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Non-commutative probability space

Definition

A Non-commutative probability space (A, ϕ) consist of a ∗-algebra A
and linear functional ϕ : A → C such that:

ϕ (IA) = 1,

ϕ(aa∗) ≥ 0 ∀a ∈ A.
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Free independence

Definition (Voiculescu)

Subalgebras (Ai )i∈I are called free if for any k > 0:

ϕ (a1 · · · ak) = 0

whenever we have:

ϕ(aj) = 0 for j = 1, . . . , k;

aj ∈ Ai(j) and neighbours are from different subalgebras, i.e.:

i(1) 6= i(2), i(2) 6= i(3), . . . , i(k − 1) 6= i(k)
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Set partitions

A partition of the set {1, . . . , n} is a set π = {A1, . . . ,Ak} of disjoint,

nonempty subsets such that
⋃k

i=1 Ai = {1, . . . , n}.

We write p ∼π q to mean that numbers p, q are in the same block of π.
Partition π is called noncrossing if any ordered quadruple
p1 < q1 < p2 < q2 cannot satisfy p1 ∼π p2 and q1 ∼π q2 unless
p1, p2, q1, q2 are in the same block of π.
Partition π is called interval partition if every block is an interval, i.e.,
i ∼π k and i < j < k then i , j , k are in the same block of π.
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Examples

noncrossing interval
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Cumulants

Free cumulants are defined recursively via

ϕ(X1 · · ·Xn) =
∑

π∈NC(n)

κπ(X1, . . . ,Xn).

For example ϕ(X ) = κ1(X ) and κ2(X1,X2) = ϕ(X1,X2)− ϕ(X1)ϕ(X2).

Boolean cumulants are defined via

ϕ(X1 · · ·Xn) =
∑

π∈Int(n)

βπ(X1, . . . ,Xn).
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Freeness in terms of free cumulants

Theorem (Speicher)

Random variables X1, . . . ,Xn are free if and only if for any k ≥ 2 we have
κk (Xi1 , . . . ,Xik ) = 0 whenever at least two different indices appear.
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Coloured non-crossing partitions

Definition

Let n be in N and let c : {1, . . . , n} → {1, . . . , s} be a colouring.

1 We will denote by NC (n; c) the subset of NC (n) defined by

NC (n; c) := {π ∈ NC (n) | c is constant on every block of π}.

For π ∈ NC (n; c) and A ∈ π, we will use the notation c(A) for the
common value c(a) ∈ {1, . . . , s} taken by c on all a ∈ A.

2 For a fixed partition and a non outer block A we will denote by
Parentπ(A) the block B such that A is nested inside B and if A is
nested in a different block C then B is also nested in C .

3 We wil say that π ∈ NC (n; c) has vertical no-repeat property (vnrp
for short) when whenever A ∈ π is not an outer block, one has

c( Parentπ(A) ) 6= c(A).
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Freeness in terms of boolean cumulants cumulants

Theorem (Fevrier, Mastnak, Nica, Sz.)

Consider A1, . . . ,As ⊂ A unital subalgebras. Let n ≥ 2 be an integer
and let X1, . . . ,Xn ∈ A be such that X1 ∈ Ai(1), . . . ,Xn ∈ Ai(n). Define a
colouring c(k) = i(k) for k = 1, . . . , n. Then A1, . . . ,As are free if and
only if

βn(X1, . . . ,Xn) =
∑

π∈NC(n,c), π�1n

π has vnrp

βπ(X1, . . .Xn).
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Distribution of an anti-commutator

The description above, is the main ingredient which allows to find
combinatorial description of Boolean cumulants of XY + YX as well as
power series equation for Boolean cumulants generating function.

For simplicity assume that X and Y have the same distribution, and
denote by η̃X (z) = β1(X ) + β2(X )z + . . .[

fXX fX ,X∗

fX∗,X fX∗,X∗

]
= z η̃X

(
z

[
fX∗X∗(1− fXX∗)−1 fX∗,X + fX∗,X∗(1− fX ,X∗)−1fX ,X

(1− fX ,X∗)−1 (1− fX ,X∗)−1fX ,X

])
.

Then

ηXY+YX (z2) = 2

(
fX ,X∗(z) +

fX ,X (z)fX∗,X∗(z)

1− f 2X∗,X (z)

)
.
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Examples

The distribution of XY + YX for X ,Y having distribution 1
2δ0 + 1

2δ2.

Solution2.pdf
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(a) Plot of the density µXY+YX
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(b) Histogram of the spectrum of a 4000× 4000 random matrix model for XY + YX

Figure: The spectral density of XY + YX
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Moment-cumulant formula

Lemma (Lehner,Sz.)

Let (X1, . . . ,Xn) and (Y1, . . . ,Yn) be mutually free families in an ncps
(A, ϕ), then

ϕ (X1Y1 . . .XnYn) =
n−1∑
k=0

∑
0<i1<...<ik<n

ϕ (Yi1 . . .YikYn) ·

k∏
j=0

β2(ij+1−ij )−1(Xij+1,Yij+1, . . . ,Xij+1),
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Subordination

Theorem (Biane)

When X ,Y are free then

Eϕ
[
(z − X − Y )−1 | X

]
= (ω(z)− X )−1,

where ω(z) : C+ → C+ is an analytic map, such that Im(ω(z)) ≥ Im(z).
If X ,Y are additionally positive then

Eϕ
[
zX 1/2YX 1/2/(1− zX 1/2YX 1/2)−1 | X

]
= F (z)X (1− F (z)X )−1,

where F : C+ 7→ C+, such that arg(F (z)) ≥ arg(z).

We have of course GX+Y (z) = GX (ω(z)).
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Subordination functions and Boolean cumulants

Proposition

(i) If X ,Y are bounded free random variables then the additive
subordination function ω has the expansion

ω(z) = z −
∞∑
n=0

β2n+1(Y , (z − X )−1, . . . , (z − X )−1,Y )

in some neighbourhood of infinity.

(ii) If X and Y are positive bounded free random variables then the
multiplicative subordination function F has the expansion

F (z) =
∞∑
n=0

β2n+1(Y ,X , . . . ,X ,Y )zn+1

in some neighbourhood of 0.
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Distribution of X + f (X )Yf ∗(X )

Theorem (Lehner, Sz.)

Let X ,Y be free and bounded, then

Eϕ
(
(z − X − f (X )Yf ∗(X ))−1|X

)
= (z − X − ω(z)|f (X )|2)−1,

where ω is related with subordination function of free multiplicative
convolution.

Remark

To find the distribution of X + f (X )Yf ∗(X ) it suffices to determine ω(z)
and calculate the integral

GX+f (X )Yf ∗(X )(z) =

∫
R

1

z − x − ω(z)|f (x)|2
dµX (x).
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Example

We take X ,Y Wigner semicircle distributed and calculate the distribution
of X + XYX .
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Example

We take X ,Y Wigner semicircle distributed and calculate the distribution
of X + XYX .
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Example

(a) Histogram of the spectrum of a 4000× 4000 random matrix model for X + XYX

Figure: The spectral density of X + XYX
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Further applications

With the moment cumulant formula one can calculate more complicated
conditional expectations.

Lemma (Weso lowski, Sz.)

Assume that U,V are free and bounded, moreover assume that
0 ≤ U < 1. Denote ΨX = zX (1− zX )−1 then for z in some
neighbourhood of 0 one has

Eϕ
[
(1− U)−1U1/2ΨU1/2VU1/2(z)U1/2(1− U)−1|V

]
=

B2(z) + zB2
1 (z) (1 + ΨV (ω1(z))V ,

where

B1(z) =
ηU(ω2(z))− ηU(1)

ω2(z)− 1
ϕ
(
(1− U)−1

)
,

B2(z) =
ω2(z)(ηU(ω2(z))− ηU(1)− (ω2(z)− 1)η′U(1))

(ω2(z)− 1)2
ϕ2
(
(1− U)−1

)
.

and MUV (z) = MV (ω1(z)) and MUV (z) = MU(ω2(z)).
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Thank you for your attention!
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