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Idea
When (M, d) is a global NPC = CAT(0) space, martingale
convergence, strong law of large numbers and ergodic
theorem were developed for M-valued random variables by
Es-Sahib and Heinich, Sturm, Austin, Navas, ......
By using the disintegration theorem, we develop those
stochastic convergence theorems when (M, d) is a general
complete metric space with a contractive barycentric map β.
E.g., M = P(H) is the positive invertible operators on a Hilbert
spaceH , d = dT is the Thompson metric, and β is the Cartan
barycenter (Karcher mean).

Plan
Conditional expectations
Martingale convergence theorem
Ergodic theorem
Large deviation principle
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Preliminaries

(M, d) is a complete metric space with the Borel σ-algebra B(M).
P(M) is the set of probability measures on B(M) with full support.
For 1 ≤ p < ∞, Pp(M) is the set of µ ∈ P(M) such that∫

M dp(x, y) dµ(y) < ∞ for some (hence, all) x ∈ M.

P1(M) ⊃ Pp(M) ⊃ Pq(M), 1 < p < q < ∞.
For 1 ≤ p < ∞, the p-Wasserstein distance is

dW
p (µ, ν) :=

[
inf

π∈Π(µ,ν)

∫
M×M

dp(x, y) dπ(x, y)
]1/p

, µ, ν ∈ P(M),

where Π(µ, ν) is the set of π ∈ P(M × M) whose marginals are
µ, ν.

dW
1
≤ dW

p ≤ dW
q , 1 < p < q < ∞,

and (Pp(M), dW
p ) is a complete metric space.
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(Ω,A, P) is a probability space.
For 1 ≤ p < ∞, Lp(Ω; M) = Lp(Ω,A, P; M) is the set of
strongly measurable functions f : Ω → M such that∫
Ω

dp(x, f (ω)) dP(ω) < ∞ for some (hence, all) x ∈ M.

L1(Ω; M) ⊃ Lp(Ω; M) ⊃ Lq(Ω; M) 1 < p < q < ∞.

Lemma
Let 1 ≤ p < ∞.

Lp(Ω; M) is a complete metric space with the Lp-distance

dp(φ, ψ) :=
[∫
Ω

dp(φ(ω), ψ(ω)) dP(ω)
]1/p

.

If φ ∈ Lp(Ω; M), then the push-forward measure φ∗P ∈ Pp(M).

If φ, ψ ∈ Lp(Ω; M), then dW
p (φ∗P, ψ∗P) ≤ dp(φ, ψ).
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Conditional expectations

Conditional expectations

Let 1 ≤ p < ∞ be fixed, and assume that β : Pp(M) → M is a
p-contractive barycentric map, i.e., β(δx) = x for all x ∈ M and

d(β(µ), β(ν)) ≤ dW
p (µ, ν), µ, ν ∈ Pp(M).

Definition

The β-expectation Eβ(φ) of φ ∈ Lp(Ω; M) is defined by

Eβ(φ) := β(φ∗P) ∈ M.

Proposition

d(Eβ(φ), Eβ(ψ)) ≤ dp(φ, ψ) for φ, ψ ∈ Lp(Ω; M).
Eβ(1Ωx) = x for x ∈ M.
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Conditional expectations

Next, assume that (Ω,A) is a standard Borel space, i.e.,
isomorphic to (X,B(X)) of a Polish space X. Let B be a
sub-σ-algebra ofA. Then there exists a disintegration (Pω)ω∈Ω with
respect to B, a family of probability measures on (Ω,A), such that
for every A ∈ A,

(i) ω ∈ Ω 7→ Pω(A) is B-measurable,
(ii) ω 7→ Pω(A) is a conditional expectation EB(1A) of 1A with

respect to B,
Such a family (Pω)ω∈Ω is unique up to a P-null set, and moreover
(iii) for every f ∈ L1(Ω;R), f ∈ L1(Ω,A, Pω;R) for P-a.e. ω and

ω 7→
∫
Ω

f (τ) dPω(τ) is a conditional expectation EB( f ) of f
with respect to B. In particular,∫

Ω

f dP =
∫
Ω

[∫
Ω

f (τ) dPω(τ)
]
dP(ω).
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Conditional expectations

Definition

The β-conditional expectation Eβ

B(φ) of φ ∈ Lp(Ω; M) is defined by

Eβ

B(φ) := β(φ∗Pω), ω ∈ Ω.

Theorem
Let φ, ψ ∈ Lp(Ω; M).
(1) Eβ

B(φ) ∈ Lp(Ω,B, P; M).

(2) dp(Eβ

B(φ), Eβ

B(ψ)) ≤ dp(φ, ψ).

(3) φ ∈ Lp(Ω,B, P; M) if and only if Eβ

B(φ) = φ. Hence

Eβ

B(Eβ

B(φ)) = Eβ

B(φ).

(4) When B = {∅,Ω}, Eβ

B(φ) = Eβ(φ).
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Conditional expectations

When (M, d) is a global NPC space or CAT(0) space,
(i.e., for any x0, x1 ∈ M there exists a y ∈ M such that

d2(y, z) ≤
d2(x0, z) + d2(x1, z)

2
−

d2(x0, x1)
4

for all z ∈ M),

the canonical barycentric map λ on P1(M) is

λ(µ) := arg min
z∈M

∫
M

[d2(z, x) − d2(y, x)] dµ(x), µ ∈ P1(M),

independently of the choice of y ∈ M.

Sturm’s2 definition in the case of a global NPC space is

EB(φ) := arg min
ψ∈L2(Ω,B,P;M)

d2(φ, ψ)

for φ ∈ L2(Ω; M), and EB extends continuously to L1(Ω; M).
2K.-T. Sturm, Nonlinear martingale theory for processes with values in metric

spaces of nonpositive curvature, Ann. Probab. 30 (2002), 1195–1222.
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Conditional expectations

Theorem
Assume that (Ω,A) is a standard Borel space and (M, d) is a
global NPC space. Then for every p ∈ [1,∞) and φ ∈ Lp(Ω; M),

EB(φ) = Eλ

B(φ).

Remark
Unlike the usual conditional expectation, the β-conditional
expectation is not associative in general, that is, for sub-σ-algebras
C ⊂ B ⊂ A,

Eβ

C(Eβ

B(φ)) , Eβ

C(φ).
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Martingale convergence theorem

Martingale convergence theorem

Let (Ω,A, P) be a standard Borel probability space, and {Bn}∞n=1
be

a sequence of sub-σ-algebras ofA such that

B1 ⊂ B2 ⊂ · · · or B1 ⊃ B2 ⊃ · · · .

Let B∞ be the sub-σ-algebra generated by
∪∞

n=1Bn or
B∞ :=

∩∞
n=1Bn.

Theorem
Assume that (Ω,A, P) and {Bn}∞n=1

are as stated above. Let
β : Pp(M) → M be as before. Then for every φ ∈ Lp(Ω; M),
as n→ ∞,

dp
(Eβ

Bn
(φ), Eβ

B∞
(φ)) −→ 0,

d(Eβ

Bn
(φ)(ω), Eβ

B∞
(φ)(ω)) −→ 0 a.e.

Fumio Hiai (Tohoku University) Convergence theorems 2018, July (at Bȩdlewo) 10 / 24



Martingale convergence theorem

Assume that B1 ⊂ B2 ⊂ · · · . Since Eβ

Bm
(Eβ

Bn
(φ)) = Eβ

Bm
(φ) (m < n)

does not hold, we follow Sturm’s2 idea to define martingales of
M-valued random variables.

Definition
For φ ∈ Lp(Ω; M) and k ≥ 1, we can define

Eβ[φ∥(Bn)n≥k
] := lim

m→∞
Eβ

Bk
◦ · · · ◦ Eβ

Bm
(φ)

= lim
m→∞

Eβ

Bk
◦ · · · ◦ Eβ

Bm
(Eβ

B∞
φ))

in metric dp. Call Eβ[φ∥(Bn)n≥k
]

the filtered β-conditional
expectation with respect to (Bn)n≥k.
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Martingale convergence theorem

Proposition
Let φ, ψ ∈ Lp(Ω; M).
(1) Eβ[φ∥(Bn)n≥k

] ∈ Lp(Ω,Bk, P; M) for all k ≥ 1.
(2) For every k ≥ 1, φ ∈ Lp(Ω,Bk, P; M) if and only if

Eβ[φ∥(Bn)n≥k
]
= φ.

(3) dp
(Eβ[φ∥(Bn)n≥k

]
, Eβ[ψ∥(Bn)n≥k

]) ≤ dp(φ, ψ) for all k ≥ 1.
(4) Associativity: For every l ≥ k ≥ 1,

Eβ[Eβ[φ∥(Bn)n≥l
]∥(Bn)n≥k

]
= Eβ[φ∥(Bn)n≥k

]
.

Definition
A sequence {φk}∞k=1

in Lp(Ω; M) is called a filtered β-martingale
with respect to {Bn}∞n=1

if φk ∈ Lp(Ω,Bk, P; M) for every k ≥ 1 and

Eβ[φk+1∥(Bn)n≥k
]
= φk, k ≥ 1,

equivalently, Eβ[φl∥(Bn)n≥k
]
= φk for all l ≥ k ≥ 1.
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Martingale convergence theorem

Theorem
Let {φk}∞k=1

be a filtered β-martingale with respect to {Bn}. Then the
following are equivalent:

(i) there exists a φ ∈ Lp(Ω; M) such that φk = Eβ[φ∥(Bn)n≥k
]

for
all k ≥ 1;

(ii) φk converges to some φ∞ ∈ Lp(Ω,B∞, P; M) in metric dp as
k → ∞.

Remark
Assume that (M, d) is a global NPC space (or more generally, a
complete length space) and it is locally compact. It is known 2 that
if {φk} in Lp(Ω; M) is a filtered martingale and supk dp(z, φk) < ∞
for some z ∈ M, then there exists a B∞-measurable function
φ∞ : Ω → M such that φk(ω) → φ∞(ω) P-a.e. But it is unknown
that this holds in our general setting.

Fumio Hiai (Tohoku University) Convergence theorems 2018, July (at Bȩdlewo) 13 / 24



Ergodic theorem

Ergodic theorem

Let T be a P-preserving measurable transformation on (Ω,A, P).
Let β : Pp(M) → M be as before. For each φ ∈ Lp(Ω; M),
consider the empirical measures (random probability measures) of
φ

µφn(ω) :=
1
n

n−1∑
k=0

δφ(Tkω), n ∈ N,

i.e., for Borel sets B ⊂ M,

µφn(ω)(B) =
#{k ∈ {0, 1, . . . , n − 1} : φ(Tkω) ∈ B}

n
,

and consider the sequence of M-valued functions
β(µφn) : ω ∈ Ω 7→ β(µφn(ω)) ∈ M for n ∈ N.
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Ergodic theorem

Lemma

For every φ, ψ ∈ Lp(Ω; M), β(µφn) ∈ Lp(Ω; M) and

dp(β(µφn), β(µψn)) ≤ dp(φ, ψ), n ∈ N.

Extending the ergodic theorems in 3 4,

3T. Austin, A CAT(0)-valued pointwise ergodic theorem, J. Topol. Anal. 3
(2011), 145–152.

4A. Navas, An L1 ergodic theorem with values in a non-positively curved
space via a canonical barycenter map, Ergod. Th. Dynam. Sys., 33 (2013),
609–623.
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Ergodic theorem

Theorem
There exists a map

Γ : Lp(Ω; M) −→ {φ ∈ Lp(Ω; M) : φ ◦ T = φ}
such that for every φ, ψ ∈ Lp(Ω; M),

(i) d(β(µφn(ω)), Γ(φ)(ω)) → 0 a.e. as n→ ∞,
(ii) dp(β(µφn), Γ(φ)) → 0 as n→ ∞,
(iii) dp(Γ(φ), Γ(ψ)) ≤ dp(φ, ψ).
Furthermore, if T is ergodic, then Γ(φ) is a constant Eβ(φ), the
β-expectation of φ.
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Ergodic theorem

Theorem
Assume that (Ω,A) is a standard Borel space, and let
I := {A ∈ A : T−1 A = A}, the sub-σ-algebra consisting of
T-invariant sets. Then for every φ ∈ Lp(Ω; M),

Γ(φ) = Eβ

I (φ),

the β-conditional expectation of φ with respect to I .
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Ergodic theorem

Example
Let P = P(H) be the set of positive invertible operators on a Hilbert space
H , with the Thompson metric dT(A, B) := ∥ log A−1/2BA−1/2∥. The
Karcher barycenter G : P1(P) → P determined by

X = G
(

1
n

n∑
i=1

δAi

)
⇐⇒

n∑
i=1

log(X−1/2 AiX−1/2) = 0

is a contractive barycentric map and monotone for the Löwner order
A ≤ B. For φ ∈ Lp(Ω; P) with 1 ≤ p < ∞, note that

G(µφn(ω)) = G
(

1
n

n−1∑
k=0

δφ(Tkω)

)
= G(φ(ω), φ(Tω), . . . , φ(Tn−1ω)),

which is the Karcher mean of φ(Tkω) (0 ≤ k ≤ n − 1). We have

lim
n→∞

G(φ, φ ◦ T, . . . , φ ◦ Tn−1) = Γ(φ) a.e. and in metric dp.

When (Ω,A) is a standard Borel space, Γ(φ) = EG
I (φ). Moreover, Γ is

monotone and Γ(φ−1) = Γ(φ)−1 follows from G(µ−1) = G(µ)−1.
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Large deviation principle

Large deviation principle

A sequence (µn) of Borel probability measures on a metric space X
is said to satisfy the LDP with a rate function I if for every Γ ∈ B(X),

− inf
x∈Γ◦

I(x) ≤ lim inf
n→∞

1
n

log µn(Γ) ≤ lim sup
n→∞

1
n

log µn(Γ) ≤ − inf
x∈Γ

I(x),

where Γ◦ and Γ denote the interior and the closure of Γ.

(Ω,A, P) is a probability space.
Σ is a Polish space.
P(Σ) becomes a Polish space with the weak topology.
X = (X1, X2, . . . ) is a sequence of i.i.d. random variables
Xn : Ω → Σ, with distribution µ0 ∈ P(Σ).
The empirical measure of X is

µX
n (ω) :=

1
n

n∑
i=1

δXi(ω), n ∈ N.
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Large deviation principle

The distribution µ̂n of µX
n : Ω → P(Σ) is

µ̂n(Γ) := P(µX
n ∈ Γ) = µ×n

0

({
(x1, . . . , xn) ∈ Σn :

1
n

n∑
i=1

δxi ∈ Γ
})

for Borel sets Γ ⊂ P(Σ).

Sanov theorem

A sequence of the distributions µ̂n of the empirical measures µX
n

satisfies the LDP with the relative entropy functional S(·∥µ0) as the
good rate function, where the relative entropy is

S(µ∥µ0) :=

∫
Σ

log dµ
dµ0

dµ if µ ≪ µ0 (absolutely continuous),

∞ otherwise.
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Large deviation principle

Let X = (X1, X2, . . . ) be a sequence of i.i.d. M-valued random
variables such that the distribution µ0 of Xn is in P∞(M), i.e.,
Xn ∈ L∞(Ω; M). Then there is a bounded Polish subset Σ of
M such that Xn’s are Σ-valued random variables.
Let β : Pp(M) → M be as before. Then P(Σ) ⊂ Pp(M) and
β|P(Σ) : P(Σ) → M is continuous in the weak topology.
The push-forward of µ̂n by β|P(Σ) is the distribution of β(µX

n ),
i.e., for every Γ ∈ B(M),

µ̂n({µ ∈ P(Σ) : β(µ) ∈ Γ}) = P(β(µX
n ) ∈ Γ)

= P
({
ω ∈ Ω : β

(1
n

n∑
i=1

δXi(ω)

)
∈ Γ

})
.
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Large deviation principle

Applying the contraction principle for LDP to the Sanov theorem
and the continuous map β : P(Σ) → M,

Theorem
Let X1, X2, . . . be a sequence of i.i.d. M-valued random variables
having the distribution µ0 ∈ P∞(M). Then a sequence of the
distributions of the β-values β(µX

n ) = β( 1
n
∑n

i=1 δXi

)
satisfies the LDP

with the good rate function

I(x) := inf{S(µ∥µ0) : µ ∈ P(Σ), x = β(µ)}, x ∈ M.

That is, for every Γ ∈ B(M),

− inf
x∈Γ◦

I(x) ≤ lim inf
n→∞

1
n

log P(
β(µX

n ) ∈ Γ)
≤ lim sup

n→∞

1
n

log P(
β(µX

n ) ∈ Γ) ≤ − inf
x∈Γ

I(x).
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Large deviation principle

The above LDP implies the strong law of large numbers for Xn.5

Corollary
Let X1, X2, . . . be a sequence of i.i.d. M-valued random variables
having the distribution µ0 ∈ P∞(M). Then

β

(
1
n

n∑
i=1

δXi(ω)

)
−→ β(µ0) a.e. as n→ ∞.

5K.-T. Sturm, Probability measures on metric spaces of nonpositive curvature,
Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002),
357–390, Contemporary Mathematics 338, Amer. Math. Soc., Providence, RI,
2003.
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Large deviation principle

Thank you for your attention!
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