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Classical limit theorem for random walks

Let {Xi} be iid random variables (R-valued) and

Sn = X1 + · · ·+Xn.

Question

When does anSn + bn converge in law as n→ ∞ for some deterministic

sequences an > 0 and bn ∈ R?

The answer is well known (Lévy, Khintchine,...):

(1) the possible limit distributions of anSn + bn are stable distributions

and delta measures;

(2) Given a stable distribution µ and an, bn, a necessary and sufficient

condition for the convergence anSn + bn ⇒ µ can be given in terms of

X1, an, bn.

Reference: Gnedenko & Kolmogorov’s book
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Limit theorem for Lévy processes
The continuous-time version of random walk is Lévy processes. A

stochastic process {Xt}t≥0 is called an (additive) Lévy process if

X0 = 0 a.s.,

t 7→ Xt is right continuous with finite left limits,

Xt → Xs in law if t→ s,

The law of Xt −Xs is equal to that of Xt−s for every 0 ≤ s ≤ t.

For all 0 = t0 < t1 < · · · < tn, the random variables

Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

Remark

If {Xt}t≥0 is a Lévy process then the discrete time process

S
(δ)
n := Xnδ, n = 0, 1, 2, 3, . . . , is a random walk since

S(δ)
n = Y1 + Y2 + · · ·+ Yn,

where Yn = Xnδ −X(n−1)δ
d
= Xδ are iid random variables.
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Limit theorem for Lévy processes
For an (additive) Lévy process {Xt} on R, we consider the following

question.

Question

When does a(t)Xt + b(t) converge in law as t→ ∞ for some deterministic

functions a(t) > 0 and b(t) ∈ R?

Theorem (Bertoin 96, Doney & Maller 02, de Weert 03)

(1) the possible limit distributions of a(t)Xt + b(t) are stable distributions

and delta measures;

(2) given a stable distribution µ and functions a, b, a necessary and

sufficient condition for the convergence a(t)Xt + b(t) ⇒ µ is known in

terms of X1 and a, b.

We can also discuss the convergence as t→ 0. Then similar results hold

(Maller & Mason 09)
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Free Lévy processes

In free probability, we have free (additive) Lévy processes. They can

be realized as large dimensional limits of some Hermitian

matrix-valued, unitarily invariant Lévy processes [Perez &

Perez-Abreu & Rocha-Arteaga]

There is a homeomorphism (Bercovici-Pata bijection) between

classical ID distributions and free ID distributions, so the complete

analogy holds for limits of free Lévy processes. Namely:

Theorem

Let {Xt}t≥0 be a free Lévy process.

(1) The possible limit distributions of a(t)Xt + b(t) are free stable

distributions and delta measures;

(2) given a free stable distribution µ and functions a, b, a necessary and

sufficient condition for convergence a(t)Xt + b(t) ⇒ µ can be written

in terms of X1, a, b.
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Multiplicative LP

Classical multiplicative Lévy processes {Mt} on the multiplicative group

(0,∞) can also be defined via

M0 = 1 a.s.,

t 7→Mt is right continuous with finite left limits,

Mt →Ms in law if t→ s,

The law of M−1
s Mt is equal to that of Mt−s for every 0 ≤ s ≤ t,

For all 0 = t0 < t1 < · · · < tn, the random variables

M−1
t0
Mt1 ,M

−1
t1
Mt2 , . . . ,M

−1
tn−1

Mtn

are independent.

but it eventually means Xt := logMt is an additive LP on R.
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Limit theorem for multiplicative LP

For a multiplicative Lévy process (Mt), let Xt = logMt. Then

log eb(t)(Mt)
a(t) = a(t)Xt + b(t).

Thus the limit theorems for b(t)(Mt)
a(t) for deterministic functions

a(t) > 0, b(t) > 0 follow from the additive case.

Theorem

(1) the possible limit distributions of b(t)(Mt)
a(t) (as t→ ∞ or t→ 0)

are delta measures and log stable distributions (the law of eS where S

is a stable random variable);

(2) given a log stable distribution µ and functions a, b > 0, a necessary

and sufficient condition for convergence of b(t)(Mt)
a(t) can be written

in terms of the law of M1, a, b.
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Multiplicative free LP

Biane (1998) defined positive free multiplicative Lévy processes {Mt} via

Mt ≥ 0 (possibly unbounded, affiliated with a finite vN algebra) and

M0 = 1,

Mt →Ms in law if t→ s,

The law of M
−1/2
s MtM

−1/2
s is equal to that of Mt−s for every

0 ≤ s ≤ t,

For all 0 = t0 < t1 < · · · < tn, the random variables

M
−1/2
t0

Mt1M
−1/2
t0

, . . . ,M
−1/2
tn−1

MtnM
−1/2
tn−1

are free independent.

By the non-commutativity, Xt := logMt may not be an additive free LP.
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S-transform

Let φ denote a state on a W ∗-algebra. For X > 0 (possibly unbounded)

let

ψX(z) = φ

(
zX

1− zX

)
, z < 0.

Then ψX is strictly increasing and maps (−∞, 0) onto (−α, 0) for some

α > 0. Let

SX(z) =
1 + z

z
ψ−1
X (z), z ∈ (−α, 0)

For a multiplicative free LP {Mt}t≥0 it holds that

SMt(z) = etv(z)

for some function v (infinitesimal generator). The S-transform is the main

tool to analyze limit theorems for {Mt}.
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Limit theorems for multiplicative free LP in large time

Theorem ((Special case of) Tucci 10, Haagerup & Moeller 13)

Let {Mt} be a multiplicative free LP. Then

(Mt)
1/t ⇒ ν (t→ ∞),

where ν([0, x]) = S−1
M1

(1/x) + 1. (SX is the S-transform of X)

In particular, the map ” µM1︸︷︷︸
law of M1

7→ ν ” is injective, because

ν = ν ′ ⇒ SM1(x) = SM ′
1
(x) ⇒ µM1 = µM ′

1

The limit distributions are not universal
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Multiplicative FLP in small times

Some examples from our results

Theorem (Arizmendi-H.)

Let {Nt} be a multiplicative free LP such that SNt(z) = et(−z)α−1
,

1 < α ≤ 2. Then

(Nt)
t−1/α d⇒ eZα , t→ 0,

where Zα has a one-sided free α-stable law. In particular, Z2 follows the

standard semicircle law 1
2π

√
4− x2dx.

Theorem (Arizmendi-H.)

Let λ ≥ 1. Let {Nt} be a multiplicative free LP such that

SNt(z) =
1

(λ+z)t = e−t log(λ+z), (Nt ∼ the Marchenko-Pastur law). Then

t(Nt)
1/t d⇒ DH, t→ 0.

July 22, 2018 11 / 20



Theorem (Arizmendi-H.)

Let λ ≥ 1. Let {Nt} be a multiplicative free LP such that

SNt(z) =
1

(λ+z)t = e−t log(λ+z), (Nt ∼ the Marchenko-Pastur law). Then

t(Nt)
1/t d⇒ DH, t→ 0.

[Dykema & Haagerup 04]

DH has moments nn

(n+1)! & support [0, e] & an implicit density

Let {tij}1≤i<j≤N be indep. complex Gaussian, mean 0 and var. 1/n;

TN :=



0 t12 t13 · · · t1,N−1 t1N
0 0 t23 · · · t2,N−1 t2N
0 0 0 · · · t3,N−1 t3N
...

...
. . .

...

0 0 0 · · · 0 tN−1,N

0 0 0 · · · 0 0


.

Then the mean empirical eigenvalue distr. of T ∗
NTN ⇒ DH (N → ∞).
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By computation of the densify functions we found that:

Proposition

If X follows the free 1-stable law supported on (−∞, 1] then

eX ∼ DH.

This means that the empirical eigenvalue distribution of log(T ∗
NTN )

converges to the free 1-stable law.

Recall that the empirical eigenvalue distribution of TN + T ∗
N

converges to the semicircle law 1
2π

√
4− x2 on [−2, 2] (free 2-stable).

Question

Do other free stable distributions have RM models made of TN?

Is there any natural connection between the upper-triangular Gaussian

RM and positive free multiplicative LPs?
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Summary

For classical additive LPs (Xt), the limit distr. of a(t)Xt + b(t)

(t→ ∞ or 0), if exists, is stable.

For free additive LPs (Yt), the limit distr. of a(t)Yt + b(t) (t→ ∞ or

0), if exists, is free stable.

For classical multiplicative LPs (Mt), the limit distr. of eb(t)(Mt)
a(t)

(t→ ∞ or 0), if exists, is log stable (the law of eZ , where Z ∼
stable).

For free multiplicative LPs (Nt), the limit distr. of (Nt)
1/t (t→ ∞)

always exists and is not universal.

For some free multiplicative LPs (Nt) and functions a, b, the limit

distr. of eb(t)(Nt)
a(t) (t→ 0) is log free stable.

Conjecture (after our examples)

For free multiplicative LPs (Nt), the limit distr. of eb(t)(Nt)
a(t) (t→ 0), if

exists, must be log free stable.
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Some ideas for better understanding

For large time, non-commutativity of multiplicative free LPs is not

negligible because we take products many times.

For small time, we can guess that the contribution of

non-commutativity is small and so we can expect that classical and

free limit theorems are similar.

How about matrices, e.g. 2× 2 positive matrix-valued Lévy processes?
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Idea of the proof

Theorem (Arizmendi-H.)

Let λ ≥ 1. Let {Nt} be a multiplicative free LP such that

SNt(z) =
1

(λ+z)t = e−t log(λ+z), (Nt ∼ the Marchenko-Pastur law). Then

t(Nt)
1/t d⇒ DH, t→ 0.

Lemma (Haagerup-Moeller 13)

Let µ be a probability measure on (0,∞). Then∫
(0,∞)

xα µ(dx) =
1

B(1− α, 1 + α)

∫
(0,1)

(
1− x

x
Sµ(x− 1)

)−α

dx

for α ∈ (−1, 1) as an equality in [0,∞], where B(p, q) is the Beta

function. Note that

1

B(1− α, 1 + α)
=

sinπα

πα
.
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Let µX be the law of X. Suppose N1 follows Marchenko-Pastur with

λ > 1. Then, for α ∈ (0, t),∫
(0,∞)

xα µ
tN

1/t
t

(dx)

= tα
∫
(0,∞)

xα/t µNt(dx)

=
tα

B(1− α/t, 1 + α/t)

∫
(0,1)

(
1− x

x
SNt(x− 1)

)−α/t

dx

=
tα

B(1− α/t, 1 + α/t)

∫
(0,1)

(
1− x

x

1

(x+ λ− 1)t

)−α/t

dx

= tα(λ− 1)α2F1(−α, α/t+ 1; 2;−(λ− 1)−1).

The last expression makes sense for all α > 0. By analytic continuation,

for all α > 0, we have∫
(0,∞)

xα µ
tN

1/t
t

(dx) = tα(λ− 1)α2F1(−α, α/t+ 1; 2;−(λ− 1)−1).
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For all α > 0 we have∫
(0,∞)

xα µ
tN

1/t
t

(dx) = tα(λ− 1)α2F1(−α, α/t+ 1; 2;−(λ− 1)−1).

The RHS converges to
αα

Γ(α+ 2)
as t→ 0

by using asymptotic behavior of hypergeometric function. The limit value

for α = n ∈ N is

nn/(n+ 1)!,

which is the n-th moment of the Dykema-Haagerup distribution. This

shows

t(Nt)
1/t ⇒ DH.
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Unitary free BM

We can obtain rather general limit theorems for unitary free LPs. For

example:

Proposition (Arizmendi-H. )

For free unitary BM {Ut} we have

(Ut)
[1/

√
t] d⇒ eiS , t→ 0,

where S ∼ standard semicircle law.
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{Ut}: unitary free BM, S: semicircular element

Proof. Biane 97 obtained the formula

E[Um
t ] = e−

mt
2

m−1∑
k=0

(−1)k
tk

k!
mk−1

(
m

k + 1

)
, m ≥ 1.

If we take m = n[1/
√
t] then as t→ 0 we have

E
[(
U

[1/
√
t]

t

)n]
∼ e−

n
√

t
2

n[1/
√
t]−1∑

k=0

(−1)ktk
(nt−1/2)2k

k!(k + 1)!

→
∞∑
k=0

(−1)k
n2k

k!(k + 1)!
=
J1(2n)

n
= E[einS ],

where J1 is the Bessel function of the 1st kind. So we have proved that

U
[1/

√
t]

t
d⇒ eiS , t ↓ 0.
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High dimensional probability V: the Luminy volume, 239–257,
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