms of the adjacency matrix
A, a directed graph is characterized by the following properties:

(i) (A)xy ∈ {0, 1};
(ii) (A)xy = 1 implies (A)yx = 0;

(iii) (A)xx = 0.

(2) Multigraph. In its geometric representation one may allow to draw two or more edges
connecting two vertices (multi-edge) and one or more arcs connecting a vertex with itself
(loop). In terms of the adjacency matrix A, a directed graph is characterized by the following
properties:

(i) (A)xy ∈ {0, 1, 2, . . . };
(ii) (A)xy = (A)yx.

Moreover, each edge may be given a direction to obtain a directed multigraph.

(3) Network. An arbitrary matrix gives rise to a graph where each directed edge −→xy is
associated with the value Axy. Such an object is called generally a network. A transition
diagram of a Markov chain is an example.

In regard to (1) and (2), a graph in these lectures is sometimes called a undirected simple
graph.
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Figure 2.4: Directed graph, multigraph, directed multigraph.

2.3 Characteristic Polynomials

Let G = (V,E) be a finite graph with |V | = n. Numbering the vertices, we write down its
adjacency matrix in the usual form of an n×n matrix, say A. The characteristic polynomial
of A is defined by

ϕA(x) = |xE − A| (= det(xE − A)).

It is noted that ϕA(x) is determined independently of the numbering. In fact, let A′ be
the adjacenct matrix obtained by a different numbering. From Lemma 2.2.4 we know that
A′ = S−1AS with a permutation matrix S. Then,

ϕA′(x) = |xE − A′| = |xE − S−1AS| = |S−1(xE − A)S| = |S−1||xE − A||S| = ϕA(x).

We call ϕA(x) the characteristic polynomial of G and denote it by ϕG(x). Obviously, ϕG(x)
is a polynomial of degree n of the form:

ϕG(x) = xn + c1x
n−1 + c2x

n−2 + c3x
n−3 + · · · . (2.2)

Example 2.3.1 Simple examples are:

s
x

s s
x2 − 1

s s s
x3 − 2x ·

·
··

T
T

TTs
s

s
x3 − 3x − 2

Example 2.3.2 One more example. The characteristic polynomial of the following graph
is ϕ(x) = x4 − 4x2 − 2x + 1.

·
·
··

T
T

TTs
s

s s
Theorem 2.3.3 Let the characteristic polynomial of a finite graph G be given as in (2.2).
Then,

(1) c1 = 0.
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(2) −c2 = |E|.
(3) −c3 = 2△, where △ is the number of triangles in G.

Proof. Let A = [aij] be the adjacency matrix of G written down in the usual form of
n × n matrix after numbering the vertices. Noting that the diagonal elements of A vanish,
we see that the characteristic polynomial of G is given by

ϕG(x) = |xE − A| =

∣∣∣∣∣∣∣∣∣
x −a12 · · · −a1n

−a21 x · · · −a2n
...

. . .
...

−an1 · · · · · · x

∣∣∣∣∣∣∣∣∣ .

For simplicity, the matrix in the right-hand side is denoted by B = [bij]. We then have

ϕG(x) = |B| =
∑

σ∈S(n)

sgn (σ)b1σ(1)b2σ(2) · · · bnσ(n). (2.3)

For σ ∈ Sn we set
supp σ = {i |σ(i) ̸= i}.

Then (2.3) becomes

ϕG(x) =
n∑

k=0

∑
σ∈S(n)

|supp σ|=k

sgn (σ)b1σ(1)b2σ(2) · · · bnσ(n) ≡
n∑

k=0

fn(x) (2.4)

Since the indeterminat x appears only in the diagonal of B, we see that fn(x) = ckx
n−k.

(1) k = 1. Since there is no permutation σ such that |supp σ| = 1, we have c1 = 0.
(2) k = 2. The permutations σ satisfying |supp σ| = 2 are parametrized as σ = (i j)

(1 ≤ i < j ≤ n). For such a permutation we have sgn (σ) = −1. Hence we have

f2(x) =
∑

1≤i<j≤n

(−1)(−aij)(−aji)x
n−2 = −

∑
1≤i<j≤n

aijx
n−2

where we used aijaji = a2
ij = aij. Therefore, c2 = −|E|.

(3) k = 3. The permutations σ satisfying |supp σ| = 3 are parametrized as

σ = (i j k), σ = (i k j), 1 ≤ i < j < k ≤ n.

Noting that sgn (σ) = 1 for such cyclic permutations, we have

f3(x) = −
∑

1≤i<j<k≤n

(aijajkaki + aikakjaji)x
n−3.

We see that aijajkaki takes values 1 or 0 according as three vertices i, j, k forms a triangle or
not. The same situation occuring for the second term, we conclude that −c3 = 2△.
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Figure 2.5: Path Pn

2.4 The Path Graph Pn and Chebyshev Polynomials

Let V = {1, 2, . . . , n} and E = {{i, i+1} ; i = 1, 2, . . . , n−1}. The graph (V,E) is called
a path with n vertices and is denoted by Pn.

Lemma 2.4.1 Let ϕn(x) = ϕPn(x) be the characteristic polynomial of the path Pn. The it
holds that

ϕ1(x) = x,

ϕ2(x) = x2 − 1,

ϕn(x) = xϕn−1(x) − ϕn−2(x), n ≥ 3 (2.5)

Proof. We have already seen in Example 2.3.1 that

ϕ1(x) = x, ϕ2(x) = x2 − 1.

Let us compute ϕn(x) for n ≥ 3. By definition we have

ϕn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1
−1 x −1

−1 x −1
. . . . . . . . .

−1 x −1
−1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By cofactor expansion with respect to the first column, we get

ϕn(x) = λϕn−1(x) +

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1
x −1
−1 x −1

. . . . . . . . .

−1 x −1
−1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣
= xϕn−1(x) − ϕn−2(x),

as desired.

Setting ϕ0(x) = 1, we may understand that the reccurence relation in (2.5) holds for
n ≥ 2.



14 CHAPTER 2. GRAPHS AND ADJACENCY MATRICES

Lemma 2.4.2 For n = 0, 1, 2, . . . there exists a polynomial Un(x) such that

Un(cos θ) =
sin(n + 1)θ

sin θ
. (2.6)

Moreover, Un(x) satisfies the following reccurence relation:

U0(x) = 1, U1(x) = 2x, Un+1(x) − 2xUn(x) + Un−1(x) = 0. (2.7)

Proof. By elementary knowledge of trigonometric functions.

Definition 2.4.3 The series of polynomials Un(x) is called the Chebyshev polynomial of the
second kind.

Theorem 2.4.4 The characteristic polynomial of the path Pn is given by Un(x/2).

Proof. Let ϕn(x) be the characteristic polynomial of Pn. We see easily from (2.5) and
(2.7) that the reccurence relations of ϕn(x) and Un(x/2) coincide together with the initial
conditions.

2.5 Exercises

(1) Let G = (V,E) be a graph with a vertex a of degree one. Let b ∈ V be a unique
vertex adjacent to a. Let G′ = G[V \{a}], G′′ = G[V \{a, b}] be induced subgraphs obtained
by deleting {a} and {a, b}, respectively. Prove that

ϕG(x) = xϕG′(x) − ϕG′′(x).

(2) Compute the characteristic polynomial of the complete graph Kn. Then verify The-
orem 2.3.3 directly.

Ans. ϕ(x) = (x − (n − 1))(x + 1)n−1.

References

[4] N. Biggs: Algebraic Graph Theory (2nd Edition), Cambridge University Press, Cam-
bridge, 1993.

[5] B. Bollobás: Modern Graph Theory, Graduate Texts in Mathematics Vol. 184, Springer-
Verlag, New York, 1998.
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3 Spectra of Graphs

3.1 Spectra

Let G = (V,E) be a finite graph with |V | = n and let A be the adjacency matrix
represented in a usual form of n × n matrix after numbering the vertices. Since A becomes
a real symmetric matrix, its eigenvalues are all real, say, λ1 < λ2 < · · · < λs. Then, the
characteristic polynomial of G is factorized as

ϕG(x) = (x − λ1)
m1 · · · (x − λs)

ms , (3.1)

where mi ≥ 1 (called the multiplicity of λi) and
∑

i mi = n.

Definition 3.1.1 Let G = (V,E) be a finite graph and let ϕG(x) its characteristic polyno-
mial in the form (3.1). The the array

Spec (G) =

(
λ1 λ2 · · · λs

m1 m2 · · · ms

)
(3.2)

is called the spectrum of G. Each λi is called an eigenvalue of G and mi its multiplicity.

In fact, (3.2) is nothing else the spectrum of the adjacency matrix A. Obviously, (3.2)
does not depend on the choice of numbering vertices. Moreover,

Lemma 3.1.2 If G ∼= G′, then Spec (G) = Spec (G′).

Remark 3.1.3 The converse assertion of Lemma 3.1.2 is not valid, however, it is known that
the converse is true for graphs with four or less vertices. In Section 3.6 we show examples
of two non-isomorphic graphs whose spectra coincide.

Example 3.1.4 Here are some simple examples.

Spec ( s) =

(
0
1

)
, Spec ( s s) =

(
−1 1
1 1

)
,

Spec ( s s s) =

(
−
√

2 0
√

2
1 1 1

)
, Spec

(
s ss
¢
¢

A
A

)
=

(
−1 2
2 1

)
.

Theorem 3.1.5 The spectrum of the path Pn is given by

Spec (Pn) =

2 cos
π

n + 1
· · · 2 cos

kπ

n + 1
· · · 2 cos

nπ

n + 1

1 · · · 1 · · · 1
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Proof. First we find the zeroes of the Chebyshev polynomial of the second kind. By
definition,

Un(x) =
sin(n + 1)θ

sin θ
, x = cos θ.

In view of the right-hand side we see easily that Un(x) = 0 if

θ =
kπ

n + 1
, k = 1, 2, . . . , n.

For these θ, cos θ are mutually distinct. Thus

xk = cos
kπ

n + 1
, k = 1, 2, . . . , n, (3.3)

form n different zeroes of Un(x). Since Un(x) is a polynomial of degree n, (3.3) exhaust the
zeroes of Un(x) and each xk has multiplicity one.

By Theorem 2.4.4 the characteristic polynomial of Pn is given by Un(x/2). For the
spectrum of Pn it is sufficient to find its zeroes. From the above argument we see that the
zeroes of Un(x/2) are

λk = 2 cos
kπ

n + 1
, k = 1, 2, . . . , n,

each of which is of multiplicity one. This shows the assertion.

3.2 Number of Walks

Let A be the adjacency matrix of a locally finite graph G = (V,E). Then for any
m = 1, 2, . . . and x, y ∈ V the matrix element (Am)xy is defined as usual by

(Am)xy =
∑

z1,...,zm−1∈V

(A)xz1(A)z1z2 · · · (A)zm−1y .

Note that

(A)xz1(A)z1z2 · · · (A)zm−1y =

{
1, if x ∼ z1 ∼ · · · ∼ zm−1 ∼ y,

0, otherwise.

Hence (Am)xy is the number of walks of length m connecting x and y. If the graph G is
locally finite, (Am)xy < ∞. Therefore, the powers of A is well-defined.

We record the above result in the following

Lemma 3.2.1 Let G = (V,E) be a locally finite graph and A its adjacency matrix. Then,
for any m = 1, 2, . . . and x, y ∈ V , the matrix element (Am)xy coincides with the number of
walks of length m connecting x and y.

Theorem 3.2.2 Let G = (V,E) be a finite graph and λ1 < λ2 < · · · < λs exhaust its
eigenvalues. For x, y ∈ V there exist constant numbers ci = ci(x, y) (i = 1, 2, . . . , s) such
that

(Am)xy =
s∑

i=1

ci(x, y)λm
i .

Here we tacitly understand that 00 = 1 when λi = 0.
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Proof. The first equality is due to Lemma 3.2.1. For the second equality we consider
the diagonalization of A. In fact, since A is real symmetric, taking a suitable orthogonal
matrix U we have

A = U

λ1Em1

. . .

λsEms

U−1.

It is then obvious that evey element of (Am) is a linear combination of λm
1 , . . . , λm

s .

3.3 Maximal Eigenvalue

It is important to know a bound of Spec (G). Let λmax(G) and λmin(G) denote the
maximal and minimal eigenvalues of G, respectively. We shall show a simple estimate of
λmax(G).

Some statistics concerning the degrees of vertices play an interesting role. We set

dmax(G) = max{deg(x) | x ∈ V },
dmin(G) = min{deg(x) |x ∈ V },

d̄(G) =
1

|V |
∑
x∈V

deg(x).

Obviously,

dmin(G) ≤ d̄(G) ≤ dmax(G).

Theorem 3.3.1 For a finite graph G = (V,E) it holds that

dmin(G) ≤ d̄(G) ≤ λmax(G) ≤ dmax(G).

Proof. We regard the adjacency matrix A as a linear transformation on Cn.
1◦ We prove d̄(G) ≤ λmax(G). Let v = [vi] ∈ Cn be the vector whose elements are all

one. Then,

〈v, Av〉 =
n∑

i=1

vi (Av)i =
n∑

i,j=1

vi (A)ijvj =
n∑

i,j=1

(A)ij =
∑
i∈V

d(i).

Since 〈v, v〉 = n = |V |, we have

〈v, Av〉
〈v,v〉

=
1

|V |
∑
i∈V

d(i) = d̄(G). (3.4)

On the other hand, it is known from knowledge of linear algebra that

λmin(A) ≤ 〈u, Au〉
〈u,u〉

≤ λmax(A) for all u ̸= 0. (3.5)
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Combining (3.4) and (3.5), we come to

d̄(G) ≤ λmax(A) = λmax(G).

2◦ We show λmax(G) ≤ dmax(G). Since λmax(G) is real, we may choose its eigenvector
u = [ui] whose elements are all real. Then, for any i we have (Au)i = λmaxui. Multiplying
a constant, we may assume that

α ≡ max{ui ; i = 1, 2, . . . , n} > 0

and choose i0 such that ui0 = α. Then,

λmax(G)α = λmax(G)ui0 = (Au)i0 =
∑
i∼i0

ui

≤ α|{i ∈ V | i ∼ i0}| = αd(i0) ≤ αdmax(G),

which implies that λmax(G) ≤ dmax(G).

Corollary 3.3.2 If G is a regular graph with degree κ, we have λmax(G) = κ.

Proof. For a regular graph we have d̄(G) = dmax(G) = κ.

3.4 Spectral Distribution of a Graph

Definition 3.4.1 Let G be a finite graph with

Spec (G) =

(
λ1 λ2 . . . λs

m1 m2 . . . ms

)
.

The spectral (eigenvalue) distribution of G is a probability measure on R defined by

µ =
1

|V |

s∑
i=1

miδλi
,

where δλ stands for the delta-measure.

It is sometimes convenient to use the list of eigenvalues of A with multiplicities, say,
λ1, λ2, . . . , λn, n = |V |. Then the spectral distribution is

µ =
1

n

n∑
k=1

δλk
.

Example 3.4.2 The spectral distribution of the path Pn is given by

µ =
1

n

n∑
k=1

δ2 cos kπ
n+1
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Remark 3.4.3 The delta measure δλ is a Borel probability measure on R. For a Borel set
E ⊂ R we have

δλ(E) =

{
1, if λ ∈ E,

0, otherwise

Hence for a continuous function f(x) on R we have∫ +∞

−∞
f(x)δλ(dx) = f(λ).

Definition 3.4.4 Let µ be a probability measure on R. The integral, if exists,

Mm(µ) =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . (3.6)

is called the m-th moment of µ.

Theorem 3.4.5 Let µ be the spectral distribution of a finite graph G = (V,E). Then,

Mm(µ) =
1

|V |
Tr Am, m = 1, 2, . . . . (3.7)

Proof. Let λ1, . . . , λn be the eigenvalues of A, listed with multiplicities. Then by
definition,

Mm(µ) =

∫ +∞

−∞
xmµ(dx) =

1

n

n∑
k=1

λm
k .

Since λm
1 , . . . , λm

n is the eigenvalues of Am with multiplicities, their sum coincides with the
trace of Am. Hence, (3.7) follows.

Lemma 3.4.6 Let A be the adjacency matrix of a finite graph G = (V,E).

(1) Tr A = 0.

(2) Tr (A2) = 2|E|.
(3) Tr (A3) = 6△.

Proof. We show only (3). By definition

Tr (A3) =
∑

x,y,z∈V

(A)xy(A)yz(A)zx = |{(x, y, z) ∈ V 3 ; x ∼ y ∼ z ∼ x}| = 6△.

The most basic characteristics of a spectral distribution are the mean and the variance,
which are defined by

mean (µ) = M1(µ) =

∫ +∞

−∞
xµ(dx),

var (µ) = M2(µ) − M1(µ)2 =

∫ +∞

−∞
(x − mean (µ))2µ(dx).

Proposition 3.4.7 Let µ be the spectral distribution of a finite graph G = (V,E). Then,

mean (µ) = 0, var (µ) = 2
|E|
|V |

.
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3.5 Asymptotic Spectral Distributions of Pn and Kn

3.5.1 Pn as n → ∞

The spectral distribution of Pn is

µn =
1

n

n∑
k=1

δ2 cos kπ
n+1

,

see Example 3.4.2. Let f(x) be a bounded continuous function. The we have∫ +∞

−∞
f(x)µn(dx) =

1

n

n∑
k=1

f

(
2 cos

kπ

n + 1

)
→

∫ 1

0

f(2 cos πt)dt, as n → ∞,

which follows by the definition of Riemann integral. By change of variable, one gets∫ 1

0

f(2 cos πt)dt =

∫ 2

−2

f(x)
dx

π
√

4 − x2
.

Consequently,

lim
n→∞

∫ +∞

−∞
f(x)µn(dx) =

∫ 2

−2

f(x)
dx

π
√

4 − x2
, f ∈ Cb(R), (3.8)

where Cb(R) denotes the space of bounded continuous function on R.
It is easy to see that

dx

π
√

4 − x2
χ(−2,2)(x)dx

is a probability measure on R. We call it the arcsine law with variance 2. Then from the
limit formula (3.8) we state the following

Proposition 3.5.1 The spectral distribution of Pn converges weakly to the arcsine law with
variance 2.

3.5.2 Kn as n → ∞

The spectral distribution of Kn is

µn =
1

n
δn−1 +

n − 1

n
δ−1 .

In a similar manner as in Section 3.5.1 we have∫ +∞

−∞
f(x)µn(dx) =

1

n
f(n − 1) +

n − 1

n
f(−1) → f(−1), as n → ∞.

Since

f(−1) =

∫ +∞

−∞
f(x)δ−1(dx)
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and δ−1 is a probability measure, we may state that the spectral distribution of Kn converges
weakly to δ−1. However, notice that

mean (µn) = 0, var (µn) = 2
|E|
|V |

= n − 1,

and

mean (δ−1) = −1, var (δ−1) = 0.

Thus, it is hardly to say that the limit measure δ−1 reflects basic statistical properties of µn

for a large n.
The above unconfort was caused by var (µn) → ∞ as n → ∞. In order to capture a

reasonable limit measure it is necessary to handle a normalized measure. In general, for a
probability measure µ with mean mean (µ) = m and variance var (µ) = σ2, the normalization
is defined by ∫ +∞

−∞
f(x)µ̄(dx) =

∫ +∞

−∞
f

(
x − m

σ

)
µ(dx).

Then mean (µ̄) = 0 and var (µ̄) = 1.

Proposition 3.5.2 The normalized spectral distribution of Kn converges weakly to δ0.

Proof. Let f(x) be a bounded continuous function on R. We have∫ +∞

−∞
f(x)µ̄n(dx) =

∫ +∞

−∞
f

(
x√

n − 1

)
µn(dx)

=
1

n
f

(
n − 1√
n − 1

)
+

n − 1

n
f

(
−1√
n − 1

)
→ f(0), as n → ∞.

This completes the proof.

In Section 3.5.1, for the asymptotic spectral distribution of Pn we did not take the
normalization. The normalization yields essentially nothing new thanks to the fact that

mean (µn) = 0, var (µn) = 2
|E|
|V |

=
2(n − 1)

n
.

Namely, the variance of µn stays bounded by 2 as n → ∞.

3.6 Isospectral (Cospectral) Graphs

We show a pair of non-isomorphic graphs that have the same spectra.

Example 3.6.1 ϕ(x) = x5 − 4x3 = x3(x − 2)(x + 2).
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Example 3.6.2 (Baker)

ϕ(x) = x6 − 7x4 − 4x3 + 7x2 + 4x − 1

= (x − 1)(x + 1)2(x3 − x2 − 5x + 1)
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Example 3.6.3 (Collatz–Sinogowitz) ϕ(x) = x8 − 7x6 + 9x4
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For more information see e.g.,

[6] D. M. Cvetković, M. Doob and H. Sachs: Spectra of Graphs: Theory and Applications
(3rd rev. enl. ed.), New York, Wiley, 1998.

[7] L. Collatz and U. Sinogowitz: Spektren endlicher Grafen, Abh. Math. Sem. Univ.
Hamburg 21 (1957), 63–77.

[8] C. D. Godsil and B. D. McKay: Constructing cospectral graphs, Aeq. Math. 25 (1982),
257–268.

3.7 Exercises

(1) Let Cn be a cycle of n vertices. Find Spec (Cn)

(2) Let µn be the spectral distribution of Cn. Study the asymptotics of µn as n → ∞.

(3) Using Theorem 3.1.5, prove the formula:

m∏
k=1

2 cos
kπ

2m + 1
= 1.
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4 Adjacency Algebras

4.1 Adjacency Algebras

Let A be the adjacency matrix of a locally finite graph G = (V,E). In Section 3.2 we
showed that every matrix element of Am (m = 1, 2, . . . ) is defined and finite, so we may form
their linear conbination. Let A(G) denote the set of linear combinations of E,A,A2, . . . with
complex coefficients.

Equipped with the usual operations, A(G) becomes a commutative algebra over C with
the multiplication identity E. Moreover, we define the involution by

(c0E + c1A + c2A
2 + · · · + cmAm)∗ = c̄0E + c̄1A + c̄2A

2 + · · · + c̄mAm

so that A(G) becomes a ∗-algebra.

Definition 4.1.1 The above A(G) is called the adjacency algebra of G.

Proposition 4.1.2 If G is a finite graph, dimA(G) coincides with the number of different
eigenvalues of A.

Proof. Let λ1 < · · · < λs be the different eigenvalues of A. Then, by a suitable
orthogonal matrix U we have

U−1AU =

λ1Em1

. . .

λsEms

 ≡ D.

We see that {E,D,D2, . . . , Ds−1} is linearly independent, but {E,D,D2, . . . , Ds−1, Ds} is
not. In fact,

(D − λ1E) · · · (D − λsE) = O.

Therefore, the algebra U−1AU is of dimension s, so is A(G).

Proposition 4.1.3 For a connected finite graph G = (V,E) we have

dimA(G) ≥ diam (G) + 1.

Proof. For simplicity put diam (G) = d. If d = 0, we have |V | = 1 and dimA(G) = 1
so the assertion is clear. Assume that d ≥ 1. By definition of the diameter there exists a
pair of verices x, y ∈ V such that ∂(x, y) = d. Choose one path of length d connecting x, y,
say,

x = x0 ∼ x1 ∼ · · · ∼ xk ∼ xk+1 ∼ · · · ∼ xd = y.

In this case, x0, x1, . . . , xd are all distinct and ∂(x, xk) = k (0 ≤ k ≤ d). In particular, there
is no walk of length ≤ k − 1 connecting x and xk. Hence

(Am)xxk
= 0, 0 ≤ m ≤ k − 1; (Ak)xxk

̸= 0.

Then we see by induction on k that {E = A0, A,A2, . . . , Ak} (1 ≤ k ≤ d) is linearly
independent. Consequently, A(G) contains a linearly independent subset consisting of d + 1
elements, so that dimA(G) ≥ d + 1.



24 CHAPTER 4. ADJACENCY ALGEBRAS

Corollary 4.1.4 A connected finite graph G = (V,E) has at least diam (G) + 1 different
eigenvalues.

Proof. By combining Propositions 4.1.2 and 4.1.3.

Example 4.1.5 (1) Kn (n ≥ 2).

(number of different eigenvalues) = 2, diam (Kn) = 1.

(2) Pn (n ≥ 1).

(number of different eigenvalues) = n, diam (Pn) = n − 1.

(3) G as below. ϕG(x) = x2(x + 2)(x2 − 2x − 4)

s
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s
ss

¡
¡

¡
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@

@ (number of different eigenvalues) = 4, diam (G) = 2.

4.2 Distance-Regular Graphs (DRGs)

Let G = (V,E) be a connected graph and fix a vertex o ∈ V as an origin (root). We set

Vn = {x ∈ V ; ∂(x, o) = n}, n = 0, 1, 2, . . . .

Obviously,
V0 = {o}, V1 = {x ∈ V ; x ∼ o}.

If G is a finite graph, there exists m0 ≥ 1 such that Vm0−1 ̸= ∅ and Vm0 = ∅. If G is an
infinite, locally finite graph, Vn ̸= ∅ for all n ≥ 0. In any case we have a partition of the
vertices:

V =
∞⋃

n=0

Vn (4.1)

which is called the stratification of the graph G with respect to the origin o ∈ V .

Lemma 4.2.1 Let G be a connected, locally finite graph and let (4.1) be a stratification. If
x ∈ Vn and y ∼ x, we have y ∈ Vn+1 ∪ Vn ∪ Vn−1.

Proof. Obvious.

Given a stratification, for x ∈ Vn we define

ω+(x) = {y ∈ Vn+1 ; y ∼ x},
ω◦(x) = {y ∈ Vn ; y ∼ x},
ω−(x) = {y ∈ Vn−1 ; y ∼ x}
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ω (x)

+ω (x)

ω (x)

}

}
}

Figure 4.1: Stratification and ωϵ(x)

It is convenient to write

ωϵ(x) = {y ∈ Vn+ϵ ; y ∼ x}, ϵ ∈ {+,−, ◦},

where ϵ takes the values +1,−1, 0 according to ϵ = +,−, ◦. Note also that

deg(x) = ω+(x) + ω◦(x) + ω−(x), x ∈ V.

Definition 4.2.2 A connected graph G = (V,E) is called distance-regular if, for any strat-
ification of G, the functions ωϵ : V → {0, 1, 2, . . . } (ϵ ∈ {+,−, ◦}) are constant on Vn, and
the constants are independent of the choice of stratification. In that case we put

bn = ω+(x), cn = ω−(x), an = ω◦(x),

by taking x ∈ Vn.

It is obvious that
a0 = c0 = 0, b0 = deg(x), x ∈ V0 .

Since any vertex x may be chosen as an origin for stratification, deg(x) = b0 for all x ∈ V .
That is, a distace-regular graph is regular with degree b0. Therefore,

an + bn + cn = b0, n = 1, 2, . . . .

Lemma 4.2.3 If G is a finite DRG, letting d = diam (G), we have

V =
d⋃

n=0

Vn , V0, V1, . . . , Vd ̸= ∅. (4.2)

If G is an infinite DRG, Vn ̸= ∅ for all n = 0, 1, 2, . . . .
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Proof. By definition, there is a path of length d. Taking one of the end vertex as an
origin, the associated stratification satisfies conditions in (4.2). Then, we have

b0 > 0, . . . , bd−1 > 0, bd = 0. (4.3)

Let o ∈ V be an aritrary vertex and take v ∈ V such that

∂(o, v) = max{∂(o, x) ; x ∈ V } ≡ p.

Then p ≤ d and the associated stratification is

V =

p⋃
k=0

V ′
k , V ′

0 , V
′
1 , . . . , V

′
p ̸= ∅.

Then,
b0 > 0, . . . , bp−1 > 0, bp = 0. (4.4)

In order that (4.3) and (4.4) are consistent, we have p = d.

Corollary 4.2.4 In a finite distance-regular graph, every vertex is an end vertex of a diam-
eter.

Definition 4.2.5 For a finite distance-regular graph G, the table of associated constant
numbers c0 c1 c2 · · · cd

a0 a1 a2 · · · ad

b0 b1 b2 · · · bd


is called the intersection array of G. If G is infinite, the array becomes infinite.

Since an + bn + cn = b0 is constant, the row of a0, a1, . . . may be omitted. Note that

c0 = 0, c1 > 0, · · · , cd−1 > 0, cd > 0,

b0 > 0, b1 > 0, · · · , bd−1 > 0, bd = 0.

Example 4.2.6 (1) The cheapest examples are Cn (n ≥ 3), Kn (n ≥ 1), and Kn,n (n ≥ 1).
(2) The Petersen graph is distance-regular.
(3) A homogeneous tree of degree κ, Tκ, is distance-regular.
(4) Pn (n ≥ 3) is not distance-regular (sine it is not regular).
(5) Z2 is not distance-regular.

Definition 4.2.7 A connected graph is called distance-transitive if, for any x, x′, y, y′ ∈ V
with ∂(x, y) = ∂(x′, y′) there exists α ∈ Aut (G) such that α(x) = x′ and α(y) = y′.

Proposition 4.2.8 A distance-transitive graph is distance-regular.

In fact, (1)–(3) in Example 4.2.6 are all distance-transitive. The converse of Proposition
4.2.8 is not valid, for examples see Godsil–Royle [9: p.69], Brouwer et al. [10: p.136].
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4.3 Adjacency Algebras of Distance-Regular Graphs

Definition 4.3.1 Let G = (V,E) be a connected graph. For k = 0, 1, 2, . . . we define a
matrix A(k) indexed by V × V by

(A(k))xy =

{
1, if ∂(x, y) = k,

0, otherwise

This matrix is called the k-th distance matrix.

Obviously,

A(0) = E (identity), A(1) = A (adjacency matrix)

and we have

∞∑
k=0

A(k) = J, J is the matrix whose elements are all one.

Lemma 4.3.2 Let G be a distance-regular graph with the intersection arrayc0 c1 c2 · · ·
a0 a1 a2 · · ·
b0 b1 b2 · · ·

 .

Then,
AA(k) = ck+1A

(k+1) + akA
(k) + bk−1A

(k−1), k = 0, 1, 2, . . . . (4.5)

Here we understand that A(−1) = O and A(d+1) = O for d = diam (G) < ∞.

Proof. For k = 0 the equality (4.5) is obvious. Let k ≥ 1. Let x, y ∈ V and set
n = ∂(x, y). Then, by definition

(AA(k))xy =
∑
z∈V

(A)xz(A
(k))zy = |{z ∈ V ; ∂(z, x) = 1, ∂(z, y) = k}|.

It is obvious by the triangle inequality,

{z ∈ V ; ∂(z, x) = 1, ∂(z, y) = k} = ∅

unless k − 1 ≤ n ≤ k + 1. Namely,

(AA(k))xy = 0 unless k − 1 ≤ n ≤ k + 1.

Asuume that k − 1 ≤ n ≤ k + 1. Then, by definition of the intersection array, we have

|{z ∈ V ; ∂(z, x) = 1, ∂(z, y) = k}| =


cn, k = n − 1,

an, k = n,

bn, k = n + 1.
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Thus,

(AA(k))xy =


ck+1, ∂(x, y) = k + 1,

ak, ∂(x, y) = k,

bk−1, ∂(x, y) = k − 1.

This completes the proof.

Lemma 4.3.3 For k = 0, 1, 2, . . . , d, A(k) is a polynomial in A with degree k.

Proof. For k = 0, 1 the assertion is apparently true. In fact,

A(0) = f0(A), f0(x) = 1,

A(1) = f1(A), f1(x) = x.

It follows from Lemma 4.3.2 that

A(k) = fk(A), fk(x) =
1

ck

(x − ak−1)fk−1(x) − bk−2

ck

fk−2(x).

for k = 2, 3, . . . , d. Note that c1 > 0, · · · , cd > 0.

Theorem 4.3.4 Let G be a distance-regular graph. Then the adjacency algebra A(G) co-
incides with the linear span of {A(0), A(1), . . . }, which are linearly independent. If G is a
finite distance-regular graph, dimA(G) = diam (G) + 1 and A has diam (G) + 1 distinct
eigenvalues.

Proof. It follows from Lemma 4.3.3 that the adjacency algebra A(G) contains the
linear span of {A(0), A(1), . . . }. On the other hand, since

A(k) = fk(A) = βkA
k + . . . , βk > 0,

we see that Ak is a linear combination of A(0), A(1), . . . , A(k). Therefore, A(G) is contained
in the linear span of {A(0), A(1), . . . }.

The second half is obvious because the distance matrices {A(0), A(1), . . . } are linearly
independent.

Theorem 4.3.5 (Linearization formula) For i, j, k ∈ {0, 1, 2, . . . , d} there exists a unique
constant pk

ij such that

A(i)A(j) =
d∑

k=0

pk
ijA

(k) i, j ∈ {0, 1, 2, . . . , d}. (4.6)

Moreover, for x, y ∈ V with ∂(x, y) = k,

|{z ∈ V ; ∂(z, x) = i, ∂(z, y) = j}|

does not depend on the choice of x, y but depends on k, and coincides with pk
ij.
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Proof. The first half is obvious by Theorem 4.3.4. Let x, y ∈ V with ∂(x, y) = l. Let
us observe the matrix element of (4.6). From the left-hand side we get

(A(i)A(j))xy =
∑
z∈V

(A(i))xz(A
(j))zy = |{z ∈ V ; ∂(z, x) = i, ∂(y, z) = j}|

On the other hand, (
d∑

k=0

pk
ijA

(k)

)
xy

= pl
ij ,

which is constant for all x, y ∈ V with ∂(x, y) = l. Therefore, for such a pair x, y we have

|{z ∈ V ; ∂(z, x) = i, ∂(y, z) = j}| = pl
ij

as desired.

Definition 4.3.6 The constant numbers {pk
ij} are called the intersection numbers of a

distance-regular graph G.

The intersection numbers satisfies:

(1) pn−1
1n = bn−1, pn

1n = an, pn+1
1n = cn+1.

(2) pk
ij = 0 unless |i − j| ≤ k ≤ i + j.

(3) pk
ij = pk

ji.

(4) p0
00 = 1, p0

0i = p0
i0 = 0 for i ≥ 1.

Remark 4.3.7 In some of the literature, a distance-regular graph is defined to be a con-
nected graph for which the set of conatants {pk

ij}, where i, j, k ∈ {0, 1, 2, . . . },

pk
ij = |{z ∈ V ; ∂(z, x) = i, ∂(y, z) = j}|

is independent of the choice of x, y ∈ V with ∂(x, y) = k. This condition is seemingly
stronger than that of our definition (Definition 4.2.2) as is seen in (1) above; however, they
are equivalent.

4.4 Exercises

(1) Verify that the Petersen graph is distance-regular and find its intersection array.

Ans.

0 1 1
0 0 2
3 2 0


(2) Verify that the one-dimensional integer lattice Z is distance-regular and find its in-

tersection array.
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s s s s sp p p p p p p p p p p p
Ans.

0 1 1 1 · · ·
0 0 0 0 · · ·
2 1 1 1 · · ·


(3) Define a polynomial Tn(x) by Tn(cos θ) = cos nθ and set

T̃0(x) = T0(x) = 1, T̃n(x) = 2Tn

(x

2

)
, n ≥ 1.

Let A and A(k) be the adjacency matrix and the k-th distance matrix of Z, respectively.
Show that A(k) = T̃k(A). ({Tn(x)} are calle the Chebyshev polynomial of the first kind.)
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5 Spectral Distributions of Distance-Regular Graphs

5.1 Quantum Decomposition

Let G = (V,E) be a connected graph. Fix an origin o ∈ V we consider the stratification:

V =
∞⋃

n=0

Vn , Vn = {x ∈ V ; ∂(x, o) = n}.

Let A be the adjacency matrix.
We define three matrices Aϵ as follows: Let x ∈ Vn.

(A+)yx =

{
1, if y ∼ x and y ∈ Vn+1,

0, otherwise,

(A◦)yx =

{
1, if y ∼ x and y ∈ Vn,

0, otherwise,

(A−)yx =

{
1, if y ∼ x and y ∈ Vn−1,

0, otherwise,

It is convenient to unify the above in the following form:

(Aϵ)yx =

{
1, if y ∼ x and y ∈ Vn+ϵ,

0, otherwise,
ϵ ∈ {+,−, ◦}.

Figure 5.1: Quantum decomposition of the adjacency matrix

Lemma 5.1.1 (1) A = A+ + A− + A◦.

(2) (A+)∗ = A− and (A−)∗ = A+.

(3) (A◦)∗ = A.
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Proof. Easy.

Definition 5.1.2 We call A = A+ + A− + A◦ the quantum decomposition of the adjacency
matrix with respect to the origin o ∈ V . Each Aϵ is called a quantum component.

Example 5.1.3 (1) Pn.

s s s p p p p p p p p s s s
o = 0 1 2 n − 1 n

A =



0 1
1 0 1

1 0
. . .

. . . . . . 1
1 0 1

1 0


=



0 1
0 1

0
. . .
. . . 1

0 1
0


+



0
1 0

1 0
. . . . . .

1 0
1 0


= A+ + A−

(2) P7 with the origin o as illustrated below.

A
A

A
A

A
A

A
A

A

¢
¢
¢
¢
¢
¢
¢
¢
¢

s
s

s
s

s
s

s

o = 0

−1 1

−2 2

−3 3

A =



0 1
1 0 1

1 0 1
1 0 1

1 0 1
1 0 1

1 0


=



0
1 0

1 0
1 0 1

0 1
0 1

0


+



0 1
0 1

0 1
0
1 0

1 0
1 0


5.2 Interacting Fock Spaces (IFSs)

We put

C(V ) = {f : V → C ; supported by a finite subset of V }.



5.2. INTERACTING FOCK SPACES (IFSS) 33

Equipped with the usual operation, C(V ) becomes a complex vector space. We define the
inner product by

〈f, g〉 =
∑
x∈V

f(x) g(x).

With each x ∈ V we associate a function ex ∈ C(V ) defined by

ex(y) =

{
1, if y = x,

0, otherwise.

Then {ex} becomes a basis of C(V ) sastisfying 〈ex, ey〉 = δxy.
Let V =

⋃∞
n=0 Vn be a stratification. Then we define

Φn =
1√
|Vn|

∑
x∈Vn

ex .

By definition, Φ0 = eo. We note that

〈Φm, Φn〉 = δmn.

Let Γ = Γ(G, o) denote the subspace of C(V ) spanned by Φ0, Φ1, . . . .
A matrix T indexed by V × V acts on C(V ) from the left by the usual matrix multipli-

cation. Note that
〈f, Tg〉 = 〈T ∗f, g〉, f, g ∈ C(V ).

We are interested in the actions of the quantum components of the adjacency matrix: A =
A+ + A− + A◦.

Lemma 5.2.1 For x ∈ Vn,

Aϵex =
∑

y∈Vn+ϵ, y∼x

ey , ϵ ∈ {+,−, ◦}.

Lemma 5.2.2

AϵΦn =
1√
|Vn|

∑
y∈Vn+ϵ

|ω−ϵ(y)|ey (5.1)

Proof. Let us consider A+. By definition√
|Vn|A+Φn =

∑
x∈Vn

A+ex =
∑

y∈Vn+1

|ω−(y)|ey ,

which prooves the assertion.

We see from (5.1) that AϵΦn is not necesarily a constant multiple of Φn+ϵ, in other words,
Γ is not necessarily closed under the actions of the quantum components. The quqnatum
probabilistic approach is useful in the case where

(i) Γ is closed under the actions of the quantum components;
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(ii) Γ is asymptotically closed under the actions of the quantum components.

Here we discuss typical examples for (i).

Theorem 5.2.3 Let G be a distance-regular graph with the intersection array:c0 c1 c2 · · ·
a0 a1 a2 · · ·
b0 b1 b2 · · ·

 .

Fix an origin o ∈ V , we consider the stratification of G, the unit vectors Φ0 = eo, Φ1, Φ2, . . . ,
the linear space Γ = Γ(G, o), and the quantum decomposition of the adjacency matrix A =
A+ + A− + A◦. Then, Γ is invariant under the actions of the quantum components Aϵ.
Moreover,

A+Φn =
√

ωn+1 Φn+1, n = 0, 1, . . . , (5.2)

A−Φ0 = 0, A−Φn =
√

ωn Φn−1, n = 1, 2, . . . , (5.3)

A◦Φn = αn+1Φn, n = 0, 1, 2, . . . , (5.4)

where

ωn = bn−1cn , αn = an−1, n = 1, 2, . . . .

Proof. We continue the calculation of (5.1). Since G is distance-regular, we know that
for y ∈ Vn+ϵ,

|ω−ϵ(y)| =


cn+1 , if ϵ = +,

an , if ϵ = ◦,
bn−1 , if ϵ = −.

Then, for ϵ = + we have

A+Φn =
1√
|Vn|

∑
y∈Vn+1

cn+1ey = cn+1

√
|Vn+1|√
|Vn|

Φn+1 . (5.5)

Similarly,

A−Φn =
1√
|Vn|

∑
y∈Vn−1

bn−1ey = bn−1

√
|Vn−1|√
|Vn|

Φn−1 (5.6)

and

A◦Φn =
1√
|Vn|

∑
y∈Vn

aney = anΦn . (5.7)

Now (5.4) is obvious from (5.6). We note that

bn|Vn| = cn+1|Vn+1|,
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wich counts the number of edges betwen two strata Vn and Vn+1. Then, the coefficient on
the right-hand side of (5.5) becomes

cn+1

√
|Vn+1|√
|Vn|

= cn+1

√
bn

cn+1

=
√

bncn+1 =
√

ωn+1 .

Similarly, for (5.6) we have

bn−1

√
|Vn−1|√
|Vn|

= bn−1

√
cn

bn−1

=
√

bn−1cn =
√

ωn .

These show that (5.2) and (5.3).

Definition 5.2.4 A real sequence {ωn}∞n=1 is called a Jacobi sequence if

(i) [infinite type] ωn > 0 for all n ≥ 1; or

(ii) [finite type] there exists m0 ≥ 1 such that ω1 > 0, ω2 > 0, . . . , ωm0−1 > 0, ωm0 =
ωm0+1 = · · · = 0.

By definition (0, 0, . . . ) is a Jacobi sequence (m0 = 1).

Given a Jacobi sequence {ωn}, we consider a Hilbert space Γ as follows: If {ωn} is
of infinite type, let Γ be an infinite dimensional Hilbert space with an orthonormal basis
{Φ0, Φ1, . . . }. If {ωn} is of finite type, let Γ be an m0-dimensional Hilbert space with an
orthonormal basis {Φ0, Φ1, . . . , Φm0−1}. We call Φ0 the vacuum vector.

We next define linear operators B± on Γ by

B+Φn =
√

ωn+1 Φn+1, n = 0, 1, . . . , (5.8)

B−Φ0 = 0, B−Φn =
√

ωn Φn−1, n = 1, 2, . . . , (5.9)

where we understand B+Φm0−1 = 0 when {ωn} is of finite type.

Definition 5.2.5 Let {ωn} be a Jacobi sequence. Let Γ be a Hilbert space constructed from
it and B± linear operators defined as above. The quadraple (Γ, {ωn}, B+, B−) is called an
interaction Fock space associated with a Jacobi sequence {ωn}. We call B− the annihilation
operator and B+ the creation operator.

With these notation Theorem 5.2.3 is rephrased as follows.

Theorem 5.2.6 Let G be a distance-regular graph with the intersection array:c0 c1 c2 · · ·
a0 a1 a2 · · ·
b0 b1 b2 · · ·

 .

Fix an origin o ∈ V , we consider the stratification of G, the unit vectors Φ0 = eo, Φ1, Φ2, . . . ,
the linear space Γ = Γ(G, o), and the quantum decomposition of the adjacency matrix A =
A+ + A− + A◦. Set ωn = bn−1cn for n = 1, 2, . . . . Then, (Γ, {ωn}, A+, A−) is an interacting
Fock space.
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Figure 5.2: Interaction Fock space

5.3 Orthogonal Polynomials

Let µ be a probability measure on R satisfying∫ +∞

−∞
|x|mµ(dx) < ∞, m = 1, 2, . . . .

Let Pfm(R) be the set of such probability measures.

Definition 5.3.1 For µ ∈ Pfm(R),

Mm = Mm(µ) =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . .

is called the m-th moment of µ.

We denote the inner product of L2(R, µ) by

〈f, g〉 =

∫ +∞

−∞
f(x) g(x) µ(dx).

Now we define a sequence of polynomials P0(x), P1(x), . . . by the following reccursive formula:

P0 = 1, P1 = x − 〈P0, x〉
〈P0, P0〉

P0, P2 = x2 − 〈P0, x
2〉

〈P0, P0〉
P0 −

〈P1, x
2〉

〈P1, P1〉
P1, . . . ,

Pn = xn −
n−1∑
k=0

〈Pk, x
n〉

〈Pk, Pk〉
Pk .

This is the co-called Gram-Schmidt orthogonalization. Then,

Pn(x) = xn + · · · , 〈Pm, Pn〉 = 0 for m ̸= n.

We call {Pn} the orthogonal polynomials associated with µ.
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The procedure of forming the orthogonal polynomials stops at the m0 step if

〈P0, P0〉 > 0, . . . , 〈Pm0−1, Pm0−1〉 > 0, 〈Pm0 , Pm0〉 = 0

happens. In that case the orthogonal polynomials consists of P0(x), P1(x), . . . , Pm0−1(x).
This happens if and only if supp (µ) consists of exactly m0 points, i.e., µ is a sum of delta
measures at different m0 points with positive coefficients.

Theorem 5.3.2 (The three-term recurrence relation) Let {Pn(x)}∞n=0 be the orthogo-
nal polynomials associated with µ ∈ Pfm(R). Then there exist a pair of sequences {αn}∞n=1

and {ωn}∞n=1 with αn ∈ R, ωn > 0, such that

P0(x) = 1,

P1(x) = x − α1, (5.10)

xPn(x) = Pn+1(x) + αn+1Pn(x) + ωnPn−1(x), n = 1, 2, . . . . (5.11)

Moreover,

∥P0∥ = 1, ∥Pn∥2 = ω1ω2 · · ·ωn, n ≥ 1, (5.12)

α1 = M1(µ) = mean (µ) =

∫ +∞

−∞
xµ(dx), (5.13)

ω1 = var (µ) =

∫ +∞

−∞
(x − α1)

2µ(dx). (5.14)

Proof. Well known and omitted.

Definition 5.3.3 We call the pair of sequences ({αn}∞n=1, {ωn}∞n=1) the Jacobi coefficients.

Remark 5.3.4 Setting P−1 = 0 and understanding ω0P−1 = 0, we regard (5.11) is valid
also for n = 0. Remind that ω0 is not defined.

Remark 5.3.5 If the orthogonal polynomials consists of m0 polynomials, we understand
the Jacobi coefficients are given by ({α1, α2, . . . , αm0}, {ω1, ω2, . . . , ωm0−1}).

5.4 States on Adjacency Algebras

Definition 5.4.1 Let A be a ∗-algebra over C with the multiplication unit 1A. A function
ϕ : A → C is called a state on A if

(i) ϕ is linear;

(ii) ϕ(a∗a) ≥ 0 for all a ∈ A;

(iii) ϕ(1A) = 1.
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We shall define two basic states on the adjacency algebra A(G) of a graph G.

(1) Assume that |V | < ∞. We define ϕtr : A → C by

ϕtr(a) =
1

|V |
Tr (a) =

1

|V |
∑
x∈V

(a)xx , a ∈ A(G).

One can check easily that ϕtr is a state on A(G). We call it the normalized trace.

(2) We fix o ∈ V . We define ϕo : A → C by

ϕo(a) = (a)oo , a ∈ A(G).

One can check easily that ϕo is a state on A(G). In fact, for positivity,

ϕo(a
∗a) = (a∗a)oo =

∑
x∈V

(a∗)ox(a)xo =
∑
x∈V

(a)xo(a)xo ≥ 0.

We call ϕo the vector trace at o ∈ V . In some contexts ϕo is also called the vacuum state.

Theorem 5.4.2 If G is a finite distance-regular graph, we have

ϕtr = ϕo (as a state on the adjacency algebra A(G)).

Proof. Let a ∈ A(G). We see from Theorem 4.3.4 that a is a linear combination of
distance matrices:

a =
d∑

k=0

ckA
(k).

Then, (a)xx = c0 for all x ∈ V , and (a)xx = (a)oo Therefore,

ϕtr(a) =
1

|V |
∑
x∈V

(a)xx = (a)oo = ϕo(a).

This proves the assertion.

5.5 Spectral Distribution of DRGs

We keep the notations and assumptions in Theorem 5.2.3. The main point is that,
accroding to the quantum decomposition of the adjacency matrix A = A+ + A− + A◦, we
found an interacting Fock space structure. Thus,

AΦn =
√

ωn+1 Φn+1 + αn+1Φn +
√

ωn Φn−1, n = 0, 1, 2, . . . , (5.15)

where

ωn = bn−1cn , αn = an−1, n = 1, 2, . . . .
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On the other hand, let µ be a probability measure on R with Jacobi coefficients ({αn}, {ωn}).
(We shall prove later that such a probability measure exists and here let us assume this.)
Then the associated orthogonal polynomials {Pn} satisfies

xPn(x) = Pn+1(x) + αn+1Pn(x) + ωnPn−1(x) .

In view of ∥Pn∥ =
√

ωn · · ·ω1 we have

x
Pn(x)√
ωn · · ·ω1

=
√

ωn+1
Pn+1(x)√
ωn+1 · · ·ω1

+ αn+1
Pn(x)√
ωn · · ·ω1

+
√

ωn
Pn−1(x)√
ωn−1 · · ·ω1

. (5.16)

We define an isometry U : Γ → L2(R, µ) by

UΦn =
Pn(x)√
ωn · · ·ω1

, n = 0, 1, 2, . . . .

Then, we have

(UAU∗f)(x) = xf(x), f ∈ L2(R, µ).

Since U is isometric,

〈Φ0, A
mΦ0〉 = 〈UΦ0, UAmΦ0〉 = 〈UΦ0, x

mUΦ0〉

= 〈P0, x
mP0〉 =

∫ +∞

−∞
xmµ(dx) = Mm(µ).

On the other hand, we have

〈Φ0, A
mΦ0〉 = 〈eo, A

meo〉 = ϕo(A
m).

Consequently,

Theorem 5.5.1 Let G be a distance-regular graph with adjacency matrix A. Let ({ωn}, {αn})
be defined by

ωn = bn−1cn , αn = an−1 , n = 1, 2, . . . ,

where an, bn, cn come from the intersection array of G. A probability measure µ satisfies

ϕo(A
m) = (Am)oo = Mm(µ) =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . ,

if and only if the Jacobi coefficients of µ coincide with ({ωn}, {αn}).

Theorem 5.5.2 Keeping the same notations as in Theorem 5.5.1, we assume in addition
that G is a finite distance-regular graph. Then, the spectral distribution of G satisfies the
conditions for µ.
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Proof. Let ν be the spectral distribution of G. Then,

ϕtr(A
m) =

∫ +∞

−∞
xmν(dx), m = 1, 2, . . . ,

On the other hand, we see from Theorem 5.4.2 that

ϕtr(A
m) = ϕo(A

m).

Hence, we have ∫ +∞

−∞
xmν(dx) =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

Since the Jacobi coefficients are determmined through the Gram-Schmidt orthogonalization,
they are uniquely determined by the moments. Hence the Jacobi coefficients of ν and µ
coincide.

5.6 Exercises

(1) Find the Jacobi coefficients associated with the one-dimensional integer lattice Z.

(2) Find the Jacobi coefficients associated with the homogeneous tree of degree κ. (Z is
the case of κ = 2)

Ans. ω1 = κ, ω2 = · · · = κ − 1, αn ≡ 0.

(3) Prove that two probability measure µ, ν ∈ Pfm(R) with the same moment sequences
have the same Jacobi coefficients.
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6 Adjacency Matrices as Algebraic Random Variables

6.1 Algebraic Probability Spaces

Definition 6.1.1 Let A be a ∗-algebra over C with multiplication unit 1A. A function
ϕ : A → C is called a state on A is

(i) ϕ is linear;

(ii) ϕ(a∗a) ≥ 0;

(iii) ϕ(1A) = 1.

Then, the pair (A, ϕ) is called an algebraic probability space.

Example 6.1.2 Let G = (V,E) be a locally finite graph and A(G) the adjacency algebra.
Then,

ϕo(a) = (a)oo = 〈eo, aeo〉, a ∈ A(G),

where eo ∈ C(V ) is defined by

eo(x) =

{
1, if x = o,

0, otherwise.
(6.1)

Then (A(G), ϕo) = (A(G), eo) is an algebraic probability space. We sometimes call ϕo the
vacuum state at o ∈ V .

Example 6.1.3 Let G = (V,E) be a finite graph with |V | = n. Define

ϕtr(a) =
1

n

∑
x∈V

(a)xx =
1

n

∑
x∈V

〈ex, aex〉, a ∈ A(G),

where ex ∈ C(V ) is defined as in (6.1). Then (A(G), ϕtr) is an algebraic probability space.
We call ϕtr the normalized trace.

Example 6.1.4 Let C[X] be the set of polynomials in the indeterminant X with complex
coefficients. Equipped with the usual addition, scalar multiplication and product, C[X]
becomes a commutative algebra. Moreover, we define the involution (∗-operation) by

(c0 + c1X + · · · + cnX
n)∗ = c0 + c1X + · · · + cnX

n .

Thus, C[X] becomes a ∗-algebra. Let Pfm(R) be the set of probability measures on R that
admit finite moments of all orders. Let µ ∈ Pfm(R). Then

P 7→
∫ +∞

−∞
P (x)µ(dx) ≡ µ(P ), P ∈ C[X],

is a state on C[X]. Thus, (C[X], µ) is an algebraic probability space.
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Example 6.1.5 Let {ωn} be a Jacobi sequence and (Γ, {Φn}, B+, B−) be the associated
interacting Fock space, i.e.,

B+Φn =
√

ωn+1 Φn+1, n = 0, 1, . . . ,

B−Φ0 = 0, B−Φn =
√

ωn Φn−1, n = 1, 2, . . . .

Let {α1, α2, . . . } be a real sequence and define

B◦Φn = αn+1Φn, n = 0, 1, 2, . . . .

Then, we have (B+)∗ = B−, (B−)∗ = B+, (B◦)∗ = B◦. Let A be the ∗-algebra generated
by B+, B−, B◦, i.e., the set of all (noncommutative) polynomials in B+, B−, B◦. Then the
function ϕ0 defined by

ϕ0(a) = 〈Φ0, aΦ0〉, a ∈ A

is a state on A. We call (A, ϕ0) = (A, Φ0) an interacting Fock probability space with vacuum
state.

6.2 Distributions of Algebraic Random Variables

Definition 6.2.1 Let (A, ϕ) be an algebraic probability space. An element a ∈ A is called
an algebraic random variable or a random variable for short. If a = a∗, we call it real.

Theorem 6.2.2 Let (A, ϕ) be an algebraic probability space and let a = a∗ ∈ A be a real
random variable. Then, there exists a probability measure µ ∈ Pfm(R) such that

ϕ(am) =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . . (6.2)

Definition 6.2.3 A probability measure µ satisfying (6.2) is called the distribution of a in
ϕ. As discussed later, µ is not uniquely determined in general.

Proof. Set Mm = ϕ(am) and consider the Hanckel determinant:

∆m = |Hm|, Hm =


M0 M1 · · · Mm

M1 M2 · · · Mm+1
...

...
. . .

...
Mm Mm+1 · · · M2m

 . (6.3)

It follows from Hamburger’s theorem (1920) that there exists a probability measure µ ∈
Pfm(R) such that

Mm =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . ,

if and only if

(M1) ∆m > 0 for all m; or
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(M2) there exists m0 ≥ 1 such that ∆1 > 0, . . . , ∆m0−1 > 0 and ∆m0 = · · · = 0.

We shall check this condition for our ∆m defined in (6.3). For

u =

u0
...

um

 ∈ Cm+1

we have

〈u, Hmu〉 =
m∑

i,j=0

uiMijuj =
m∑

i,j=0

ui ujϕ(ai+j)

= ϕ

(
m∑

i,j=0

ui uja
i+j

)
= ϕ

(( m∑
i=0

uiai

)∗( m∑
j=0

uja
j

))
≥ 0,

which shows that Hm is positive definite. Hence its eigenvalues are all non-negative real
numbers and ∆m ≥ 0.

We next show that ∆m = 0 implies ∆m+1 = 0. Suppose that ∆m = 0. Then there exists
u ̸= 0 such that Hmu = 0. Set

v =

[
u
0

]
∈ Cm+2.

Apparently, v ̸= 0. Since

Hm+1v =

[
Hm ∗
∗ M2m

] [
u
0

]
=

[
Hmu
∗

]
=

[
0
∗

]
,

we have
〈v, Hm+1v〉 = 0.

Having shown that Hm+1 is positive definite, we see that ∆m+1 = 0.

6.3 The Moment Problem

Let M be the set of all real sequences {M0 = 1,M1,M2, . . . } satisfying condition (M1) or
(M2) in Section 6.2. It follows from Hamburger’s theorem that the map M : Pfm(R) → M

defined by M(µ) = {Mm(µ)} is surjective.

Definition 6.3.1 A probability measure µ ∈ Pfm(R) is called the solution of a determinate
moment problem if M−1(M(µ)) = {µ}.

Proposition 6.3.2 (Carlemen’s moment test) Let {Mm} ∈ M. If

∞∑
m=1

M
− 1

2m
2m = +∞,

then there exists a unique µ ∈ Pfm(R) such that Mm(µ) = Mm for all m = 1, 2, . . . .
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The proof is omitted, see e.g., Shohat–Tamarkin [11].

Example 6.3.3 (1) If supp (µ) is compact, then µ is the solution of a determinate moment
problem.

(2) A classical Gaussian measure N(m,σ2) is the solution of a determinate moment
problem. The density of the standard Gaussian measure N(0, 1) is given by

1√
2π

e−x2/2 .

In fact, by the Stirling formula we have

M2m =
(2m)!

2mm!
∼

√
2

(
2m

e

)m

.

(3) The classical Poisson measure with parameter λ > 0 is defined by

pλ = e−λ

∞∑
k=0

λk

k!
δk .

The Poisson measure is the solution of a determinate moment problem. It is easily verified
that Mm ≤ (λ + m)m.

Recall that, given µ ∈ Pfm(R), we obtain a pair of sequences ({ωn}, {αn}), called the
Jacobi coefficients, from the three-term recurrence relation (Theorem 5.3.2) satisfied by the
orthogonal polynomials {Pn} associated with µ. Let J be the set of pairs of sequences
({ωn}, {αn}) satisfying

(i) for all m, ωm > 0 and α1, α2, . . . form an infinite sequence of real numbers; or

(ii) there exists m0 ≥ 1 such that ω1 > 0, . . . , ωm0−1 > 0 and ωm0 = ωm0+1 = · · · = 0, and
α1, α2, . . . , αm0 is a finite sequence of real numbers.

Since the Jacobi coefficients of a probability measure satisfy the above condition, we have a
map

J : Pfm(R) → J.

On the other hand, since the Gram-Schmidt orthogonalization is performed by using the
moments of µ, the Jacobi coefficients ({ωn}, {αn}) depend only on {Mm(µ)}. Therefore,
the map F : M → J is defined by the commutative diagram:

Pfm(R)

M J

¡
¡ª

M @
@R
J

-F

Theorem 6.3.4 The map F : M → J is bijective.

The proof is omitted, see e.g., Hora–Obata [3].
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Remark 6.3.5 F−1 : J → M is expressed explicitly by the Accardi–Bożejko formula [12].

Proposition 6.3.6 (Carleman) Let µ ∈ Pfm(R) and ({ωn}, {αn}) be its Jacobi coeffi-
cients. If

∞∑
n=1

1
√

ωn

= +∞,

then µ is the solution of a determinate moment problem. (If {ωn} contains 0, we understand
the above condition is satisfied.)

With the above argument, the spectral distributions in Theorems 5.5.1 and 5.5.2 are
uniquely characterized by the Jacobi coefficients obtained from the intersection array of G.

6.4 Deformed Vacuum States

Definition 6.4.1 Let G = (V,E) be a connected graph. Given q ∈ C, the matrix Q = Qq

indexed by V × V defined by

(Q)xy = q∂(x,y), x, y ∈ V

is called the Q-matrix of G. For q = 0 we understand that 00 = 1 and Q0 = E (the identity
matrix).

The Q-matrix is related to the adjacency matrix:
d

dq
Q

∣∣∣
q=0

= A.

Example 6.4.2 (1) s s [
1 q
q 1

]

(2) s
2

s
1

s3
s4

A
A
A

¢
¢

¢


1 q q q
q 1 q q2

q q 1 q2

q q2 q2 1


The Q-matrix gives rise to a one-parameter deformation of the vacuum state. Let us

define
〈a〉q = 〈Qδo, aδo〉 =

∑
x∈V

q∂(x,o)〈δx, aδo〉, a ∈ A(G). (6.4)

Obviously, A(G) ∋ a 7→ 〈a〉q is a normalized linear function on A(G). Being slightly free
from the strict wording of “state,” we give the following

Definition 6.4.3 A normalized linear function defined in (6.4) is called a deformed vacuum
state on A(G).

Thus, a deformed vacuum state is not necessarily a state so conditions for its positivity
are important to study. We recall the following general notion.
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Definition 6.4.4 Let T be a matrix indexed by V ×V . We say that T is positive definite if

〈f, Tf〉 ≥ 0 for all f ∈ C(V ).

A positive definite matrix T is called strictly positive definite if

〈f, Tf〉 > 0 for all f ∈ C(V ), f ̸= 0.

Proposition 6.4.5 The normalized linear function 〈·〉q defined by (6.4) is positive, hence a
state on A(G) if the following two conditions are fulfilled:

(i) Q is a positive definite kernel on V ;

(ii) QA = AQ. (Note that Q is not necessarily locally finite but A is. Therefore the matrix
elements of both sides are well-defined.)

Proof. Let a ∈ A(G). Since a is a polynomial in A, we have Qa = aQ. Then, by the
definition (6.4) we have

〈a∗a〉q = 〈Qδo, a
∗aδo〉 = 〈aQδo, aδo〉 = 〈Qaδo, aδo〉 ≥ 0,

which proves the assertion.

Proposition 6.4.6 Let G = (V,E) be a graph with |V | ≥ 2. If Q = (q∂(x,y)) is a positive
definite kernel on V , then −1 ≤ q ≤ 1.

Proof. By assumption there is a pair of a, b ∈ V such that ∂(a, b) = 1. Since
Q = (q∂(x,y)) is a positive definite kernel on V , taking f = αδa + βδb in C0(V ), we obtain〈[

α
β

]
,

[
1 q
q 1

] [
α
β

]〉
≥ 0, α, β ∈ C, (6.5)

where 〈·, ·〉 is the usual Hermitian inner product of C2. Therefore, the 2×2 matrix appearing
in (6.5) is positive definite. Hence q ∈ R and 1 − q2 ≥ 0.

Thus, the main question, which is quite open, is to determine the range of q ∈ [−1, 1]
for which Q becomes positive definite. See Bożejko [13] for the case of the star product of
graphs.

In order to derive a sufficient condition for the equality QA = AQ we consider a geometric
property of a graph. A graph G = (V,E) is called quasi-distance-regular if∣∣∣∣{z ∈ V ;

∂(z, x) = n
∂(z, y) = 1

}∣∣∣∣ =

∣∣∣∣{z ∈ V ;
∂(z, x) = 1
∂(z, y) = n

}∣∣∣∣ (6.6)

holds for any choice of x, y ∈ V and n = 0, 1, 2, . . . . Here the number defined by (6.6) may
depend on the choice of x, y ∈ V .

By definition, a distance-regular graph is quasi-distance-regular. On the other hand, if
(6.6) depends only on ∂(x, y), the graph G becomes distance-regular.
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Proposition 6.4.7 If a graph is quasi-distance-regular, then QA = AQ for all q ∈ R.
Conversely, if QA = AQ holds for q running over a non-empty open interval, then the graph
is quasi-distance-regular.

Proof. Let x, y ∈ V . Then

(QA)xy =
∑
z∈V

q∂(x,z)Azy =
∑
z∼y

q∂(x,z)

=
∞∑

n=0

qn|{z ∈ V ; ∂(z, x) = n, ∂(z, y) = 1}|, (6.7)

which is in fact a finite sum. Similarly, we have

(AQ)xy =
∞∑

n=0

qn|{z ∈ V ; ∂(z, x) = 1, ∂(z, y) = n}|. (6.8)

Hence, if the graph is quasi-distance-regular, the coefficients of qn in (6.7) and (6.8) coincide
and we obtain (QA)xy = (AQ)xy for all x, y ∈ V . The converse assertion is readily clear.

6.5 Exercises

(1) Verify the statements in Example 6.3.3.

(2) Determine the range of q for which the Q-matrix of Example 6.4.2 (2) is positive
deinite.

(3) Determine the range of q for which the Q-matrix of an octahedron is positive definite.

Ans. −2 +
√

3 ≤ q ≤ 1

s2 s3
s5 s 4

s
1

s6
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´
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´
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7 Hamming Graphs

7.1 Definition and Some Properties

Let F be a finite set with |F | = N ≥ 2, say F = {1, 2, . . . , N}, and consider the cartesian
product of d ≥ 1 copies of F :

F d = {x = (ξ1, . . . , ξd) ; ξi ∈ F, 1 ≤ i ≤ d}.

For x = (ξ1, . . . , ξd), y = (η1, . . . , ηd) ∈ F d define

∂(x, y) = |{1 ≤ i ≤ d ; ξi ̸= ηi}|.

Then ∂ becomes a distance function on F d, which is called the Hamming distance.

Definition 7.1.1 The pair

V = F d, E = {{x, y} ; x, y ∈ F d, ∂(x, y) = 1}

is called a Hamming graph and is denoted by H(d,N).

We avoid the trivial case of N = 1 since H(d, 1) is a trivial graph, i.e., consists of a single
vertex. H(d, 2) is the d-cube and H(2, N) is the N × N-grid. Furthermore, H(1, N) ∼= KN

(the complete graph with N vertices).

Figure 7.1: Hamming graphs H(2, 2), H(3, 2) and H(4, 2)

Remark 7.1.2 The graph distance of a Hamming graph H(d,N) = (F d, E) coincides with
the Hamming distance on F d.

Proposition 7.1.3 A Hamming graph H(d,N) is distance-transitive, hence distance-regular.
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Proof. A Hamming graph is highly symmetric. Let S(d) denote the symmetric group
of degree d, i.e. the group of permutations of {1, 2, . . . , d}, which acts on H(d,N) = (F d, E)
by coordinate permutation:

σx = (ξσ−1(1), . . . , ξσ−1(d)), σ ∈ S(d).

On the other hand, the direct product group S(N)d acts on H(d, N) by

τx = (τ1(ξ1), . . . , τd(ξd)), τ = (τ1, . . . , τd) ∈ S(N)d.

Both actions give rise to automorphisms of H(d,N). By a simple observation we have

σ−1τσx = (τσ(1)(ξ1), . . . , τσ(d)(ξd)) = τσx,

where
τσ = (τ1, . . . , τd)

σ = (τσ(1), . . . , τσ(d)).

Thus, the actions of S(d) and S(N)d generate a semidirect product group S(d) n S(N)d.
The assertion is proved with the help of the group action.

Remark 7.1.4 The action of S(d)nS(N)d on H(d,N) is transitive and the isotropy group
of a vertex o = (N,N, . . . , N) is S(d) n S(N − 1)d. Hence

H(d,N) ∼= S(d) n S(N)d/S(d) n S(N − 1)d.

In fact, it is shown that Aut (H(d,N)) ∼= S(d) n S(N)d.

Proposition 7.1.5 diam H(d,N) = d and the degree is κd,N = d(N − 1).

Proposition 7.1.6 The intersection array of the Hamming graph H(d,N) is given with

an = pn
1n = n(N − 2), bn = pn

1,n+1 = (d − n)(N − 1), cn = pn
1,n−1 = n, (7.1)

for n = 0, 1, 2, . . . , d.

Proof. We prove the first identity. Take two vertices x, y ∈ V with ∂(x, y) = n.
Without loss of generality we may set

x = (1, . . . , 1︸ ︷︷ ︸
n

, 1, . . . , 1), y = (2, . . . , 2︸ ︷︷ ︸
n

, 1, . . . , 1).

A vertex z ∈ V with ∂(x, z) = 1 is of the form

z = (1, . . . , i, . . . , 1),

where i ̸= 1 occurs at an arbitrary position. Among such z we need to determine ones with
∂(y, z) = n. Consider first the case where i occurs in the first n positions. Then, comparing

z = (1, . . . , i, . . . , 1, 1, . . . , 1),

y = (2, . . . , 2, . . . , 2︸ ︷︷ ︸
n

, 1, . . . , 1),
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we see that ∂(y, z) = n if i ̸= 2. Since such an i is chosen from {3, 4, . . . , N} and there are
n positions, the number of y satisfying the above conditions is n(N − 2). Next we consider
the case where i occurs in the last d − n positions. Then we have

z = (1, . . . , 1, 1, . . . , i, . . . , 1),

y = (2, . . . , 2︸ ︷︷ ︸
n

, 1, . . . , 1, . . . , 1),

so that ∂(y, z) = n + 1, which does not satisfy the requirement ∂(y, z) = n. Consequently,
an = pn

1n = n(N − 2). The rest of (7.1) is shown easily in a similar fashion.

7.2 Spectral Analysis

7.2.1 Spectral Distributions in the Vacuum States

Theorem 7.2.1 Let µd,N be the spectral distribution of H(d,N) in the vacuum state. Then
µd,N is uniquely specified the Jacobicoefficients given by

ωn = n(d − n + 1)(N − 1), n = 1, 2, . . . , d,

αn = (n − 1)(N − 2), n = 1, 2, . . . , d, d + 1.

Proof. By combining Theorem 5.5.2 and Proposition 7.1.6.

Fixing o ∈ V as an origin, consider the quantum decomposition:

A = A+ + A− + A◦.

Then, Theorem 7.2.1 says that

A+Φn =
√

ωn+1 Φn+1 =
√

(n + 1)(d − n)(N − 1) Φn+1 , (7.2)

A−Φn =
√

ωn Φn−1 =
√

n(d − n + 1)(N − 1) Φn−1 , (7.3)

A◦Φn = αn+1Φn = n(N − 2)Φn . (7.4)

7.2.2 Asymptotic Spectral Distributions in the Vacuum State

Consider growing Hamming graphs H(d,N) as d → ∞ and N → ∞. In view of (7.2)–
(7.4), the coefficients of actions of Aϵ diverges as d → ∞ and N → ∞. We need normalization
to obtain a reasonable limit.

Note first that

ϕtr(A) = ϕo(A) = 0, ϕtr(A
2) = ϕo(A

2) = deg(o) = κd,N = d(N − 1).

Therefore, the variance of A diverges as d → ∞ and N → ∞. A reasonable normalization is

A√
d(N − 1)

.
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Thus, for (7.2)–(7.4) we consider

A+√
d(N − 1)

Φn =

√
(n + 1)

(
1 − n

d

)
Φn+1 , (7.5)

A−√
d(N − 1)

Φn =

√
n

(
1 − n − 1

d

)
Φn−1 , (7.6)

A◦√
d(N − 1)

Φn = n

√
N − 2

d

√
N − 2

N − 1
Φn . (7.7)

We observe that the coefficients on the right-hand sides converge as d → ∞, N → ∞, and

N

d
→ τ, τ ∈ [0, +∞).

In fact, the actions in this limit would be

lim
A+√

d(N − 1)
Φn =

√
n + 1 Φn+1 ,

lim
A−√

d(N − 1)
Φn =

√
n Φn−1 ,

lim
A◦√

d(N − 1)
Φn = n

√
τ Φn .

However, the vectors Φn also depending on d,N , the limit does not make sense in this form.
For the actions appearing in the limit are described in terms of Boson Fock space. Let

(Γ = ΓBoson, {Ψn}, B+, B−) be the Boson Fock space, where

B+Ψn =
√

n + 1 Ψn+1 , n = 0, 1, 2, . . . ,

B−Ψ0 = 0, B−Ψn =
√

n Φn−1 , n = 1, 2, . . . .

Theorem 7.2.2 (QCLT for Hamming graphs) For any choice of ϵ1, . . . , ϵm ∈ {+,−, ◦},
m = 1, 2, . . . , we have

lim
N/d→τ
d,N→∞

〈
Φ0,

Aϵm
d,N√
κd,N

· · ·
Aϵ1

d,N√
κd,N

Φ0

〉
= 〈Ψ0, B

ϵm · · ·Bϵ1Ψ0〉. (7.8)

In short,

lim
N/d→τ
d,N→∞

Aϵ
d,N√
κd,N

= Bϵ, ϵ ∈ {+,−, ◦}, (7.9)

in the sense of stochastic convergence with respect to the vacuum states.

Proof. First we note that, for any k, l ∈ {0, 1, 2, . . . } and ϵ ∈ {+,−, ◦},

lim
N/d→τ
d,N→∞

〈
Φk,

Aϵ
d,N√
κd,N

Φl

〉
= 〈Ψk, B

ϵΨl〉.

Then, the result follows by induction.
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Theorem 7.2.3 (CLT for Hamming graphs) For m = 1, 2, . . . we have

lim
N/d→τ
d,N→∞

〈
Φ0,

(
Ad,N√
κd,N

)m

Φ0

〉
= 〈Ψ0, (B

+ + B− +
√

τ B+B−)mΨ0〉. (7.10)

Proof. We note that

Ad,N√
κd,N

=
A+

d,N√
κd,N

+
A−

d,N√
κd,N

+
A◦

d,N√
κd,N

→ B+ + B− + B◦,

where

B◦Φn = n
√

τ Φn.

On the other hand, by definition we have

B+B−Φn = nΦn,

so that

B◦ =
√

τ B+B−.

Thus, (7.10) is a consequence of (7.8).

7.2.3 Boson Fock Space

The most fundamental object is B+ + B−, which is sometimes referred to as the field
operator.

Lemma 7.2.4 The vacuum spectral distribution of B+ +B− is the standard Gaussian mea-
sure, i.e.,

〈Ψ0, (B
+ + B−)mΨ0〉 =

1√
2π

∫ +∞

−∞
xme−x2/2dx, m = 1, 2, . . . .

Proof. Well known.

Another interesting operator is the number operator N = B+B−, which acts as

B+B−Ψn = nΨn , n = 0, 1, 2, . . . .

Lemma 7.2.5 For λ > 0, the vacuum spectral distribution of (B+ +
√

λ)(B− +
√

λ) is the
Poisson distribution with parameter λ, denoted by pλ, see Example 6.3.3. In other words,

〈Ψ0, ((B
+ +

√
λ)(B− +

√
λ))mΨ0〉 =

∫ +∞

−∞
xmpλ(dx), m = 1, 2, . . . . (7.11)
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Proof. For simplicity we set

C+ = B+ +
√

λ , C− = B− +
√

λ .

Since B−B+ = B+B− + 1, we have

C−C+ = B−B+ +
√

λ (B+ + B−) + λ = C+C− + 1.

Hence for m = 1, 2, . . . we have

(C+C−)m = C+(C−C+)m−1C− = C+(C+C− + 1)m−1C−. (7.12)

Let Mm denote the left-hand side of (7.11), namely, the moment sequence of the algebraic
random variable C+C− in the vacuum state:

Mm = 〈Φ0, (C
+C−)mΨ0〉, m = 1, 2, . . . .

Then, by (7.12) and the obvious identity C−Ψ0 =
√

λ Ψ0, we come to

Mm = 〈C−Ψ0, (C
+C− + 1)m−1C−Ψ0〉 = λ〈Ψ0, (C

+C− + 1)m−1Ψ0〉.

By the binomial expansion the last expression becomes

Mm = λ
m−1∑
k=0

(
m − 1

k

)
Mk , m = 1, 2, . . . .

It is obvious that M0 = 1.
On the other hand, as we see directly from the definition, the moment sequence of the

Poisson measure with parameter λ satisfies the same recurrence relation for Mm. Hence
(7.11) follows.

7.2.4 Asymptotic Spectral Distributions of H(d,m) in the Limit

We are now in a position to describe the limit measure

lim
N/d→τ
d,N→∞

µd,N

where µd,N is the spectral distribution of the Hamming graph H(d,N). By Theorem 7.2.3
we have

lim
N/d→τ
d,N→∞

∫ +∞

−∞

(
x√

d(N − 1)

)m

µd,N(dx) = 〈Ψ0, (B
+ + B− +

√
τ B+B−)mΨ0〉. (7.13)

We start with the case of τ = 0. Applying Lemma 7.2.4, we see that

lim
N/d→0
d,N→∞

∫ +∞

−∞

(
x√

d(N − 1)

)m

µd,N(dx) =
1√
2π

∫ +∞

−∞
xme−x2/2dx, m = 1, 2, . . . .

This means that the normalized spectral distribution of the Hamming graph H(d,N) con-
verges to the standard Gaussian measure in the sense of moments. Since the standard
Gaussian measure is the solution of a determinate moment problem, by a general result we
may conclude the weak convergence too. Summing up,



54 CHAPTER 7. HAMMING GRAPHS

Theorem 7.2.6 The normalized spectral distribution of the Hamming graph H(d,N) con-
verges in the limit as d, N → ∞, N/d → 0, to the standard Gaussian measure in the sense
of moments and weak convergence of probability measures.

We next consider the case of τ > 0. Note that

B+ + B− +
√

τ B+B− =
√

τ

(
B+ +

1√
τ

)(
B− +

1√
τ

)
− 1√

τ

and the distribution of

(
B+ +

1√
τ

)(
B− +

1√
τ

)
is the classical Poisson measure with

parameter 1/
√

τ by Lemma 7.2.5. Thus, the limit of the normalized spectral distribution of
the Hamming graph H(d,N) is a simple affine transformation (dilation and translation) of
the clasical Posson measure. In fact, we conclude that

Theorem 7.2.7 The normalized spectral distribution of the Hamming graph H(d,N) con-
verges in the limit as d,N → ∞, N/d → τ > 0, to ντ in the sense of moments and weak
convergence of probability measures. Here ντ is an affine transformation of the classical
Poisson measure with parameter 1/

√
τ , given by

ντ = e−1/τ

∞∑
k=0

τ−k

k!
δk

√
τ− 1√

τ

Remark 7.2.8 The Hamming graph H(d,N) is the direct product of d copies of the com-
plete graph KN . This fact gives another aspect to the asymptotic spectral analysis and will
be discussed later.

7.3 Exercises

(1) Show that the graph distance of a Hamming graph H(d,N) = (F d, E) coincides with
the Hamming distance on F d.

(2) Let ΓBoson = (Γ, {Ψn}, B+, B−) be the Boson Fock space and set

B◦ =
1√
λ

B+B− +
√

λ.

Using the identity

〈Ψ0, (B
+ + B− + B◦)mΨ0〉 =

∫ +∞

−∞

(
x√
λ

)m

pλ(dx), m = 1, 2, . . . ,

show that the Jacobi coefficients ({ωn}, {αn}) of the Poisson distribution with parameter
λ > 0 is given by

ωn = λn, αn = n − 1 + λ, n = 1, 2, . . . .


