Characterizations of free Meixner distributions

Michael Anshelevich

Texas A&M University

August 18, 2009

Definition via Jacobi parameters.

 $\beta,\gamma,b,c\in\mathbb{R},\,1+\gamma,1+c\geq0.$

$$\{(\beta, b, b, \ldots), (1 + \gamma, 1 + c, 1 + c, \ldots)\}.$$

Tridiagonal matrix

$$J = \begin{pmatrix} \beta & 1+\gamma & 0 & 0 & 0\\ 1 & b & 1+c & 0 & 0\\ 0 & 1 & b & 1+c & 0\\ 0 & 0 & 1 & b & 1+c\\ 0 & 0 & 0 & 1 & b \end{pmatrix}$$

•

Definition via Jacobi parameters.

Definition.

A free Meixner distribution with parameters β, γ, b, c is the measure with moments

 $\mu[x^n] = \langle e_0, J^n e_0 \rangle.$

[Cohen-Trenholme '84, etc.]

$$J = \begin{pmatrix} \beta & 1+\gamma & 0 & 0 & 0\\ 1 & b & 1+c & 0 & 0\\ 0 & 1 & b & 1+c & 0\\ 0 & 0 & 1 & b & 1+c\\ 0 & 0 & 0 & 1 & b \end{pmatrix}$$

Semicircular distribution $\{(0, 0, 0, \ldots), (t, t, t, \ldots)\}$.

Marchenko-Pastur distributions $\{(\beta, b, b, \ldots), (t, t, t, \ldots)\}$.

Kesten measures $\{(0,0,0,\ldots), \left(\frac{1}{2n}, \frac{1}{2n}\left(1-\frac{1}{2n}\right), \frac{1}{2n}\left(1-\frac{1}{2n}\right),\ldots\right)\}\}$. Bernoulli distributions $\{(\beta,b,b,\ldots), (\gamma,0,0,\ldots)\}$.

Explicit formula.

Can always re-scale to have mean $\beta = 0$ and variance $1 + \gamma = 1$.

Then

$$\frac{1}{2\pi} \cdot \frac{\sqrt{4(1+c) - (x-b)^2}}{1+bx + cx^2} \mathbf{1}_{[b-2\sqrt{1+c},b+2\sqrt{1+c}]} dx$$
$$+0, 1, 2 \text{ atoms.}$$

Why interesting?

Many limit theorems in non-commutative probability involve free Meixner distributions: [B,B,F,H,K,L,L,M,M,N,O,S,W,W,Y, ...]

Free semigroups.

$$(\mu_{b,c})^{\boxplus t} = \begin{pmatrix} 0 & t & 0 & 0 & 0 \\ 1 & b & c+t & 0 & 0 \\ 0 & 1 & b & c+t & 0 \\ 0 & 0 & 1 & b & c+t \\ 0 & 0 & 0 & 1 & b \end{pmatrix}$$

[Saitoh, Yoshida '01] [A '03] [Bożejko, Bryc '06]

.

Boolean semigroups.

$$(\mu_{b,c})^{\uplus t} = \begin{pmatrix} 0 & t & 0 & 0 & 0 \\ 1 & b & c & 0 & 0 \\ 0 & 1 & b & c & 0 \\ 0 & 0 & 1 & b & c \\ 0 & 0 & 0 & 1 & b \end{pmatrix}$$

[Bożejko, Wysoczański '01] [A '09]

•

\mathbb{B}_t -semigroups.

$$\mathbb{B}_t(\mu_{b,c,\beta,\gamma}) = \begin{pmatrix} \beta & \gamma & 0 & 0 & 0\\ 1 & b & c+t & 0 & 0\\ 0 & 1 & b & c+t & 0\\ 0 & 0 & 1 & b & c+t\\ 0 & 0 & 0 & 1 & b \end{pmatrix}.$$

[Belinschi, Nica '08], [A '09]

Two-state free semigroups.

lf

$$u(t) = egin{pmatrix} eta t & \gamma t & 0 & 0 & 0 \ 1 & b + eta t & c + \gamma t & 0 & 0 \ 0 & 1 & b + eta t & c + \gamma t & 0 \ 0 & 0 & 1 & b + eta t & c + \gamma t \ 0 & 0 & 0 & 1 & b + eta t \ 0 & 0 & 0 & 1 & b + eta t \ \end{pmatrix}, \ \mu(t) = egin{pmatrix} 0 & t & 0 & 0 & 0 \ 1 & b + eta t & c + \gamma t & 0 & 0 \ 0 & 1 & b + eta t & c + \gamma t & 0 & 0 \ 0 & 1 & b + eta t & c + \gamma t & 0 & 0 \ 0 & 0 & 1 & b + eta t & c + \gamma t & 0 \ 0 & 0 & 1 & b + eta t & c + \gamma t & 0 \ 0 & 0 & 1 & b + eta t & c + \gamma t & 0 \ 0 & 0 & 1 & b + eta t & c + \gamma t & 0 \ \end{pmatrix},$$

then $(\mu(t), \nu(t))$ is a c-free semigroup.

Characterization: linear Jacobi parameters.

Recall:

$$(\mu_{b,c})^{\boxplus t} = \begin{pmatrix} 0 & t & 0 & 0 \\ 1 & b & c+t & 0 \\ 0 & 1 & b & c+t \\ 0 & 0 & 1 & b \end{pmatrix}$$

Proposition.

$$\mu^{\boxplus t} = \begin{pmatrix} \beta_0 + b_0 t & \gamma_1 + c_1 t & 0 & 0\\ 1 & \beta_1 + b_1 t & \gamma_2 + c_2 t & 0\\ 0 & 1 & \beta_2 + b_2 t & \gamma_3 + c_3 t\\ 0 & 0 & 1 & \beta_3 + b_3 t \end{pmatrix}$$

if and only if μ is a free Meixner distribution.

A corollary of recent work of Młotkowski.

.

Characterization: orthogonal polynomials.

For a measure μ , denote by $\{P_n(x)\}$ its monic orthogonal polynomials, and

$$H(x,z) = \sum_{n=0}^{\infty} P_n(x) z^n$$

their generating function.

Proposition. [A '03]

 μ is a free Meixner distribution if and only if

the generating function of monic orthogonal polynomials of $\boldsymbol{\mu}$ has the special form

$$H(x,z) = \frac{A(z)}{1 - xB(z)}.$$

Characterization: algebraic Riccati equations.

Denote

$$Df(z) = \frac{f(z) - f(0)}{z}.$$

Let R(z) be the *R*-transform (free cumulant generating function) of μ .

Proposition. [A '07]

 μ is a free Meixner distribution if and only if

 $D^{2}R(z) = 1 + bDR(z) + c(DR(z))^{2}.$

Let $\eta(z)$ be the η -transform (Boolean cumulant generating function) of μ .

Proposition. [A '09]

 μ is a free Meixner distribution if and only if

 $D^{2}\eta(z) = 1 + bD\eta(z) + (1+c)(D\eta(z))^{2}.$

Let (\mathcal{A}, E) be a non-commutative probability space, $X, Y \in \mathcal{A}$.

Theorem. [Bożejko, Bryc '06]

Let X, Y be freely independent.

X, Y have free Meixner distributions if and only if

 $\mathbf{E}[X|X+Y]$

is a linear function of X + Y and

 $\operatorname{Var}[X|X+Y]$

is a quadratic function of X + Y.

 $\{X_t\}$ a process with freely independent increments. $\{P_n(x,t)\}$ polynomials, P_n of degree n. P_n a martingale if for s < t,

 $\mathbf{E}[P_n(X_t,t)|X_s] = P_n(X_s,s).$

 P_n a reverse martingale if for s < t,

$$\mathbb{E}[P_n(X_s,s)|X_t] = \frac{f(s)}{f(t)} \cdot P_n(X_t,t).$$

Proposition.

Each X_s has a free Meixner distribution if and only if

there is a family of polynomials P_n which are both martingales and reverse martingales.

[Bożejko, Lytvynov '08+]

See the next talk.

The difference quotient.

∂ = the difference quotient operation,

$$\partial f(x,y) = \frac{f(x) - f(y)}{x - y}$$

For a measure ν , define the operator

 $L_{\nu}[f] = (I \otimes \nu)[\partial f].$

Maps polynomials to polynomials, lowers degree by one.

Characterization: Orthogonality.

Proposition. [Very classical; Darboux?]

Let ν be a measure, $\{P_n\}$ orthogonal polynomials for it. Then

 $L_{\nu}[P_n] = Q_{n-1}$

are always orthogonal with respect to some μ .

Fixed points.

Proposition. [A '08+]

Let ν be a measure,

 $L_{\nu}[A_n] = A_{n-1}.$

 $\{A_n\}$ are orthogonal with respect to some μ

if and only if μ has a free Meixner distribution.

Theorem. [A. 09+]

 μ has a free Meixner distribution if and only if the operator

 $p(x)L_{\mu}^2 + q(x)L_{\mu}$

has polynomial eigenfunctions for some polynomial p, q.

A free exponential family with variance function V is a family of **probability** measures

$$\left\{\frac{V(m)}{V(m) + (m - m_0)(m - x)}\nu(dx)\right\}.$$

Proposition. [Bryc, Ismail '06+, Bryc '09]

Free Meixner distributions

generate free exponential families with quadratic variance functions: $V(m) = 1 + bm + cm^2$.

Recall: four parameters b, c and β, γ . If β is a root of

 $\gamma - bx + cx^2$

then the S-transform of μ is a rational function

$$S(z) = \frac{cz+1}{(2c\beta-b)z+\beta}$$

.

 $\{X_t\}$ = stochastic process. No conditions on increments.

 $\{X_t\}$ is a quadratic harness if for s < t < u,

 $\mathbb{E}[X_t| \leq s \text{ and } \geq u]$

is a linear function of X_s , X_u and

 $\operatorname{Var}[X_t| \leq s \text{ and } \geq u]$

is a quadratic function of X_s , X_u .

Investigated in detail by Bryc, Matysiak, Szabłowski, and Wesołowski.

Theorem. [Bryc, Wesołowski '05]

A quadratic harness with the extra property

$$\operatorname{E}[X_t^2 - t] \le s] = X_s^2 - s$$

is a *q*-Meixner process.

The distributions for q = 0 are precisely all the free Meixner distributions. In that case the process is a classical version of a process with freely independent increments.

In the orthogonal polynomials characterization,

Boolean Meixner class = free Meixner class = two-state free Meixner class [A '08+, A '09].

In the Laha-Lukacs characterization,

Boolean Meixner class = only Bernoulli distributions [A '09]

Two-state Laha-Lukacs class described in [Bożejko, Bryc '09].

Many limit theorems in non-commutative probability involve free Meixner distributions: [B,B,F,H,K,L,L,M,M,N,O,S,W,W,Y, ...]

Other appearances of classical Meixner distributions: representation theory, linearization coefficients.