Matrix operators on symmetric Kéahler domains.
References: A. Boussejra and H. Airault,

1 The basic tools

The representation
TyF(Z) = ky(Z)F(ky(Z))
ZeD—kyZ)eD, geG

Hua’s classical matrix

0

8zuj

Z = (zij) = 0z7=(5—)

Matrix multiplication
Let A, B be two square matrices and denote

Vi = AB—BA,  V,= i(AB + BA)
Vs= B — ABA, V,=i(B + ABA)

Then trace ( ViV — VoVy + V3V3 + V4V4) =
2trace (I — AA)B(I — AA)B)
and Vi — Vi + Vi + Vi =0.

Define
H(V,) =0, HOV,) = ild
H(V3) = A, HVy) = —i A

then trace ( H(VQ)V2+ H(V3)V3+ H(V4)V4) = 0 and trace (H(VQ)V2+ H(V3>V3+

HVa)Va)
2trace (I — AA) B A

2  Objectives

(1) The construction of measures on Kéhler manifolds. We have already the
volume measure (if the manifold is finite dimensional).

(2) Obtain Laplacian and Ornstein-Uhlenbeck operators on a Kéahler man-
ifold D from the infinitesimal holomorphic representation of a group G on
D.

(3) Study the measures on D which are invariant with respect to the Lapla-
cian and Ornstein-Uhlenbeck operators. The volume measure is an invariant
measure for the Laplacian.

(4) Provide an approach to the construction of invariant measures on infi-
nite dimensional manifolds.



3 Our present approach:

3.1 The vector fields of the infinitesimal holomorphic
representation of GG are the coefficients of Hua’s ma-
trix operators

We give examples of Kahler manifolds D and a group G of holomorphic trans-
formations of D where the vector fields of the infinitesimal holomorphic rep-
resentation of GG are the coefficients of Hua’s matrix operators and can be
calculated with matrix products.

In this talk, I shall restrict to the manifold D of symmetric matrices Z such
that I — ZZ > 0 and to submanifolds of D.

Theorem 1 The vector fields of the infinitesimal representation are given
by the matrix products

(i) Vi = (205 — 052) + i (205 + 037)

(i) Vp = (05 — 2057) + i (0 + Z057)

where 0 is a Hua type matrix operator which has to be defined. The Laplacian
and Ornstein-Uhlenbeck operators on D can be calculated by making products
of the matrices

Vi = (205 — 057) = (az), Vo =i (205 + 057) = (bj)
Vs = (05 — 2032) = (¢jn), Va =i (03 + 203Z) = (V)

and their complex conjugates.
V1 is antisymmetric, thus >, , ax@j, = — trace(V1Vy),
Vs, V3, V4 are symmetric, thus

ijkak = trace( VyVs)

ik
Z Dixdjr + Z Vi = trace(V3Vs) + trace( ViVy)
j’k ]7k

then
trace( Vi V1) — trace(VoVs) + trace( VsVs) + trace( ViVy)

= 2trace (I — ZZ)07(I — ZZ)0y]

It links Hua’s expression of the Laplacian
trace[(I — ZZ)07(I — ZZ)0y]

to the vector fields of the infinitesimal holomorphic representation of G.
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3.2 The vector field V = trace (I-Z7)9% Z) in the Ornstein-
Uhlenbeck operator

05 is the Hua type matrix operator to be defined.
How to obtain V from the operators

(1) Vi = (205 —0%2) + i1 (20 + 037)

(i) Vp = (05 — 2057) + i (0 + 2057)

To a matrix operator 7 = (v;;) where v;; are vector fields, we associate the
matrix of functions

H(T) = (h(vyy))

where y
b)) = G H(2)

is the derivative of the holomorphic jacobian of the map z — k,,(2), t is a real
parameter, g, € G, go = e and v = %u:ogt'

We find

H(Z0y — 057) =0, H(ZOy + 057) = Id,

H(Oy — Z03,7) = Z, H(Oy + 20y 7)=—Z

Let U = H(Z05 + 052) (205 + 957)+

H(0y — Z052) (05 — Z037Z) + H(0y + Z0y Z) (05 + 205 Z)
then
traceld = trace (I — Z2)05 Z] =V

3.3 The representation of the group of holomorphic trans-
formations k, : Z — k,(Z) on D and the holomorphic
Jacobian determinant k;(Z)

Let D be the manifold of n x n symmetric matrices Z such that I — ZZ > 0.
The group G of matrices g = (é ﬁ) operates transitively on D with
W =ky(2Z)=(AZ + B)(BZ + A)"!
=(AZ+B)M™' where M(Z)=BZ+ A
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We have

I —ky(2)ky(Z) = (M*)_l(I —7Z)M_1
The volume element on D is

deydey - - -

dv = i
YT Qet(I — ZZ)m

and the holomorphic Jacobian is such that
¢(ky(2))
o(Z)

This does not stay true for a submanifold M of D. We shall give an
example of M in the set of 3 X 3 matrices such that

|k (2)? = with  ¢(Z) = (det(I — ZZ))"

\k;<Z>|2—¢“§§(ZZ)” With  6(2) = M(Z)Aa(Z)"he(2)?

where \(Z), X\a(Z), A3(Z) are the three eigenvalues of I — ZZ.
Since I — ky(Z)ky(Z) = (M*)" NI — Z*Z)M~*, we deduce

— det(I — Z7)

We can write this identity in the following way

_ 10 M(2)
R AT

where M\ (Z), A\2(Z), -+, \o(Z) are the eigenvalues of [ —ZZ and v, (Z), v»(Z),
-, Up(Z) are the eigenvalues of M (7).

For our example of Kahler submanifold M of 3 x 3 symmetric matrices in
D, we prove

M(W) = and A (W)A3(W) = |V2)\(2Z<i3|)\53((ZZ))’2

3.4 Find invariant measures on the Kahler submanifolds

M of D.

Consider the subgroup G, of G and acting on M. Denote Z = (21, 2, - - -) the
independent variables in Z and W = (wy, ws, - - -) the independent variables in
W and denote k;(Z) the holomorphic Jacobian determinant of the map

kg; Z = (2’17227"') _>W:(w17w27“'>
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1- We wish to find probability measures ;1 on M such that for g € Gy,

L KD Ghy(2)) o) = [ |F(2)Pp(d2)

2- One of the difficulties for submanifolds is to determine the Jacobian
determinant £} (Z) when the number p of independent variables in the n x n
symmetric matrix Z is less than n(n + 1)/2. For a submanifold M of D, let
G pm be the subgroup of G and acting on M.

(1) Is there any relation between kj(Z), det(BZ + A) and det(I — WW)

det(I — Z7)
as it was the case for D?

(2) The calculation of the holomorphic Jacobian & (Z) is delicate.

(3)- How to relate the independent vector fields

8 9
(921 ’ 622 ’
to the independent vector fields 8%01’ 6%2’ ---, that is how to calculate the

holomorphic Jacobian matrix of the map k,(Z)?

4 The condition dZ = M"[dW]M

Let W = (AZ + B)(BZ + A)~! then
dW = (M NH"(dZ)M™' with M =BZ+ A

If the coefficients of the matrix Z are all distinct, we have independent variables
and
Ow = MOy M'

where Oy = (837]16) and 0z = (%) are the classical Hua’s matrices opera-

tors.

The relation Oy = M9, M is no more valid if the coefficients of Z are not
independent variables. In the case of the domain of symmetric matrices 7, it
remains true if we replace d; and Oy respectively by the operators matrices

When there are less than n(n + 1)/2 independent variables, we have to make
another choice for c?AZ and 5@ and it depends on the domain.

Remark In the case of the domain of symmetric matrices Z, in order to
obtain the Laplacian as a trace of product of matrices, Hua makes a rescaling
of the coefficients of Z, keeping the matrix symmetric, instead of changing 0.
This amounts to the same.



4.1 From dZ = M"[dAW]M to dw = M, M"

The matrix operator %)Z depends on the manifold M.

We say that M is a linear submanifold of D if it consists of matrices Z € D
such that ZJ; = J,Z where J; and Jy are two real invertible matrices.

Let Z and W in the same linear submanifold M of D and assume that
dZ = M'"[dW]M. The following lemma can be applied to some examples of
linear submanifolds of D.

Lemma. Assume that (C') is satisfied:

(C) :There is a partition A; U AyU---U Ay of the indices of the coefficients
of the matrices W and Z such that when (j,p) € A, then z;, = b, and
wj, = ¢,. If r # s, then b, and b, (¢, and c¢) are independent variables.

OO OO
Let n;, = n, be the cardinal of A,. Then dyw = M9zM" with the matrix
A 1 o) )

njp 0zjp

O
operator 0z = (

5 The Kahler manifold of symmetric matrices
Z such that [ — ZZ > 0 and submanifolds.

A Kaéhler manifold (D,w) is a complex manifold D and w is a smooth differ-
ential (1,1)-form on D which can be written

P log K
wzljz];acjagchcj/\dclm C:(Clyc%'”)ED

where the Kahler potential K is a real positive function. Then w is closed
(dw = 0).
To w is associated the riemannian metric
0? log K

ds?> = — 3 ——>"de; deg
%; dc;o, "

5.1 We take as Kahler manifold D the set of symmetric
matrices such that I — ZZ > 0

with Kahler potential
K(Z,Z)=det(I — Z2Z)

In that case, the independant coefficients in Z = (z;;) are
(e1,¢2, ) = (2)i<y
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For the manifold D, the Bergman kernel is
[det(I — ZZ)]*

see for example Hua’s book. Thus for D, the Kahler metric defined with the
potential K(Z,7) = det(I — ZZ) is the same as the Bergman metric.

5.2 We take as Kahler manifold M a submanifold of D.
In M, we still have symmetric matrices such that
I — 77 >0, but not all

On M , we shall take again as Kihler potential K(Z,Z) = det(I — ZZ). But
for a submanifold, [det(I —ZZ)]* may be different from the Bergman potential
as shown by our examples.

Recall: Bergman kernel, let f : €y — €5, f holomorphic, then

det Jo f (2)Ka,(f(2), f(€))det Jo f(€) = Ko, (z,€)

In our example of M of 3 x 3 matrices, we prove

\k;<Z>|2:¢“§g<ZZ)” With  6(2) = M(Z)Aa(Z)"he(2)°

where A\ (Z), \o(Z), A3(Z) are the three eigenvalues of I — ZZ. Then [det(I —
Z7)]* is not the Bergman kernel and the metric obtained with

K(Z,7) =det(I — Z2)

is different from the Bergman metric.

5.3 The (1,1)-form w and the metric when the Kahler
potential is K(Z,Z) =det(I — ZZ)

In that case, the Kéhler differential (1,1)-form w and the metric have nice
expressions thanks to the relation

logdet(I — Z Z) = trace log(I — Z Z)

Then (see for example BSM 2012-HA)

2

e = logdet(I — ZZ

ok = e oBdet(1 ~ 22)
_ A — Z
= —trace[(I — ZZ)_lai x (I — ZZ)_la—]
Cr; dc;



Since dZ = (dz;) is given by dZ =3, gTZk dcy,, the closed two-form w and the
riemannian metric ds® are

w=1i trace[((I — Z2)*dZ N (I — ZZ) 'dZ]

ds* = = pjde; dey, = trace (I — ZZ)"'dZ(I — ZZ)™'dZ]

j?k:

5.4 The (1,1)-form w and the metric for a submanifold
For a submanifold M of D, we take the same Kahler potential

K(Z,Z) = det(I - Z2)

but there are less independent variables:

then dZ is different, it gives a closed form wy, which is different from w and
a metric ds}, different from the ds* on D and also different from the Bergman
metric on M.

For submanifolds M, formulas

wpm =1 trace[(I —ZZ)'dZ N (I — ZZ) 'dZ]

= 1 trace[Q A Q)

and dsi, = — 3, pjrde; deg = trace (I — ZZ) " 'dZ(I — ZZ)~'dZ)

are still valid but with a different dZ.

Assume that there is a group G of transformations Z — W on M such
that

dZ = M"dW M

and [ —WW = (M*)"Y(I — ZZ)M~* with W = k,(Z), the closed (1, 1)-form
wa and the metric ds?3, are invariant under the transformations of the group
Gm.

The volume element is obtained with

Wig Awpg A - -

i3 <
From dZ = M'"dW M, we deduce operators matrices dy, and 0y
such that . .
Ow = My M'™

Thus the operator

Ap = trace|(I — Z?)éz([ — 7Z)5Z]

is invariant under the transformations of G 4.
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For our examples of submanifolds M, A, is the Laplacian associated to
the metric

dsi, = trace [l — ZZ)'dZ(I — ZZ) *dZ]

but ds3, is not the Bergman metric corresponding to the group of transforma-
tions G .

6 The group G of holomorphic transformations
of D and the operator 7, on holomorphic
functions on D.

W =k,(Z) = (AZ + B)(BZ + A)" g= (A B) Xe

with A”A — B"B = and A" B = B A.

T,F(Z) = K,(Z)F(k(Z)),  7€R
Since
e o2 el 7 e
kg (Z)° = o2) th  ¢(Z) = (det(I — Z*Z))

the operator Ty, is unitary in Holg(du) for the measure
A, = [det(I — Z2Z)]*0~Vd\(Z)
The volume element on D is up to a multiplicative constant, equal to

_ A2
o =52y

6.1 The Lie algebra g of GG is the real vector space,

g:{(% g) witha + o* = 0and 8 = 8"}

g:{(g‘ 2),04*—1—04:0}@{(2 6}),6:5”}

g=t®p (Cartan decomposition)



6.2 The holomorphic vector fields on D.

o

LetX:(ﬂ

a) € g. Denote W (X) = ¢, a curve on G such that

Ay Bt> d
gt (Bt At € G7 90 an dt|t:09t

where A; = I +ta+o(t?) and B, =t8+ o(t?)

Then
Wy = ko (Z2) = (Z + t(aZ + B) + o(t*))(I —t(@+ BZ) + o(t*))
d — _
— ke (2)=— (AZ+B)BZ+A) '=aZ - Za+p— 7232
dt |t=o dt =0
Let F be a complex-valued holomorphic function on D, (% = 0). The holo-
morphic vector fields V(X)) are given by
d
V(X)E)2) = —  F(kg(2))
dt [t=0
d OF d
— F(W) = — (W h Wy = kg, (Z
dt |t=0 (W) %;] 02pq dt|t:0( oo where ¢ = ka(2)

7 A basis (e;) of t and the vector fields V(e;).

2

The Lie algebta t has dimension n* as real vector space.

Basis: H; = (dj 0> where d; =iEj;, j=1,..,n,

0 d
. (Ep—Ey 0 )
Xk = ( 0 Ej, — Ey;
i(Ejk + Exj) 0 > :
o < <
Vi ( 0 (Bt By ) ST<ksn

Vector fields:
.0 . .
V(H)) = [(d;Z + Zd;)0z];; = 125 —+ i(Z0y);;
yy

0 0

V(Xjk) = (207 )k — (207 )k + ijazjj ~ g j<k
. tr ir a 8 .
V(Y}k) = i[(Z0y )kj + (Z0y )jk + ija + Zjk I, i<k
ij (9zkk
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8 The vector fields V(H;), V(X;.), V(Yj;) as co-
efficients of a Hua’s matrix operator

To the matrix Z = (z;;) € D, we associate the Hua’s matrix operator,

3’; — 1((1 + 5ij)i) where 6, =0 if i#j and 0;; =1
2 0zij
then
0 V(X2) V(Xi3)
= A _ 4 —V(Xlg) 0 V(XQS)
Zaz 82 Z = —V(X

13)  —V(Xa3) 0

2V(H,) V(Yi2) V(Y13)
i | V(Yi2) 2V(Hy) V(Yas)

20, + 0,7 = — -
z + Oz 3 | V(i) V(Yas) 2V(Hs)

8.1 Corollaries

> Blej,e;) 'V(e;)? = 2trace (Z0,78y)

EjEt
and DU
Dy =: ) Blej,e;) ' Vi(e))Vies) = =2 > (Z02)xj (Z07)k;
e]‘Et gk
— —2trace (ZZ00)

where B(X,Y) = trace (XY') is the Killing form on g.

9 A basis (¢;) of the Lie subalgebra p and the
vector fields V(e;).

The basis: A; = (0? cg) , B;= (—Ob %3) where a; = diag(0, ...,0,1,0,...;0),
J

J
bj =ia;, j=1,....,n and A, Bj with (1 <j <k <n):

0 Eji. + Ex;
Al :< j a>7
=\ Ejy + By, 0

B, — ( 0 i(Ejx + Ekj)>
=\ —i(Ejp + E)) 0
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9.1 The vector fields

For j <k, let B, = Ej, + Eyj and a; = %(Ejj + Ej;) = %6]-]-. Then

0
A (ZBjxZ)
4 azjk ; ﬁjk H azpq

0 0
V(Bjk) =1 <8 ik +pz<;] Zﬁjk‘Z)pqaZm)
0 1 0
A)= — = 78..7).
V) = 5o 5 S Dy
0 0
B; (Z
V( ]) (9z]] + 2};} ﬁ]] P(Iazpq>

9.2 The vector fields V(A;), V(B;), V(4;r), V(Bji) as co-
efficients of a Hua’s matrix operator
For the symmetric matrices V4 = 52 — Zé/?g Z and VB = 2(5\2 + Zé} Z),
it holds
2V(Ay) V(Ap) V(A)
] - V<A12) 2V(A2) V(A23>
02 =202 2= | v(a) V(Aw) 2V(As)

2V(By) V(Bi) V(Bis)

L~ ~ V(Bi2) 2V(By) V(Ba3)
i(07 + 207 72) = V(Bis) V(Bs) 2V(By)

9.3 Corollaries

EZV )+ V(Bi)* + 5 ZV V(B;)*

i<k

1 ~ =
= —itrace (Z0yz Z0z)

L VAV + VBV (B) + 5 S VIANVTA) + V(B)V(B)

j<k
1 R~
=1 trace (0707 + Z 20,220 )
Notation: We have put 8/2 = 28/;.
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9.4 Identification of 3; B(e;,e;) 'l(e;)l(e;) with the Lapla-
cian

Z

3 Bleyres)e,)les) = itmce (I = Z2)oy(I — 22)0]

where 8, = 0z + Dy and Dy = diagonal [%7...7%7...]

matrix operator.

is a diagonal

10 Linear Kahler submanifolds of D.

We say that M is a linear submanifold of D if it consists of matrices Z € D
such that ZJ; = JoZ where J; and Jy are two real invertible matrices. We

have considered three examples:
Example 1. Z € M it JZ = ZJ where

0 0 1 21 22 24
J=|0 1 0]. Then Z = | 29 23 29
1 0 0 Z4 22 A1

Example 2. 7 ¢ M_ it JZ = ZJ where
0 -1 0 2 2 23
J=-1 0 0|.ThenZ =120 2z —z|.
0 0 1 23 —23 24
In Examples 1 and 2, J; = Jo, = J and J? = Id.

21 22 24
Example 3. Extending Example 1,let Z e Mif Z = | 25 23 Az |,
Z4 )\22 )\2 21

0
1 , then J"ZJ = Z and X is fixed.
0

o O

11 Condition dZ = M"[dW]|M for linear sub-
manifolds of D.

21 29 24 my M2
Examplel. Z = | 2z 23 2 |,dZ = M"[dW]M implies M = | x mg3
24 22 2 my Mo

and Oy = MO, M™ with the matrix operator

19 10 10
~ 20z 4 Ozo 2 0z4
5 — (16 9 18)

Z 4 0zo 0z3 4 0zo

19 10 10

2 0zy 4 Ozo 2 021

—_
w

my
K
my



21 z9 z3 my Mo ms
Example 2. Z =120 2z —23|, M=|my m; —ms3
23 —Z3 24 0 —0 My
190 10 10
~ ~ ~ 20z 2 Ozo 4 Oz3
_ tr ; — | 1.0 1.0 1.9
8W = MazM Wlth 82 = 2 923 202 1923
10 _190 0
4 023 4 0z3 0z4
21 ) 24
Example 3. 7 = | 20 23 Az |, dZ = M"[dW]M implies M =
2 Az ANy
2 0 8 0
my )\ mo )\ my ~ ~ ~ 2 %Zl 3282 2 834
_ tr — 0 0 1.0
09 M3 Aoy | and Oy = MOy M' with 07 = constant az§ 4833 3 6%2
m m m 1 2 0
4 2 1 2 A 822 A2 0z1

In Examples 1 and 2, we know the group of holomorphic transf%rmatlons
on M and its Lie algebra. With the same methods that we have used on D, we
find the vector fields of the infinitesimal representation and we verify that they

are given by Zaz 82 (Z@Z+8Z ) 62 Z@ZZand (82+Zaz )
Example 1, Z7J = JZ,
20 9 9.9
21 22 A4\ 0z1 Oz 024
Z =120 23 2o |, 0z = constant 3%2 6%3 %%

4
2y Z2 Z1 29 1
A”BY
The group G is the set of matrices (B A) such that A" A— B'B = I,
A"B=DB"A, JA=AJ, JB=BJ.

V(a)
S e
Zo; -0,z | 0 Ve
V()
0 Y2 0
YoW)  YeE) Yo
i(Z07+072) = | YGBD v (y(3)) YGR2)
Vo)  VOa@) Vo)
2 4 2
YEW) V6@ VEW)
Dy, — Z0y V(i@)) V(B(3)) V(ﬁ4(2))
YEW) V6@ VEw)

i8(2)  V(EBMA)

8
= = . 4 2
iz + 205 7Z) = | YE8@) v (;5(3)) W
V(ii(2)) V(@iB(1))
2

Then ¥ pitoyl(e))ile;) = trace (I — 22)0z (I — ZZ)07) where I(e;) are
the the vector fields of the infinitesimal representation.
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Recall:
To a matrix operator 7 = (v;;) where v;; are vector fields, we associate the
matrix of functions

e

H(T) = (h(vy)  where  h(v)(z) = 3 kK,

is the derivative of the holomorphic jacobian of z — kg, (2), t is a real param-
eter, gt € Gaq, go =€ and v = %n:ogt'

For the manifold M,

H(Za:Z - é;ZZ) =0,

H(Z0z + 02Z) = 31d,

M0z = 207) = =32 + S524(8(1) = B4)).

H(Dz + 207 2) = 32 — F554(B(1) - 5(4))

1 0 -1
where §(1) —pB(4)=| 0 0 0
(—1 0 1 )
Let U = H(Z0y + 052) (Z05 + 05Z)
—H(0y — Z057) (05 — Z037Z)
—H(0y + 205 Z) (05 + Z0y Z)
then trace (U) = 6trace (I — ZZ)0y Z]
+ (51 — ) trace [(B(1) — B(4)) 2 05.7) = V.
We deduce V := Y, B(ej, e;) 'h(e;)l(e;) =

trace [(I — 72)52 Z| — constant (z1 — z1) (21 — 24)2(8621 B ;ZZL)

12 Example 3: We do not know the group of
transformations

21 29 Z4
In Example 3, Z = | 29 23 Az [, let W be of the same kind. By iden-
Z4 )\2’2 )\2 Z1
tifying coefficients, we can calculate the conditions on the matrix M in order
mq A mo )\2 Ty
that dZ = M'"[dW]M. This implies that M = ( by M3 YD )
my Mo m
Then the condition
dZ = M"[dW|M

<
permits by identification of coefficients, to calculate 0 such that
Lo <&
Ow = Moy M'™
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9 8 3
: T8 %
_ 0 1.0
We find 05 = constant Bos ol v
20 10 20
A2 Oz

1
A
Without knowmg a group ‘of ho morp ic transformations on M, with the
matrix operators Z(?Z - 82

(Z@Z—l—ﬁz Z), 82 — Z@Z Z and 82 + Z@Z Z, we can construct holomorphic
vector fields [(e;). With the [(e;) obtained as the coefficients of the matrix
operators do we have

1
2B

j €5, €5)

l(e,)ile;) = trace (I — Z2)9, (I — ZZ)d)

12.1 The volume element on M in Example 1.

21 R2 24
Let Z = | 22 23 2o | and let \(Z) = (u1 — wy)(Z), X2(Z), A3(Z) be the
Z4 22 21

U Uy Uy
eigenvalues of I — ZZ = | us w3 wuso |, it holds
Ug Uy U

rk;xzw—W with  6(Z) = M (Z2)Ma( 22 (2)°

The volume element on M is
dv = )\1(2)72>\2(Z>73)\3<Z)73 ledizl' s dZ4d724

The representation T,F(Z) = F(k,(Z)) is unitary in Holg(dv).

13 Question

What happens if we take the metric associated to the Bergman kernel in a
general context. Let G denote the identity component of the group of all
biholomorphic mappings of the domain and let J(g, z) be the Jacobian deter-
minant of the biholomorphic map z — g.z. Do we have a similar expression for
the Laplacian with the holomorphic vector fields of the representation? and
what about the anti-holomorphic (holomorphic) gradient vector field and the
complex Ornstein-Uhlenbeck operators on the domain?
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