On applications of Boolean cumulants in free probability

Kamil Szpojankowski
Warsaw University of Technology
joint work with:
(1) M. Fevrier (Paris), M. Mastnak (Halifax), A. Nica (Waterloo)
(2) F. Lehner (Graz)
(3) J. Wesołowski (Warsaw)

11 May 2019
Hartman Special Seminar on Harmonic Analysis

Non-commutative probability space

Definition

Non-commutative probability space

Definition

A Non-commutative probability space (\mathcal{A}, φ) consist of a $*$-algebra \mathcal{A} and linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ such that:

Non-commutative probability space

Definition

A Non-commutative probability space (\mathcal{A}, φ) consist of a $*$-algebra \mathcal{A} and linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ such that:

- $\varphi\left(I_{\mathcal{A}}\right)=1$,

Non-commutative probability space

Definition

A Non-commutative probability space (\mathcal{A}, φ) consist of a $*$-algebra \mathcal{A} and linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ such that:

- $\varphi\left(I_{\mathcal{A}}\right)=1$,
- $\varphi\left(a a^{*}\right) \geq 0 \forall a \in \mathcal{A}$.

Free independence

Definition (Voiculescu)
Subalgebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ are called free if for any $k>0$:

Free independence

Definition (Voiculescu)

Subalgebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ are called free if for any $k>0$:

$$
\varphi\left(a_{1} \cdots a_{k}\right)=0
$$

whenever we have:

Free independence

Definition (Voiculescu)

Subalgebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ are called free if for any $k>0$:

$$
\varphi\left(a_{1} \cdots a_{k}\right)=0
$$

whenever we have:

- $\varphi\left(a_{j}\right)=0$ for $j=1, \ldots, k$;

Free independence

Definition (Voiculescu)

Subalgebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ are called free if for any $k>0$:

$$
\varphi\left(a_{1} \cdots a_{k}\right)=0
$$

whenever we have:

- $\varphi\left(a_{j}\right)=0$ for $j=1, \ldots, k$;
- $a_{j} \in \mathcal{A}_{i(j)}$ and neighbours are from different subalgebras,

Free independence

Definition (Voiculescu)

Subalgebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ are called free if for any $k>0$:

$$
\varphi\left(a_{1} \cdots a_{k}\right)=0
$$

whenever we have:

- $\varphi\left(a_{j}\right)=0$ for $j=1, \ldots, k$;
- $a_{j} \in \mathcal{A}_{i(j)}$ and neighbours are from different subalgebras, i.e.:

$$
i(1) \neq i(2), i(2) \neq i(3), \ldots, i(k-1) \neq i(k)
$$

Set partitions

A partition of the set $\{1, \ldots, n\}$ is a set $\pi=\left\{A_{1}, \ldots, A_{k}\right\}$ of disjoint, nonempty subsets such that $\bigcup_{i=1}^{k} A_{i}=\{1, \ldots, n\}$.

Set partitions

A partition of the set $\{1, \ldots, n\}$ is a set $\pi=\left\{A_{1}, \ldots, A_{k}\right\}$ of disjoint, nonempty subsets such that $\bigcup_{i=1}^{k} A_{i}=\{1, \ldots, n\}$.
We write $p \sim_{\pi} q$ to mean that numbers p, q are in the same block of π.

Set partitions

A partition of the set $\{1, \ldots, n\}$ is a set $\pi=\left\{A_{1}, \ldots, A_{k}\right\}$ of disjoint, nonempty subsets such that $\bigcup_{i=1}^{k} A_{i}=\{1, \ldots, n\}$.
We write $p \sim_{\pi} q$ to mean that numbers p, q are in the same block of π. Partition π is called noncrossing if any ordered quadruple $p_{1}<q_{1}<p_{2}<q_{2}$ cannot satisfy $p_{1} \sim_{\pi} p_{2}$ and $q_{1} \sim_{\pi} q_{2}$ unless $p_{1}, p_{2}, q_{1}, q_{2}$ are in the same block of π.

Set partitions

A partition of the set $\{1, \ldots, n\}$ is a set $\pi=\left\{A_{1}, \ldots, A_{k}\right\}$ of disjoint, nonempty subsets such that $\bigcup_{i=1}^{k} A_{i}=\{1, \ldots, n\}$.
We write $p \sim_{\pi} q$ to mean that numbers p, q are in the same block of π. Partition π is called noncrossing if any ordered quadruple $p_{1}<q_{1}<p_{2}<q_{2}$ cannot satisfy $p_{1} \sim_{\pi} p_{2}$ and $q_{1} \sim_{\pi} q_{2}$ unless $p_{1}, p_{2}, q_{1}, q_{2}$ are in the same block of π.
Partition π is called interval partition if every block is an interval, i.e., $i \sim_{\pi} k$ and $i<j<k$ then i, j, k are in the same block of π.

Examples

$\longdiv { \square । \Pi } \mid \longdiv { \square \text { । } }$ noncrossing

Cumulants

Free cumulants are defined recursively via

$$
\varphi\left(X_{1} \ldots X_{n}\right)=\sum_{\pi \in N C(n)} \kappa_{\pi}\left(X_{1}, \ldots, X_{n}\right) .
$$

For example $\varphi(X)=\kappa_{1}(X)$ and $\kappa_{2}\left(X_{1}, X_{2}\right)=\varphi\left(X_{1}, X_{2}\right)-\varphi\left(X_{1}\right) \varphi\left(X_{2}\right)$.

Cumulants

Free cumulants are defined recursively via

$$
\varphi\left(X_{1} \ldots X_{n}\right)=\sum_{\pi \in N C(n)} \kappa_{\pi}\left(X_{1}, \ldots, X_{n}\right) .
$$

For example $\varphi(X)=\kappa_{1}(X)$ and $\kappa_{2}\left(X_{1}, X_{2}\right)=\varphi\left(X_{1}, X_{2}\right)-\varphi\left(X_{1}\right) \varphi\left(X_{2}\right)$. Boolean cumulants are defined via

$$
\varphi\left(X_{1} \ldots X_{n}\right)=\sum_{\pi \in \ln t(n)} \beta_{\pi}\left(X_{1}, \ldots, X_{n}\right) .
$$

Freeness in terms of free cumulants

Theorem (Speicher)
Random variables X_{1}, \ldots, X_{n} are free if and only if for any $k \geq 2$ we have $\kappa_{k}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)=0$ whenever at least two different indices appear.

Coloured non-crossing partitions

Definition

Let n be in \mathbb{N} and let $c:\{1, \ldots, n\} \rightarrow\{1, \ldots, s\}$ be a colouring.

Coloured non-crossing partitions

Definition

Let n be in \mathbb{N} and let $c:\{1, \ldots, n\} \rightarrow\{1, \ldots, s\}$ be a colouring.
(1) We will denote by $N C(n ; c)$ the subset of $N C(n)$ defined by

$$
N C(n ; c):=\{\pi \in N C(n) \mid c \text { is constant on every block of } \pi\} .
$$

For $\pi \in N C(n ; c)$ and $A \in \pi$, we will use the notation $c(A)$ for the common value $c(a) \in\{1, \ldots, s\}$ taken by c on all $a \in A$.

Coloured non-crossing partitions

Definition

Let n be in \mathbb{N} and let $c:\{1, \ldots, n\} \rightarrow\{1, \ldots, s\}$ be a colouring.
(1) We will denote by $N C(n ; c)$ the subset of $N C(n)$ defined by

$$
N C(n ; c):=\{\pi \in N C(n) \mid c \text { is constant on every block of } \pi\} .
$$

For $\pi \in N C(n ; c)$ and $A \in \pi$, we will use the notation $c(A)$ for the common value $c(a) \in\{1, \ldots, s\}$ taken by c on all $a \in A$.
(2) For a fixed partition and a non outer block A we will denote by $\operatorname{Parent}_{\pi}(A)$ the block B such that A is nested inside B and if A is nested in a different block C then B is also nested in C.

Coloured non-crossing partitions

Definition

Let n be in \mathbb{N} and let $c:\{1, \ldots, n\} \rightarrow\{1, \ldots, s\}$ be a colouring.
(1) We will denote by $N C(n ; c)$ the subset of $N C(n)$ defined by

$$
N C(n ; c):=\{\pi \in N C(n) \mid c \text { is constant on every block of } \pi\} .
$$

For $\pi \in N C(n ; c)$ and $A \in \pi$, we will use the notation $c(A)$ for the common value $c(a) \in\{1, \ldots, s\}$ taken by c on all $a \in A$.
(2) For a fixed partition and a non outer block A we will denote by $\operatorname{Parent}_{\pi}(A)$ the block B such that A is nested inside B and if A is nested in a different block C then B is also nested in C.
(3) We wil say that $\pi \in N C(n ; c)$ has vertical no-repeat property (vnrp for short) when whenever $A \in \pi$ is not an outer block, one has

$$
c\left(\operatorname{Parent}_{\pi}(A)\right) \neq c(A)
$$

Freeness in terms of boolean cumulants cumulants

Theorem (Fevrier, Mastnak, Nica, Sz.)

Consider $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s} \subset \mathcal{A}$ unital subalgebras. Let $n \geq 2$ be an integer and let $X_{1}, \ldots, X_{n} \in \mathcal{A}$ be such that $X_{1} \in \mathcal{A}_{i(1)}, \ldots, X_{n} \in \mathcal{A}_{i(n)}$. Define a colouring $c(k)=i(k)$ for $k=1, \ldots, n$. Then $\mathcal{A}_{1}, \ldots, \mathcal{A}_{s}$ are free if and only if

$$
\beta_{n}\left(X_{1}, \ldots, X_{n}\right)=\sum_{\substack{\pi \in N C(n, c), \pi \ll 1_{n} \\ \pi \text { has vnrp }}} \beta_{\pi}\left(X_{1}, \ldots X_{n}\right) .
$$

Distribution of an anti-commutator

The description above, is the main ingredient which allows to find combinatorial description of Boolean cumulants of $X Y+Y X$ as well as power series equation for Boolean cumulants generating function.

Distribution of an anti-commutator

The description above, is the main ingredient which allows to find combinatorial description of Boolean cumulants of $X Y+Y X$ as well as power series equation for Boolean cumulants generating function. For simplicity assume that X and Y have the same distribution, and denote by $\tilde{\eta}_{X}(z)=\beta_{1}(X)+\beta_{2}(X) z+\ldots$

Distribution of an anti-commutator

The description above, is the main ingredient which allows to find combinatorial description of Boolean cumulants of $X Y+Y X$ as well as power series equation for Boolean cumulants generating function. For simplicity assume that X and Y have the same distribution, and denote by $\widetilde{\eta}_{X}(z)=\beta_{1}(X)+\beta_{2}(X) z+\ldots$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
f_{X X} & f_{X, X^{*}} \\
f_{X^{*}, X} & f_{X^{*}, X^{*}}
\end{array}\right]} \\
& =z \widetilde{\eta}_{X}\left(z\left[\begin{array}{cc}
f_{X^{*} X^{*}}\left(1-f_{X X^{*}}\right)^{-1} & f_{X^{*}, X}+f_{X^{*}, X^{*}}\left(1-f_{X, X^{*}}\right)^{-1} f_{X, X} \\
\left(1-f_{X, X^{*}}\right)^{-1} & \left(1-f_{X, X^{*}}\right)^{-1} f_{X, X}
\end{array}\right]\right) .
\end{aligned}
$$

Distribution of an anti-commutator

The description above, is the main ingredient which allows to find combinatorial description of Boolean cumulants of $X Y+Y X$ as well as power series equation for Boolean cumulants generating function. For simplicity assume that X and Y have the same distribution, and denote by $\widetilde{\eta}_{X}(z)=\beta_{1}(X)+\beta_{2}(X) z+\ldots$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
f_{X X} & f_{X, X^{*}} \\
f_{X^{*}, X} & f_{X^{*}, X^{*}}
\end{array}\right]} \\
& \left.=z \widetilde{\eta}_{X}\left(\begin{array}{cc}
z_{X^{*} X^{*}}\left(1-f_{X X^{*}}\right)^{-1} & f_{X^{*}, X}+f_{X^{*}, X^{*}}\left(1-f_{X, X^{*}}\right)^{-1} f_{X, X} \\
\left(1-f_{X, X^{*}}\right)^{-1} & \left(1-f_{X, X^{*}}\right)^{-1} f_{X, X}
\end{array}\right]\right) .
\end{aligned}
$$

Then

$$
\eta_{X Y+Y X}\left(z^{2}\right)=2\left(f_{X, X^{*}}(z)+\frac{f_{X, X}(z) f_{X^{*}, X^{*}}(z)}{1-f_{X^{*}, X}^{2}(z)}\right) .
$$

Examples

The distribution of $X Y+Y X$ for X, Y having distribution $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{2}$.

Examples

The distribution of $X Y+Y X$ for X, Y having distribution $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{2}$. Solution2.pdf

(a) Plot of the density $\mu_{X Y+Y X}$

Examples

The distribution of $X Y+Y X$ for X, Y having distribution $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{2}$. Solution2.pdf

(a) Plot of the density $\mu_{X Y+Y X}$

Moment-cumulant formula

Lemma (Lehner,Sz.)

Let $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(Y_{1}, \ldots, Y_{n}\right)$ be mutually free families in an ncps (\mathcal{A}, φ), then

$$
\begin{aligned}
& \varphi\left(X_{1} Y_{1} \ldots X_{n} Y_{n}\right)=\sum_{k=0}^{n-1} \sum_{0<i_{1}<\ldots<i_{k}<n} \varphi\left(Y_{i_{1}} \ldots Y_{i_{k}} Y_{n}\right) \\
& \prod_{j=0}^{k} \beta_{2\left(i_{j+1}-i_{j}\right)-1}\left(X_{i_{j}+1}, Y_{i_{j}+1}, \ldots, X_{i_{j+1}}\right),
\end{aligned}
$$

Subordination

Theorem (Biane)

When X, Y are free then

$$
\mathbb{E}_{\varphi}\left[(z-X-Y)^{-1} \mid X\right]=(\omega(z)-X)^{-1}
$$

Subordination

Theorem (Biane)

When X, Y are free then

$$
\mathbb{E}_{\varphi}\left[(z-X-Y)^{-1} \mid X\right]=(\omega(z)-X)^{-1}
$$

where $\omega(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$is an analytic map, such that $\operatorname{Im}(\omega(z)) \geq \operatorname{Im}(z)$.

Theorem (Biane)

When X, Y are free then

$$
\mathbb{E}_{\varphi}\left[(z-X-Y)^{-1} \mid X\right]=(\omega(z)-X)^{-1}
$$

where $\omega(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$is an analytic map, such that $\operatorname{Im}(\omega(z)) \geq \operatorname{Im}(z)$. If X, Y are additionally positive then

$$
\mathbb{E}_{\varphi}\left[z X^{1 / 2} Y X^{1 / 2} /\left(1-z X^{1 / 2} Y X^{1 / 2}\right)^{-1} \mid X\right]=F(z) X(1-F(z) X)^{-1}
$$

Theorem (Biane)

When X, Y are free then

$$
\mathbb{E}_{\varphi}\left[(z-X-Y)^{-1} \mid X\right]=(\omega(z)-X)^{-1}
$$

where $\omega(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$is an analytic map, such that $\operatorname{Im}(\omega(z)) \geq \operatorname{Im}(z)$. If X, Y are additionally positive then

$$
\mathbb{E}_{\varphi}\left[z X^{1 / 2} Y X^{1 / 2} /\left(1-z X^{1 / 2} Y X^{1 / 2}\right)^{-1} \mid X\right]=F(z) X(1-F(z) X)^{-1}
$$

where $F: \mathbb{C}^{+} \mapsto \mathbb{C}^{+}$, such that $\arg (F(z)) \geq \arg (z)$.

Theorem (Biane)

When X, Y are free then

$$
\mathbb{E}_{\varphi}\left[(z-X-Y)^{-1} \mid X\right]=(\omega(z)-X)^{-1}
$$

where $\omega(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$is an analytic map, such that $\operatorname{Im}(\omega(z)) \geq \operatorname{Im}(z)$. If X, Y are additionally positive then

$$
\mathbb{E}_{\varphi}\left[z X^{1 / 2} Y X^{1 / 2} /\left(1-z X^{1 / 2} Y X^{1 / 2}\right)^{-1} \mid X\right]=F(z) X(1-F(z) X)^{-1}
$$

where $F: \mathbb{C}^{+} \mapsto \mathbb{C}^{+}$, such that $\arg (F(z)) \geq \arg (z)$.
We have of course $G_{X+Y}(z)=G_{X}(\omega(z))$.

Subordination functions and Boolean cumulants

Proposition

(1) If X, Y are bounded free random variables then the additive subordination function ω has the expansion

$$
\omega(z)=z-\sum_{n=0}^{\infty} \beta_{2 n+1}\left(Y,(z-X)^{-1}, \ldots,(z-X)^{-1}, Y\right)
$$

in some neighbourhood of infinity.

Proposition

(1) If X, Y are bounded free random variables then the additive subordination function ω has the expansion

$$
\omega(z)=z-\sum_{n=0}^{\infty} \beta_{2 n+1}\left(Y,(z-X)^{-1}, \ldots,(z-X)^{-1}, Y\right)
$$

in some neighbourhood of infinity.
(1) If X and Y are positive bounded free random variables then the multiplicative subordination function F has the expansion

$$
F(z)=\sum_{n=0}^{\infty} \beta_{2 n+1}(Y, X, \ldots, X, Y) z^{n+1}
$$

in some neighbourhood of 0 .

Distribution of $X+f(X) Y f^{*}(X)$

Theorem (Lehner, Sz.)

Let X, Y be free and bounded, then

$$
\mathbb{E}_{\varphi}\left(\left(z-X-f(X) Y f^{*}(X)\right)^{-1} \mid X\right)=\left(z-X-\omega(z)|f(X)|^{2}\right)^{-1}
$$

where ω is related with subordination function of free multiplicative convolution.

Distribution of $X+f(X) Y f^{*}(X)$

Theorem (Lehner, Sz.)

Let X, Y be free and bounded, then

$$
\mathbb{E}_{\varphi}\left(\left(z-X-f(X) Y f^{*}(X)\right)^{-1} \mid X\right)=\left(z-X-\omega(z)|f(X)|^{2}\right)^{-1}
$$

where ω is related with subordination function of free multiplicative convolution.

Remark

To find the distribution of $X+f(X) Y f^{*}(X)$ it suffices to determine $\omega(z)$

Distribution of $X+f(X) Y f^{*}(X)$

Theorem (Lehner, Sz.)

Let X, Y be free and bounded, then

$$
\mathbb{E}_{\varphi}\left(\left(z-X-f(X) Y f^{*}(X)\right)^{-1} \mid X\right)=\left(z-X-\omega(z)|f(X)|^{2}\right)^{-1}
$$

where ω is related with subordination function of free multiplicative convolution.

Remark

To find the distribution of $X+f(X) Y f^{*}(X)$ it suffices to determine $\omega(z)$ and calculate the integral

$$
G_{X+f(X) Y f^{*}(X)}(z)=\int_{\mathbb{R}} \frac{1}{z-x-\omega(z)|f(x)|^{2}} d \mu_{X}(x)
$$

Example

We take X, Y Wigner semicircle distributed and calculate the distribution of $X+X Y X$.

Example

We take X, Y Wigner semicircle distributed and calculate the distribution of $X+X Y X$.

(a) Plot of the density $\mu_{X+X Y X}$

Example

(a) Histogram of the spectrum of a 4000×4000 random matrix model for $X+X Y X$

Figure: The spectral density of $X+X Y X$

Further applications

With the moment cumulant formula one can calculate more complicated conditional expectations.

Further applications

With the moment cumulant formula one can calculate more complicated conditional expectations.

Lemma (Wesołowski, Sz.)

Assume that U, V are free and bounded, moreover assume that $0 \leq U<1$. Denote $\Psi_{X}=z X(1-z X)^{-1}$ then for z in some neighbourhood of 0 one has

Further applications

With the moment cumulant formula one can calculate more complicated conditional expectations.

Lemma (Wesołowski, Sz.)

Assume that U, V are free and bounded, moreover assume that $0 \leq U<1$. Denote $\Psi_{X}=z X(1-z X)^{-1}$ then for z in some neighbourhood of 0 one has

$$
\begin{aligned}
& \mathbb{E}_{\varphi}\left[(1-U)^{-1} U^{1 / 2} \Psi_{U^{1 / 2} V U^{1 / 2}}(z) U^{1 / 2}(1-U)^{-1} \mid V\right]= \\
& B_{2}(z)+z B_{1}^{2}(z)\left(1+\Psi_{V}\left(\omega_{1}(z)\right) V\right.
\end{aligned}
$$

Further applications

With the moment cumulant formula one can calculate more complicated conditional expectations.

Lemma (Wesołowski, Sz.)

Assume that U, V are free and bounded, moreover assume that $0 \leq U<1$. Denote $\Psi_{X}=z X(1-z X)^{-1}$ then for z in some neighbourhood of 0 one has

$$
\begin{aligned}
& \mathbb{E}_{\varphi}\left[(1-U)^{-1} U^{1 / 2} \Psi_{U^{1 / 2} V U^{1 / 2}}(z) U^{1 / 2}(1-U)^{-1} \mid V\right]= \\
& B_{2}(z)+z B_{1}^{2}(z)\left(1+\Psi_{V}\left(\omega_{1}(z)\right) V\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& B_{1}(z)=\frac{\eta_{U}\left(\omega_{2}(z)\right)-\eta_{U}(1)}{\omega_{2}(z)-1} \varphi\left((1-U)^{-1}\right), \\
& B_{2}(z)=\frac{\omega_{2}(z)\left(\eta_{U}\left(\omega_{2}(z)\right)-\eta_{u}(1)-\left(\omega_{2}(z)-1\right) \eta_{U}^{\prime}(1)\right)}{\left(\omega_{2}(z)-1\right)^{2}} \varphi^{2}\left((1-U)^{-1}\right) .
\end{aligned}
$$

and $M_{U V}(z)=M_{V}\left(\omega_{1}(z)\right)$ and $M_{U V}(z)=M_{U}\left(\omega_{2}(z)\right)$.

Thank you for your attention!

