Preservers for classes of positive matrices

Alexander Belton

Department of Mathematics and Statistics Lancaster University, United Kingdom

a.belton@lancaster.ac.uk

18th Workshop: Noncommutative Probability, Operator Algebras, Random Matrices and Related Topics, with Applications

> Bẹdlewo 20th July 2018

Joint work with Dominique Guillot (Delaware), Apoorva Khare (IISc Bangalore) and Mihai Putinar (UCSB and Newcastle)

- Two products on matrices
- Positive definiteness
- Theorems of Schur, Schoenberg and Horn
- Positivity preservation
 - For fixed dimension
 - Por moment matrices
 - Sor totally positive matrices

Notation

The set of $n \times n$ matrices with entries in a set $K \subseteq \mathbb{C}$ is denoted $M_n(K)$.

Products

The vector space $M_n(\mathbb{C})$ is an associative algebra for at least two different products: if $A = (a_{ij})$ and $B = (b_{ij})$ then

$$(AB)_{ij} := \sum_{k=1}^{n} a_{ik} b_{kj}$$
 (standard)
and $(A \circ B)_{ij} := a_{ij} b_{ij}$ (Hadamard).

Positive definiteness

Definition

A matrix $A \in M_n(\mathbb{C})$ is positive semidefinite if

$$\mathbf{x}^* A \mathbf{x} = \sum_{i,j=1}^n \overline{x_i} a_{ij} x_j \ge 0$$
 for all $\mathbf{x} \in \mathbb{C}^n$.

A matrix $A \in M_n(\mathbb{C})$ is positive definite if

$$\mathbf{x}^*A\mathbf{x} = \sum_{i,j=1}^n \overline{x_i}a_{ij}x_j > 0$$
 for all $\mathbf{x} \in \mathbb{C}^n \setminus \{0\}$.

Remark

The subset of $M_n(K)$ consisting of positive semidefinite matrices is denoted $M_n(K)_+$. The set $M_n(\mathbb{C})_+$ is a *cone*: closed under sums and under multiplication by elements of \mathbb{R}_+ .

Some consequences

Symmetry

If $A \in M_n(K)_+$ then $A^T \in M_n(K)_+$: note that

$$0 \leqslant (\mathbf{x}^* A \mathbf{x})^T = \mathbf{y}^* A^T \mathbf{y} \qquad \text{for all } \mathbf{y} = \overline{\mathbf{x}} \in \mathbb{C}^n.$$

Hermitianity

If
$$A \in M_n(\mathbb{C})_+$$
 then $A = A^*$: note that

 $\mathbf{x}^*A^*\mathbf{x} = (\mathbf{x}^*A\mathbf{x})^* = \mathbf{x}^*A\mathbf{x} \quad (\mathbf{x} \in \mathbb{C}^n) \implies A = A^* \quad (\text{polarisation}).$

Non-negative eigenvalues

If $A \in M_n(\mathbb{C})_+ = U^* \operatorname{diag}(\lambda_1, \ldots, \lambda_n) U$, where $U \in M_n(\mathbb{C})$ is unitary, then $\lambda_i = (U^* \mathbf{e}_i)^* A(U^* \mathbf{e}_i) \ge 0$.

Conversely, if $A \in M_n(\mathbb{C})$ is Hermitian and has non-negative eigenvalues then $A = B^*B \in M_n(\mathbb{C})_+$, where $B = A^{1/2} = U^* \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) U$.

Theorem 1 (Schur, 1911)

If A,
$$B \in M_n(\mathbb{C})_+$$
 then $A \circ B \in M_n(\mathbb{C})_+$.

Proof.

$$\begin{aligned} \mathbf{x}^* (A \circ B) \mathbf{x} &= \operatorname{tr}(\operatorname{diag}(\mathbf{x})^* B \operatorname{diag}(\mathbf{x}) A^T) \\ &= \operatorname{tr}((A^T)^{1/2} \operatorname{diag}(\mathbf{x})^* B \operatorname{diag}(\mathbf{x}) (A^T)^{1/2}). \end{aligned}$$

Corollary 2

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic on K and $a_n \ge 0$ for all $n \ge 0$ then

 $f[A]:=\big(f(a_{ij})\big)\in M_n(\mathbb{C})_+\qquad \text{for all }A=(a_{ij})\in M_n(K)_+\text{ and all }n\geqslant 1.$

Observation

The functions in the corollary preserve positivity on $M_n(K)_+$ regardless of the dimension n.

Question (Pólya–Szegö, 1925)

Are there any other functions with this property?

Schoenberg's theorem

Theorem 3 (Schoenberg, 1942)

If $f:[-1,1]\to \mathbb{R}$ is

(i) continuous and

(ii) such that $f[A] \in M_n(\mathbb{R})_+$ for all $A \in M_n([-1,1])_+$ and all $n \ge 1$ then f is absolutely monotonic:

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 for all $x \in [-1,1]$, where $a_n \ge 0$ for all $n \ge 0$.

Proof (Christensen-Ressel, 1978).

 $\{f: [-1,1] \rightarrow \mathbb{R} \mid f(1) = 1, \ f[A] \in M_n(\mathbb{R})_+ \ \forall A \in M_n([-1,1])_+, \ n \ge 1\}$

is a Choquet simplex with closed set of extreme points

$$\{x^n:n \ge 0\} \cup \{1_{\{1\}} - 1_{\{-1\}}, 1_{\{-1,1\}}\}.$$

Theorem 4 (Horn, 1969)

If $f: (0,\infty) \to \mathbb{R}$ is continuous and such that $f[A] \in M_n(\mathbb{R})_+$ for all $A \in M_n((0,\infty))_+$, where $n \ge 3$, then (i) $f \in C^{n-3}((0,\infty))$ and (ii) $f^{(k)}(x) \ge 0$ for all k = 0, ..., n-3 and all x > 0. If, further, $f \in C^{n-1}((0,\infty))$, then $f^{(k)}(x) \ge 0$ for all k = 0, ..., n-1and all x > 0.

Lemma 5

If $f : D(0, \rho) \to \mathbb{R}$ is analytic, where $\rho > 0$, and such that $f[A] \in M_n(\mathbb{R})_+$ whenever $A \in M_n((0, \rho))_+$ has rank at most one, then the first n non-zero Taylor coefficients of f are strictly positive.

A theorem for fixed dimension

Theorem 6 (B-G-K-P, 2015)

Let $\rho > 0$, $n \ge 1$ and

$$f(z) = \sum_{j=0}^{n-1} c_j z^j + c' z^m,$$

where $\mathbf{c} = (c_0, \dots, c_{n-1}) \in \mathbb{R}^n$, $c' \in \mathbb{R}$ and $m \ge 0$. The following are equivalent.

(i)
$$f[A] \in M_n(\mathbb{C})_+$$
 for all $A \in M_n(\overline{D}(0,\rho))_+$.

(ii) Either $\mathbf{c} \in \mathbb{R}^n_+$ and $c' \in \mathbb{R}_+$, or $\mathbf{c} \in (0,\infty)^n$ and $c' \ge -\mathfrak{C}(\mathbf{c}; m, \rho)^{-1}$, where $\sum_{i=1}^{n-1} (m)^2 (m-i-1)^2 \rho^{m-j}$

$$\mathfrak{C}(\mathbf{c}; m, \rho) := \sum_{j=0} \binom{m}{j} \binom{m-j-1}{n-j-1} \frac{p}{c_j}$$

(iii) $f[A] \in M_n(\mathbb{R})_+$ for all $A \in M_n((0,\rho))_+$ with rank at most one.

A determinant identity with Schur polynomials

For all $t \in \mathbb{R}$, $n \geqslant 1$ and $\mathbf{c} = (c_0, \dots, c_{n-1}) \in \mathbb{F}^n$, let the polynomial

$$p(z;t,\mathbf{c},m):=t(c_0+\cdots+c_{n-1}z^{n-1})-z^m \qquad (z\in\mathbb{C}).$$

Given a non-increasing *n*-tuple $\mathbf{k} = (k_n \geqslant \cdots \geqslant k_1) \in \mathbb{Z}_+^n$, let

$$\sigma_{\mathbf{k}}(x_1,\ldots,x_n):=\frac{\det(x_i^{k_j+j-1})}{\det(x_i^{j-1})} \quad \text{and} \quad V_n(x_1,\ldots,x_n):=\det(x_i^{j-1}).$$

Theorem 7

Let $m \ge n \ge 1$. If $\mu(m, n, j) := (m - n + 1, 1, ..., 1, 0, ..., 0)$, where there are n - j - 1 ones and j zeros, and $\mathbf{c} \in (\mathbb{F}^{\times})^n$ then, for all $\mathbf{u}, \mathbf{v} \in \mathbb{F}^n$,

$$\det p[\mathbf{u}\mathbf{v}^{T}; t, \mathbf{c}, m] = t^{n-1} V_n(\mathbf{u}) V_n(\mathbf{v}) \left(t - \sum_{j=0}^{n-1} \frac{\sigma_{\mu(m,n,j)}(\mathbf{u}) \sigma_{\mu(m,n,j)}(\mathbf{v})}{c_j} \right) \prod_{j=0}^{n-1} c_j.$$

Proof that (ii) \implies (i) in Theorem 6 when $m \ge n$

By the Schur product theorem, it suffices to assume that $-\mathfrak{C}(\mathbf{c}; m, \rho)^{-1} \leqslant c' < 0 < c_0, \ldots, c_{n-1}$.

The key step is to show that $f[A] \in M_n(\mathbb{C})_+$ if $A \in M_n(\overline{D}(0,\rho))_+$ has rank at most one.

Given this, the proof concludes by induction. The n = 1 case is immediate, since every 1×1 matrix has rank at most one.

Assume the n-1 case holds. Since

$$f(z) = \sum_{j=0}^{n-1} c_j z^j + c' z_m = |c'| (|c'|^{-1} (c_0 + \dots + c_{n-1} z^{n-1}) - z^m)$$

= |c'| p(z; |c'|^{-1}, **c**, m),

it suffices to show $p[A] := p[A; |c'|^{-1}, \mathbf{c}, m] \in M_n(\mathbb{C})_+$ if $A \in M_n(\mathbb{C})_+$.

Two lemmas

Lemma 8 (FitzGerald–Horn, 1977)

Given $A = (a_{ij}) \in M_n(\mathbb{C})_+$, set $\mathbf{z} \in \mathbb{C}^n$ to equal $(a_{in}/\sqrt{a_{nn}})$ if $a_{nn} \neq 0$ and to be the zero vector otherwise. Then $A - \mathbf{z}\mathbf{z}^* \in M_n(\mathbb{C})_+$ and the final row and column of this matrix are zero.

If $A \in M_n(\overline{D}(0,\rho))_+$ then $zz^* \in M_n(\overline{D}(0,\rho))_+$, since

$$\frac{a_{ii}}{a_{in}} \begin{vmatrix} a_{in} \\ a_{nn} \end{vmatrix} = a_{ii}a_{nn} - |a_{in}|^2 \ge 0.$$

Lemma 9

If $F:\mathbb{C}\rightarrow\mathbb{C}$ is differentiable then

$$F(z) = F(w) + \int_0^1 (z - w) F'(\lambda z + (1 - \lambda)w) d\lambda$$
 $(z, w \in \mathbb{C}).$

By Lemmas 8 and 9,

$$p[A] = p[\mathbf{z}\mathbf{z}^*] + \int_0^1 (A - \mathbf{z}\mathbf{z}^*) \circ p'[\lambda A + (1 - \lambda)\mathbf{z}\mathbf{z}^*] d\lambda.$$

Now,

$$p'(z; |c'|^{-1}, \mathbf{c}, m) = m p(z; |c'|^{-1}/m, (c_1, \dots, (n-1)c_{n-1}), m-1)$$

so the integrand is positive semidefinite, by the inductive assumption, since

$$m \mathfrak{C}((c_1,\ldots,(n-1)c_{n-1});m-1,\rho) \leq \mathfrak{C}(\mathbf{c};m,\rho).$$

Hence p[A] is positive semidefinite, as required.

Hankel matrices

Let μ be a measure on ${\mathbb R}$ with moments of all orders, and let

$$s_n = s_n(\mu) := \int_R x^n \mu(\mathrm{d} x) \qquad (n \ge 0).$$

The Hankel matrix associated with μ is

$$H_{\mu} := \begin{pmatrix} s_0 & s_1 & s_2 & \dots \\ s_1 & s_2 & s_3 & \dots \\ s_2 & s_3 & s_4 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = (s_{i+j})_{i,j \ge 0}.$$

Theorem 10 (Hamburger)

A sequence $(s_n)_{n \ge 0}$ is the moment sequence for a positive Borel measure on \mathbb{R} if and only if the associated Hankel matrix is positive semidefinite.

Corollary 11

A map f preserves positivity when applied entrywise to Hankel matrices if and only if it maps moment sequences to themselves: given any positive Borel measure μ ,

$$f(s_n(\mu)) = s_n(\nu) \qquad (n \ge 0)$$

for some positive Borel measure ν .

Theorem 12 (B-G-K-P, 2016)

Let $f : \mathbb{R} \to \mathbb{R}$. The following are equivalent.

- The function f maps moment sequences of measures supported on [-1,1] into themselves.
- If A is an N × N positive semidefinite Hankel matrix then f[A] is positive semidefinite, for all N ≥ 1.
- If A is an N × N positive semidefinite matrix then f[A] is positive semidefinite, for all N ≥ 1.
- The function f is the restriction to \mathbb{R} of an entire function $F(z) = \sum_{n=0}^{\infty} a_n z^n$, with $a_n \ge 0$ for all $n \ge 0$.

Total non-negativity and total positivity

A matrix is *totally non-negative* if each of its minors is non-negative. A matrix is *totally positive* if each of its minors is positive. These were first investigated by Fekete (1910s) then by Gantmacher and Krein and by Schoenberg (1930s). There are of much recent interest.

Example					
	(1)	1	1	1	
	1	2	4	8	
	1	3	9	27	
	\setminus_1	4	16	64/	

Remark

A totally non-negative matrix which is symmetric is positive semidefinite, by Sylvester's criterion.

Alexander Belton (Lancaster University)

Positivity preservers

Preserving positivity for symmetric TN matrices

Theorem 13 (B-G-K-P, 2017)

Let $F:[0,\infty)\to\mathbb{R}$ and let N be a positive integer. The following are equivalent.

- F preserves total non-negativity entrywise on symmetric N × N matrices.
- F is either a non-negative constant or
 - (a) $(N = 1) F(x) \ge 0;$
 - (b) (N = 2) F is non-negative, non-decreasing, and multiplicatively mid-convex, i.e.,

$$F(\sqrt{xy})^2 \leq F(x)F(y)$$
 for all $x,y \in [0,\infty);$

(c)
$$(N = 3)$$
 $F(x) = cx^{\alpha}$ for some $c > 0$ and some $\alpha \ge 1$;
(d) $(N = 4)$ $F(x) = cx^{\alpha}$ for some $c > 0$ and some $\alpha \in \{1\} \cup [2, \infty)$;
(e) $(N \ge 5)$ $F(x) = cx$ for some $c > 0$.

Preserving positivity for symmetric TP matrices

Theorem 14 (B–G–K–P, 2017)

Let $F:(0,\infty)\to\mathbb{R}$ and let N be a positive integer. The following are equivalent.

- **9** *F* preserves total positivity entrywise on symmetric $N \times N$ matrices.
- **2** The function F satisfies

a)
$$(N = 1) F(x) > 0;$$

(b) (N = 2) F is positive, increasing, and multiplicatively mid-convex, i.e.,

$$F(\sqrt{xy})^2 \le F(x)F(y)$$
 for all $x, y \in (0,\infty)$;

(c)
$$(N = 3)$$
 $F(x) = cx^{\alpha}$ for some $c > 0$ and some $\alpha \ge 1$;
(d) $(N = 4)$ $F(x) = cx^{\alpha}$ for some $c > 0$ and some $\alpha \in \{1\} \cup [2, \infty)$.
(e) $(N \ge 5)$ $F(x) = cx$ for some $c > 0$.

Thank you for your attention

Dziękuję za uwagę

References

A. Belton, D. Guillot, A. Khare and M. Putinar, *Matrix positivity preservers in fixed dimension. I*, Adv. Math. **298** (2016) 325–368.

A. Belton, D. Guillot, A. Khare and M. Putinar, *Matrix positivity preservers in fixed dimension*, C. R. Math. Acad. Sci. Paris **354** (2016) 143–148.

A. Belton, D. Guillot, A. Khare and M. Putinar, *Moment-sequence transforms*, arXiv:1610.05740.

A. Belton, D. Guillot, A. Khare and M. Putinar, *Total-positivity preservers*, arXiv:1711.10468

J. P. R. Christensen and P. Ressel, *Functions operating on positive definite matrices and a theorem of Schoenberg*, Trans. Amer. Math. Soc. **243** (1978) 89–95.

C. H. FitzGerald and R. A. Horn, *On fractional Hadamard powers of positive definite matrices*, J. Math. Anal. Appl. **61** (1977), 633–642.

R. A. Horn, *The theory of infinitely divisible matrices and kernels*, Trans. Amer. Math. Soc. **136** (1969) 269–286.

I. J. Schoenberg, *Positive definite functions on spheres*, Duke Math. J. **9** (1942) 96–108.

J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. **140** (1911) 1–28.