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1 The basic tools

The representation

TgF (Z) = k′g(Z)γF (kg(Z))

Z ∈ D → kg(Z) ∈ D, g ∈ G
Hua’s classical matrix

Z = (zij)→ ∂Z = (
∂

∂zuj
)

Matrix multiplication
Let A, B be two square matrices and denote

V1 = AB −BA, V2 = i (AB + BA)
V3 = B − ABA, V4 = i (B + ABA)

Then trace (V1V1 − V2V2 + V3V3 + V4V4) =

2 trace ((I − AA)B(I − AA)B)

and V2
1 − V2

2 + V2
3 + V2

4 = 0.
Define

H(V1) = 0, H(V2) = i Id
H(V3) = A, H(V4) = − i A

then trace (H(V2)V2+H(V3)V3+H(V4)V4) = 0 and trace (H(V2)V2+H(V3)V3+
H(V4)V4) =

2 trace [(I − AA)BA]

2 Objectives

(1) The construction of measures on Kähler manifolds. We have already the
volume measure (if the manifold is finite dimensional).

(2) Obtain Laplacian and Ornstein-Uhlenbeck operators on a Kähler man-
ifold D from the infinitesimal holomorphic representation of a group G on
D.

(3) Study the measures on D which are invariant with respect to the Lapla-
cian and Ornstein-Uhlenbeck operators. The volume measure is an invariant
measure for the Laplacian.

(4) Provide an approach to the construction of invariant measures on infi-
nite dimensional manifolds.
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3 Our present approach:

3.1 The vector fields of the infinitesimal holomorphic
representation of G are the coefficients of Hua’s ma-
trix operators

We give examples of Kähler manifolds D and a group G of holomorphic trans-
formations of D where the vector fields of the infinitesimal holomorphic rep-
resentation of G are the coefficients of Hua’s matrix operators and can be
calculated with matrix products.

In this talk, I shall restrict to the manifold D of symmetric matrices Z such
that I − ZZ > 0 and to submanifolds of D.

Theorem 1 The vector fields of the infinitesimal representation are given
by the matrix products

(i) Vt = (Z∂εZ − ∂εZZ) + i (Z∂εZ + ∂εZZ)

(ii) Vp = (∂εZ − Z∂εZZ) + i (∂εZ + Z∂εZZ)

where ∂εZ is a Hua type matrix operator which has to be defined. The Laplacian
and Ornstein-Uhlenbeck operators on D can be calculated by making products
of the matrices

V1 = (Z∂εZ − ∂εZZ) = (ajk), V2 = i (Z∂εZ + ∂εZZ) = (bjk)

V3 = (∂εZ − Z∂εZZ) = (φjk), V4 = i (∂εZ + Z∂εZZ) = (ψjk)

and their complex conjugates.
V1 is antisymmetric, thus

∑
j,k ajkajk = − trace(V1V1),

V2, V3, V4 are symmetric, thus∑
j,k

bjkbjk = trace(V2V2)

∑
j,k

φjkφjk +
∑
j,k

ψjkψjk = trace(V3V3) + trace(V4V4)

then
trace(V1V1)− trace(V2V2) + trace(V3V3) + trace(V4V4)

= 2 trace [( I − ZZ)∂Z(I − ZZ)∂Z ]

It links Hua’s expression of the Laplacian

trace [( I − ZZ)∂Z(I − ZZ)∂Z ]

to the vector fields of the infinitesimal holomorphic representation of G.
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3.2 The vector field V = trace ((I−ZZ)∂εZ Z) in the Ornstein-
Uhlenbeck operator

∂εZ is the Hua type matrix operator to be defined.
How to obtain V from the operators

(i) Vt = (Z∂εZ − ∂εZZ) + i (Z∂εZ + ∂εZZ)

(ii) Vp = (∂εZ − Z∂εZZ) + i (∂εZ + Z∂εZZ)

To a matrix operator T = (vij) where vij are vector fields, we associate the
matrix of functions

H(T ) = (h(vij))

where

h(v)(z) =
d

dt |t=0
k′gt

(z)

is the derivative of the holomorphic jacobian of the map z → kgt(z), t is a real
parameter, gt ∈ G, g0 = e and v = d

dt |t=0
gt.

We find
H(Z∂εZ − ∂εZZ) = 0, H(Z∂εZ + ∂εZZ) = Id,
H(∂εZ − Z∂εZZ) = Z, H(∂εZ + Z∂εZ Z) = −Z

Let U = H(Z∂εZ + ∂εZZ) (Z∂εZ + ∂εZZ)+

H(∂εZ − Z∂εZZ) (∂εZ − Z∂εZZ) + H(∂εZ + Z∂εZ Z) (∂εZ + Z∂εZ Z)

then
traceU = trace [(I − ZZ)∂εZ Z] = V

3.3 The representation of the group of holomorphic trans-
formations kg : Z → kg(Z) on D and the holomorphic
Jacobian determinant k′g(Z)

Let D be the manifold of n× n symmetric matrices Z such that I − ZZ > 0.

The group G of matrices g =
(
A B
B A

)
operates transitively on D with

W = kg(Z) = (AZ +B)(BZ + A)−1

= (AZ +B)M−1 where M(Z) = BZ + A
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We have
I − kg(Z)kg(Z) = (M∗)−1(I − ZZ)M−1

The volume element on D is

dv =
dc1dc1 · · ·

det(I − ZZ)n+1

and the holomorphic Jacobian is such that

|k′g(Z)|2 =
φ(kg(Z))

φ(Z)
with φ(Z) = (det(I − ZZ))n+1

This does not stay true for a submanifold M of D. We shall give an
example of M in the set of 3× 3 matrices such that

|k′g(Z)|2 =
φ(kg(Z))

φ(Z)
with φ(Z) = λ1(Z)2λ2(Z)3λ3(Z)3

where λ1(Z), λ2(Z), λ3(Z) are the three eigenvalues of I − ZZ.
Since I − kg(Z)kg(Z) = (M∗)−1(I − Z∗Z)M−1, we deduce

det(I −WW ) =
det(I − ZZ)

| detM(Z)|2

We can write this identity in the following way

Πj λj(W ) =
Πj λj(Z)

Πj |νj(Z)|2

where λ1(Z), λ2(Z), · · ·, λn(Z) are the eigenvalues of I−ZZ and ν1(Z), ν2(Z),
· · ·, νn(Z) are the eigenvalues of M(Z).

For our example of Kähler submanifoldM of 3× 3 symmetric matrices in
D, we prove

λ1(W ) =
λ1(Z)

|ν1(Z)|2
and λ2(W )λ3(W ) =

λ2(Z)λ3(Z)

|ν2(Z)|2|ν3(Z)|2

3.4 Find invariant measures on the Kähler submanifolds
M of D.

Consider the subgroup GM of G and acting onM. Denote Z = (z1, z2, · · ·) the
independent variables in Z and W = (w1, w2, · · ·) the independent variables in
W and denote k′g(Z) the holomorphic Jacobian determinant of the map

kg; Z = (z1, z2, · · ·)→ W = (w1, w2, · · ·)
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1- We wish to find probability measures µ on M such that for g ∈ GM,∫
M
|k′g(Z)|γ|F (kg(Z))|2µγ(dZ) =

∫
M
|F (Z)|2µγ(dZ)

2- One of the difficulties for submanifolds is to determine the Jacobian
determinant k′g(Z) when the number p of independent variables in the n × n
symmetric matrix Z is less than n(n + 1)/2. For a submanifold M of D, let
GM be the subgroup of G and acting on M.

(1) Is there any relation between k′g(Z), det(BZ + A) and
det(I −WW )
det(I − ZZ)

as it was the case for D?
(2) The calculation of the holomorphic Jacobian k′g(Z) is delicate.
(3)- How to relate the independent vector fields

∂

∂z1

,
∂

∂z2

, · · ·

to the independent vector fields ∂
∂w1

, ∂
∂w2

, · · ·, that is how to calculate the

holomorphic Jacobian matrix of the map kg(Z)?

4 The condition dZ = M tr[dW ]M

Let W = (AZ +B)(BZ + A)−1 then

dW = (M−1)tr(dZ)M−1 with M = BZ + A

If the coefficients of the matrix Z are all distinct, we have independent variables
and

∂W = M∂ZM
tr

where ∂W = ( ∂
∂wjk

) and ∂Z = ( ∂
∂zjk

) are the classical Hua’s matrices opera-

tors.
The relation ∂W = M∂ZM

tr is no more valid if the coefficients of Z are not
independent variables. In the case of the domain of symmetric matrices Z, it
remains true if we replace ∂Z and ∂W respectively by the operators matrices

∂̂Z = ((1 + δjk)
∂

∂zjk
) and ∂̂W = ((1 + δjk)

∂

∂wjk
)

When there are less than n(n + 1)/2 independent variables, we have to make

another choice for ∂̂Z and ∂̂W and it depends on the domain.
Remark In the case of the domain of symmetric matrices Z, in order to

obtain the Laplacian as a trace of product of matrices, Hua makes a rescaling
of the coefficients of Z, keeping the matrix symmetric, instead of changing ∂Z .
This amounts to the same.
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4.1 From dZ = M tr[dW ]M to
��
∂W = M

��
∂ZM

tr

The matrix operator
��
∂Z depends on the manifold M.

We say thatM is a linear submanifold of D if it consists of matrices Z ∈ D
such that ZJ1 = J2Z where J1 and J2 are two real invertible matrices.

Let Z and W in the same linear submanifold M of D and assume that
dZ = M tr[dW ]M . The following lemma can be applied to some examples of
linear submanifolds of D.

Lemma. Assume that (C) is satisfied:

(C) :There is a partition A1∪A2∪ · · · ∪Ak of the indices of the coefficients
of the matrices W and Z such that when (j, p) ∈ Ar then zjp = br and
wjp = cr. If r 6= s, then br and bs (cr and cs) are independent variables.

Let njp = nr be the cardinal of Ar. Then
��
∂W = M

��
∂ZM

tr with the matrix

operator
��
∂Z = ( 1

njp
∂

∂zjp
).

5 The Kähler manifold of symmetric matrices

Z such that I − ZZ > 0 and submanifolds.

A Kähler manifold (D,ω) is a complex manifold D and ω is a smooth differ-
ential (1,1)-form on D which can be written

ω = i
∑
j,k

∂2 logK

∂cj∂ck
dcj ∧ dck, c = (c1, c2, · · ·) ∈ D

where the Kähler potential K is a real positive function. Then ω is closed
(dω = 0).

To ω is associated the riemannian metric

ds2 = −
∑
j,k

∂2 log K

∂cj∂ck
dcj dck

5.1 We take as Kähler manifold D the set of symmetric
matrices such that I − ZZ > 0

with Kähler potential

K(Z,Z) = det(I − ZZ)

In that case, the independant coefficients in Z = (zij) are

(c1, c2, · · ·) = (zij)i≤j
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For the manifold D, the Bergman kernel is

[det(I − ZZ)]α

see for example Hua’s book. Thus for D, the Kähler metric defined with the
potential K(Z,Z) = det(I − ZZ) is the same as the Bergman metric.

5.2 We take as Kähler manifold M a submanifold of D.
In M, we still have symmetric matrices such that
I − ZZ > 0, but not all

On M , we shall take again as Kähler potential K(Z,Z) = det(I − ZZ). But
for a submanifold, [det(I−ZZ)]α may be different from the Bergman potential
as shown by our examples.

Recall: Bergman kernel, let f : Ω1 → Ω2, f holomorphic, then

det JCf(z)KΩ2(f(z), f(ξ))det JCf(ξ) = KΩ1(z, ξ)

In our example of M of 3× 3 matrices, we prove

|k′g(Z)|2 =
φ(kg(Z))

φ(Z)
with φ(Z) = λ1(Z)2λ2(Z)3λ3(Z)3

where λ1(Z), λ2(Z), λ3(Z) are the three eigenvalues of I−ZZ. Then [det(I−
ZZ)]α is not the Bergman kernel and the metric obtained with

K(Z,Z) = det(I − ZZ)

is different from the Bergman metric.

5.3 The (1,1)-form ω and the metric when the Kähler
potential is K(Z,Z) = det(I − ZZ)

In that case, the Kähler differential (1,1)-form ω and the metric have nice
expressions thanks to the relation

log det(I − Z Z) = trace log(I − Z Z)

Then (see for example BSM 2012-HA)

pjk =
∂2

∂cj∂ck
log det(I − ZZ)

= − trace[(I − ZZ)−1∂ Z

∂ck
× (I − ZZ)−1 ∂Z

∂cj
]
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Since dZ = (dzij) is given by dZ =
∑
k
∂ Z
∂ck

dck, the closed two-form ω and the

riemannian metric ds2 are

ω = i trace [(I − ZZ)−1dZ ∧ (I − ZZ)−1dZ]

ds2 = −
∑
j,k

pjkdcj dck = trace [(I − ZZ)−1dZ(I − ZZ)−1dZ]

5.4 The (1,1)-form ω and the metric for a submanifold

For a submanifold M of D, we take the same Kähler potential

K(Z,Z) = det(I − ZZ)

but there are less independent variables:
then dZ is different, it gives a closed form ωM which is different from ω and

a metric ds2
M different from the ds2 on D and also different from the Bergman

metric on M.
For submanifolds M, formulas

ωM = i trace [(I − ZZ)−1dZ ∧ (I − ZZ)−1dZ]

= i trace [Ω ∧ Ω]

and ds2
M = −∑j,k pjkdcj dck = trace [(I − ZZ)−1dZ(I − ZZ)−1dZ]

are still valid but with a different dZ.
Assume that there is a group GM of transformations Z → W on M such

that
dZ = M trdW M

and I −WW = (M∗)−1(I −ZZ)M−1 with W = kg(Z), the closed (1, 1)-form
ωM and the metric ds2

M are invariant under the transformations of the group
GM.

The volume element is obtained with

ωM ∧ ωM ∧ · · ·

From dZ = M trdW M , we deduce operators matrices
�
∂W and

�
∂Z

such that
�
∂W = M

�
∂ZM

tr

Thus the operator

∆M = trace [(I − ZZ)
�
∂Z(I − ZZ)

�
∂Z ]

is invariant under the transformations of GM.
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For our examples of submanifolds M, ∆M is the Laplacian associated to
the metric

ds2
M = trace [(I − ZZ)−1dZ(I − ZZ)−1dZ]

but ds2
M is not the Bergman metric corresponding to the group of transforma-

tions GM.

6 The group G of holomorphic transformations

of D and the operator Tg on holomorphic

functions on D.

W = kg(Z) = (AZ +B)(BZ + A)−1 g =
(
A B
B A

)
∈ G

with A
tr
A−BtrB = I and A

tr
B = BtrA.

TgF (Z) = k′g(Z)γF (kg(Z)), γ ∈ R

Since

|k′g(Z)|2 =
φ(kg(Z))

φ(Z)
with φ(Z) = (det(I − Z∗Z))α

the operator Tg is unitary in Hol2C(dµ) for the measure

dµγ = [det(I − ZZ)]α(γ−1)dλ(Z)

The volume element on D is up to a multiplicative constant, equal to

dµ0 =
dλ(Z)

φ(Z)

6.1 The Lie algebra g of G is the real vector space,

g = {
(
α β
β α

)
withα + α∗ = 0 and β = βtr}

g = {
(
α 0
0 α

)
, α∗ + α = 0} ⊕ {

(
0 β
β 0

)
, β = βtr}

g = t⊕ p (Cartan decomposition)
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6.2 The holomorphic vector fields on D.

Let X =
(
α β
β α

)
∈ g. Denote Wt(X) = gt a curve on G such that

gt =
(
At Bt

Bt At

)
∈ G, g0 = I and

d

dt |t=0
gt = X

where At = I + tα + o(t2) and Bt = tβ + o(t2)

Then

Wt = kgt(Z) = (Z + t(αZ + β) + o(t2))(I − t(α + βZ) + o(t2))

d

dt |t=0
kgt(Z) =

d

dt |t=0
(AtZ +Bt)(BtZ + At)

−1 = αZ − Zα + β − ZβZ

Let F be a complex-valued holomorphic function on D, (∂F
∂z

= 0). The holo-
morphic vector fields V (X) are given by

(V (X)F )(Z) =
d

dt |t=0
F (kgt(Z))

d

dt |t=0
F (Wt) =

∑
p≤q

∂F

∂zpq

d

dt |t=0
(Wt)pq where Wt = kgt(Z)

7 A basis (ej) of t and the vector fields V (ej).

The Lie algebta t has dimension n2 as real vector space.

Basis: Hj =
(
dj 0
0 dj

)
where dj = iEjj, j = 1, .., n,

Xjk =
(
Ejk − Ekj 0

0 Ejk − Ekj

)

Yjk =
(
i(Ejk + Ekj) 0

0 −i(Ejk + Ekj)

)
, 1 ≤ j < k ≤ n

Vector fields:

V (Hj) = [(djZ + Zdj)∂Z ]jj = izjj
∂

∂zjj
+ i(Z∂trZ )jj

V (Xjk) = (Z∂trZ )kj − (Z∂trZ )jk + zjk
∂

∂zjj
− zkj

∂

∂zkk
, j < k

V (Yjk) = i [(Z∂trZ )kj + (Z∂trZ )jk + zkj
∂

∂zjj
+ zjk

∂

∂zkk
] , j < k
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8 The vector fields V (Hj), V (Xjk), V (Yjk) as co-

efficients of a Hua’s matrix operator

To the matrix Z = (zij) ∈ D, we associate the Hua’s matrix operator,

∂̂Z =
1

2
((1 + δij)

∂

∂zij
) where δij = 0 if i 6= j and δjj = 1

then

Z∂̂Z − ∂̂Z Z = − 1

2


0 V (X12) V (X13) · · ·

−V (X12) 0 V (X23) · · ·
−V (X13) −V (X23) 0 · · ·

· · ·



Z∂̂Z + ∂̂Z Z = − i

2


2V (H1) V (Y12) V (Y 13) · · ·
V (Y12) 2V (H2) V (Y23) · · ·
V (Y13) V (Y23) 2V (H3) · · ·

· · ·


8.1 Corollaries

∑
ej∈t

B(ej, ej)
−1V (ej)

2 = 2 trace (Z∂̂ZZ∂̂Z)

and
Dt =:

∑
ej∈t

B(ej, ej)
−1V (ej)V (ej) = − 2

∑
j,k

(Z∂̂Z)kj (Z∂̂Z)kj

= − 2trace (ZZ∂̂Z ∂̂Z)

where B(X, Y ) = trace (XY ) is the Killing form on g.

9 A basis (ej) of the Lie subalgebra p and the

vector fields V (ej).

The basis: Aj =
(

0 aj
aj 0

)
, Bj =

(
0 bj
−bj 0

)
where aj = diag(0, ..., 0, 1, 0, ...; 0),

bj = iaj, j = 1, ...., n and Ajk, Bjk with (1 ≤ j < k ≤ n):

Ajk =
(

0 Ejk + Ekj
Ejk + Ekj 0

)
,

Bjk =
(

0 i(Ejk + Ekj)
−i(Ejk + Ekj) 0

)
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9.1 The vector fields

For j < k, let βjk = Ejk + Ekj and aj = 1
2
(Ejj + Ejj) = 1

2
βjj. Then

V (Ajk) =
∂

∂zjk
−
∑
p≤q

(ZβjkZ)pq
∂

∂zpq

V (Bjk) = i (
∂

∂zjk
+
∑
p≤q

(ZβjkZ)pq
∂

∂zpq
)

V (Aj) =
∂

∂zjj
− 1

2

∑
p≤q

(ZβjjZ)pq
∂

∂zpq

V (Bj) = i (
∂

∂zjj
+

1

2

∑
p≤q

(ZβjjZ)pq
∂

∂zpq
)

9.2 The vector fields V (Aj), V (Bj), V (Ajk), V (Bjk) as co-
efficients of a Hua’s matrix operator

For the symmetric matrices VA = ∂̂Z − Z∂̂Z Z and VB = i (∂̂Z + Z∂̂Z Z),
it holds

∂̂Z − Z∂̂Z Z =


2V (A1) V (A12) V (A13) · · ·
V (A12) 2V (A2) V (A23) · · ·
V (A13) V (A23) 2V (A3) · · ·
· · ·



i (∂̂Z + Z∂̂Z Z) =


2V (B1) V (B12) V (B13) · · ·
V (B12) 2V (B2) V (B23) · · ·
V (B13) V (B23) 2V (B3) · · ·
· · ·


9.3 Corollaries

1

4

∑
j<k

V (Ajk)
2 + V (Bjk)

2 +
1

2

∑
j

V (Aj)
2 + V (Bj)

2

= − 1

2
trace (Z

̂̂
∂Z Z

̂̂
∂Z)

1

4

∑
j<k

V (Ajk)V (Ajk) + V (Bjk)V (Bjk) +
1

2

∑
j

V (Aj)V (Aj) + V (Bj)V (Bj)

=
1

4
trace (

̂̂
∂Z
̂̂
∂Z + Z Z

̂̂
∂ZZZ

̂̂
∂Z )

Notation: We have put
̂̂
∂Z = 2∂̂Z .
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9.4 Identification of
∑
j B(ej, ej)

−1l(ej)l(ej) with the Lapla-
cian

∑
j

B(ej, ej)
−1l(ej)l(ej) =

1

4
trace [(I − ZZ)

̂̂
∂Z(I − ZZ)

̂̂
∂Z ]

where
̂̂
∂Z = ∂Z + DZ and DZ = diagonal [ ∂

∂z11
, · · · , ∂

∂zjj
, · · ·] is a diagonal

matrix operator.

10 Linear Kähler submanifolds of D.

We say that M is a linear submanifold of D if it consists of matrices Z ∈ D
such that ZJ1 = J2Z where J1 and J2 are two real invertible matrices. We
have considered three examples:

Example 1. Z ∈M if JZ = ZJ where

J =

 0 0 1
0 1 0
1 0 0

. Then Z =

 z1 z2 z4

z2 z3 z2

z4 z2 z1

.

Example 2. Z ∈M− if JZ = ZJ where

J =

 0 −1 0
−1 0 0
0 0 1

. Then Z =

 z1 z2 z3

z2 z1 −z3

z3 −z3 z4

.

In Examples 1 and 2, J1 = J2 = J and J2 = Id.

Example 3. Extending Example 1, let Z ∈M if Z =

 z1 z2 z4

z2 z3 λ z2

z4 λz2 λ2 z1

,

J =

 0 0 λ
0 1 0
1
λ

0 0

, then J trZJ = Z and λ is fixed.

11 Condition dZ = M tr[dW ]M for linear sub-

manifolds of D.

Example 1. Z =

 z1 z2 z4

z2 z3 z2

z4 z2 z1

, dZ = M tr[dW ]M impliesM =

m1 m2 m4

κ m3 κ
m4 m2 m1


and

̂̂
∂W = M

̂̂
∂ZM

tr with the matrix operator

̂̂
∂Z =


1
2
∂
∂z1

1
4
∂
∂z2

1
2
∂
∂z4

1
4
∂
∂z2

∂
∂z3

1
4
∂
∂z2

1
2
∂
∂z4

1
4
∂
∂z2

1
2
∂
∂z1


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Example 2. Z =

 z1 z2 z3

z2 z1 −z3

z3 −z3 z4

, M =

m1 m2 m3

m2 m1 −m3

δ −δ m4



̂̂
∂W = M

̂̂
∂ZM

tr with
̂̂
∂Z =


1
2
∂
∂z1

1
2
∂
∂z2

1
4
∂
∂z3

1
2
∂
∂z2

1
2
∂
∂z1

−1
4
∂
∂z3

1
4
∂
∂z3

−1
4
∂
∂z3

∂
∂z4



Example 3. Z =

 z1 z2 z4

z2 z3 λ z2

z4 λz2 λ2 z1

, dZ = M tr[dW ]M implies M =

m1 λm2 λ2m4

δ2 m3 λδ2

m4 m2 m1

 and
̂̂
∂W = M

̂̂
∂ZM

tr with
̂̂
∂Z = constant

 2 ∂
∂z1

∂
∂z2

2 ∂
∂z4

∂
∂z2

4 ∂
∂z3

1
λ

∂
∂z2

2 ∂
∂z4

1
λ

∂
∂z2

2
λ2

∂
∂z1

.

In Examples 1 and 2, we know the group of holomorphic transformations
onM and its Lie algebra. With the same methods that we have used on D, we
find the vector fields of the infinitesimal representation and we verify that they

are given by Z
̂̂
∂Z−

̂̂
∂Z Z, i(Z

̂̂
∂Z+

̂̂
∂Z Z),

̂̂
∂Z − Z

̂̂
∂Z Z and i(

̂̂
∂Z + Z

̂̂
∂Z Z).

Example 1, ZJ = JZ,

Z =

 z1 z2 z4

z2 z3 z2

z4 z2 z1

,
̂̂
∂Z = constant

 2 ∂
∂z1

∂
∂z2

2 ∂
∂z4

∂
∂z2

4 ∂
∂z3

1
λ

∂
∂z2

2 ∂
∂z4

1
λ

∂
∂z2

2
λ2

∂
∂z1

.

The group GM is the set of matrices
(
A B
B A

)
such that A

tr
A−BtrB = I,

A
tr
B = BtrA, JA = AJ , JB = BJ .

Z
̂̂
∂Z −

̂̂
∂Z Z =

 0 −V (α)
4

0
V (α)

4
0 V (α)

4

0 −V (α)
4

0



i(Z
̂̂
∂Z +

̂̂
∂Z Z) =


V (γ(1))

2
V (γ(2))

4
V (γ(4))

2
V (γ(2))

4
V (γ(3)) V (γ(2))

4
V (γ(4))

2
V (γ(2))

4
V (γ(1))

2


̂̂
∂Z − Z

̂̂
∂Z Z =


V (β(1))

2
V (β(2))

4
V (β(4))

2
V (β(2))

4
V (β(3)) V (β(2))

4
V (β(4))

2
V (β(2))

4
V (β(1))

2



i(
̂̂
∂Z + Z

̂̂
∂Z Z) =


V (iβ(1))

2
V (iβ(2))

4
V (iβ(4))

2
V (iβ(2))

4
V (iβ(3)) V (iβ(2))

4
V (iβ(4))

2
V (iβ(2))

4
V (iβ(1))

2


Then

∑
j

1
B(ej ,ej)

l(ej)l(ej) = trace ((I − ZZ)
̂̂
∂Z (I − ZZ)

̂̂
∂Z ) where l(ej) are

the the vector fields of the infinitesimal representation.

14



Recall:
To a matrix operator T = (vij) where vij are vector fields, we associate the

matrix of functions

H(T ) = (h(vij)) where h(v)(z) =
d

dt |t=0
k′gt

(z)

is the derivative of the holomorphic jacobian of z → kgt(z), t is a real param-
eter, gt ∈ GM, g0 = e and v = d

dt |t=0
gt.

For the manifold M,

H(Z
̂̂
∂Z −

̂̂
∂ZZ) = 0,

H(Z
̂̂
∂Z +

̂̂
∂ZZ) = 3 Id,

H(
̂̂
∂Z − Z

̂̂
∂Z) = − 3Z + z1 − z4

2
(β(1)− β(4)),

H(
̂̂
∂Z + Z

̂̂
∂Z Z) = 3Z − z1 − z4

2 (β(1)− β(4))

where β(1)− β(4) =

 1 0 −1
0 0 0
−1 0 1


Let U = H(Z∂εZ + ∂εZZ) (Z∂εZ + ∂εZZ)

−H(∂εZ − Z∂εZZ) (∂εZ − Z∂εZZ)
−H(∂εZ + Z∂εZ Z) (∂εZ + Z∂εZ Z)

then trace (U) = 6 trace [(I − ZZ)∂εZ Z]
+ (z1 − z4) trace [(β(1)− β(4))Z ∂εZZ] = V .

We deduce V :=
∑
j B(ej, ej)

−1h(ej)l(ej) =

trace [(I − ZZ)
̂̂
∂Z Z] − constant (z1 − z4)(z1 − z4)2(

∂

∂z1

− ∂

∂z4

)

12 Example 3: We do not know the group of

transformations

In Example 3, Z =

 z1 z2 z4

z2 z3 λ z2

z4 λz2 λ2 z1

, let W be of the same kind. By iden-

tifying coefficients, we can calculate the conditions on the matrix M in order

that dZ = M tr[dW ]M . This implies that M =

m1 λm2 λ2m4

δ2 m3 λδ2

m4 m2 m1

.

Then the condition
dZ = M tr[dW ]M

permits by identification of coefficients, to calculate
�
∂Z such that

�
∂W = M

�
∂ZM

tr

15



We find
�
∂Z = constant

 2 ∂
∂z1

∂
∂z2

2 ∂
∂z4

∂
∂z2

4 ∂
∂z3

1
λ

∂
∂z2

2 ∂
∂z4

1
λ

∂
∂z2

2
λ2

∂
∂z1

.

Without knowing a group of holomorphic transformations onM, with the

matrix operators Z
�
∂Z −

�
∂Z Z,

i(Z
�
∂Z+

�
∂Z Z),

�
∂Z −Z

�
∂Z Z and

�
∂Z +Z

�
∂Z Z, we can construct holomorphic

vector fields l(ej). With the l(ej) obtained as the coefficients of the matrix
operators do we have

∑
j

1

B(ej, ej)
l(ej)l(ej) = trace ((I − ZZ)

�
∂Z (I − ZZ)

�
∂Z )

12.1 The volume element on M in Example 1.

Let Z =

 z1 z2 z4

z2 z3 z2

z4 z2 z1

 and let λ1(Z) = (u1 − u4)(Z), λ2(Z), λ3(Z) be the

eigenvalues of I − ZZ =

u1 u2 u4

u2 u3 u2

u4 u2 u1

, it holds

|k′gt
(Z)|2 =

φ(kgt(Z))

φ(Z)
with φ(Z) = λ1(Z)2λ2(Z)3λ3(Z)3

The volume element on M is

dv = λ1(Z)−2λ2(Z)−3λ3(Z)−3 dz1dz1 · · · dz4dz4

The representation TgF (Z) = F (kg(Z)) is unitary in Hol2C(dv).

13 Question

What happens if we take the metric associated to the Bergman kernel in a
general context. Let G denote the identity component of the group of all
biholomorphic mappings of the domain and let J(g, z) be the Jacobian deter-
minant of the biholomorphic map z → g.z. Do we have a similar expression for
the Laplacian with the holomorphic vector fields of the representation? and
what about the anti-holomorphic (holomorphic) gradient vector field and the
complex Ornstein-Uhlenbeck operators on the domain?
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