Convergence theorems for barycentric maps

Fumio Hiai

Tohoku University

2018, July (at Będlewo)

Joint work¹ with Yongdo Lim

¹F.H. and Y. Lim, Convergence theorems for contractive barycentric maps, arXiv:1805.08558 [math.PR].

Fumio Hiai (Tohoku University)

Convergence theorems

Idea

- When (*M*, *d*) is a global NPC = CAT(0) space, martingale convergence, strong law of large numbers and ergodic theorem were developed for *M*-valued random variables by Es-Sahib and Heinich, Sturm, Austin, Navas,
- By using the disintegration theorem, we develop those stochastic convergence theorems when (*M*, *d*) is a general complete metric space with a contractive barycentric map β.
- E.g., $M = \mathbb{P}(\mathcal{H})$ is the positive invertible operators on a Hilbert space \mathcal{H} , $d = d_{T}$ is the Thompson metric, and β is the Cartan barycenter (Karcher mean).

Plan

- Conditional expectations
- Martingale convergence theorem
- Ergodic theorem
- Large deviation principle

Preliminaries

- (M, d) is a complete metric space with the Borel σ -algebra $\mathcal{B}(M)$.
- $\mathcal{P}(M)$ is the set of probability measures on $\mathcal{B}(M)$ with full support.
- For $1 \le p < \infty$, $\mathcal{P}^p(M)$ is the set of $\mu \in \mathcal{P}(M)$ such that $\int_M d^p(x, y) d\mu(y) < \infty$ for some (hence, all) $x \in M$.

 $\mathcal{P}^1(M) \supset \mathcal{P}^p(M) \supset \mathcal{P}^q(M), \qquad 1$

• For $1 \le p < \infty$, the *p*-Wasserstein distance is

$$d_p^W(\mu,\nu) := \left[\inf_{\pi \in \Pi(\mu,\nu)} \int_{M \times M} d^p(x,y) \, d\pi(x,y)\right]^{1/p}, \quad \mu,\nu \in \mathcal{P}(M),$$

where $\Pi(\mu, \nu)$ is the set of $\pi \in \mathcal{P}(M \times M)$ whose marginals are μ, ν .

$$d_1^W \leq d_p^W \leq d_q^W, \qquad 1$$

and $(\mathcal{P}^p(M), d_p^W)$ is a complete metric space.

- $(\Omega, \mathcal{A}, \mathbf{P})$ is a probability space.
- For $1 \le p < \infty$, $L^p(\Omega; M) = L^p(\Omega, \mathcal{A}, \mathbf{P}; M)$ is the set of strongly measurable functions $f : \Omega \to M$ such that $\int_{\Omega} d^p(x, f(\omega)) d\mathbf{P}(\omega) < \infty$ for some (hence, all) $x \in M$.

 $L^1(\Omega;M) \supset L^p(\Omega;M) \supset L^q(\Omega;M) \qquad 1$

Lemma

Let $1 \leq p < \infty$.

• $L^{p}(\Omega; M)$ is a complete metric space with the L^{p} -distance

$$\mathbf{d}_p(\varphi, \psi) := \left[\int_{\Omega} d^p(\varphi(\omega), \psi(\omega)) \, d\mathbf{P}(\omega) \right]^{1/p}$$

- If $\varphi \in L^p(\Omega; M)$, then the push-forward measure $\varphi_* \mathbf{P} \in \mathcal{P}^p(M)$.
- If $\varphi, \psi \in L^p(\Omega; M)$, then $d_p^W(\varphi_* \mathbf{P}, \psi_* \mathbf{P}) \leq \mathbf{d}_p(\varphi, \psi)$.

Conditional expectations

Let $1 \le p < \infty$ be fixed, and assume that $\beta : \mathcal{P}^p(M) \to M$ is a *p*-contractive barycentric map, i.e., $\beta(\delta_x) = x$ for all $x \in M$ and

$$d(\beta(\mu),\beta(\nu)) \leq d_p^W(\mu,\nu), \qquad \mu,\nu \in \mathcal{P}^p(M).$$

Definition

The β -expectation $E^{\beta}(\varphi)$ of $\varphi \in L^{p}(\Omega; M)$ is defined by

$$E^{\beta}(\varphi) := \beta(\varphi_* \mathbf{P}) \in M.$$

Proposition

•
$$d(E^{\beta}(\varphi), E^{\beta}(\psi)) \leq \mathbf{d}_p(\varphi, \psi)$$
 for $\varphi, \psi \in L^p(\Omega; M)$.

•
$$E^{\beta}(1_{\Omega}x) = x$$
 for $x \in M$.

イロト イポト イヨト イヨト

Next, assume that (Ω, \mathcal{A}) is a standard Borel space, i.e., isomorphic to $(X, \mathcal{B}(X))$ of a Polish space X. Let \mathcal{B} be a sub- σ -algebra of \mathcal{A} . Then there exists a disintegration $(\mathbf{P}_{\omega})_{\omega \in \Omega}$ with respect to \mathcal{B} , a family of probability measures on (Ω, \mathcal{A}) , such that for every $A \in \mathcal{A}$,

- (i) $\omega \in \Omega \mapsto \mathbf{P}_{\omega}(A)$ is \mathcal{B} -measurable,
- (ii) $\omega \mapsto \mathbf{P}_{\omega}(A)$ is a conditional expectation $E_{\mathcal{B}}(\mathbf{1}_A)$ of $\mathbf{1}_A$ with respect to \mathcal{B} ,

Such a family $(\mathbf{P}_{\omega})_{\omega \in \Omega}$ is unique up to a **P**-null set, and moreover

(iii) for every $f \in L^1(\Omega; \mathbb{R})$, $f \in L^1(\Omega, \mathcal{A}, \mathbf{P}_{\omega}; \mathbb{R})$ for P-a.e. ω and $\omega \mapsto \int_{\Omega} f(\tau) d\mathbf{P}_{\omega}(\tau)$ is a conditional expectation $E_{\mathcal{B}}(f)$ of f with respect to \mathcal{B} . In particular,

$$\int_{\Omega} f \, d\mathbf{P} = \int_{\Omega} \left[\int_{\Omega} f(\tau) \, d\mathbf{P}_{\omega}(\tau) \right] d\mathbf{P}(\omega).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

The β -conditional expectation $E^{\beta}_{\mathcal{B}}(\varphi)$ of $\varphi \in L^{p}(\Omega; M)$ is defined by

$$E_{\mathcal{B}}^{\beta}(\varphi) := \beta(\varphi_* \mathbf{P}_{\omega}), \qquad \omega \in \Omega.$$

Theorem

Let
$$\varphi, \psi \in L^{p}(\Omega; M)$$
.
(1) $E_{\beta}^{\beta}(\varphi) \in L^{p}(\Omega, \mathcal{B}, \mathbf{P}; M)$.
(2) $\mathbf{d}_{p}(E_{\beta}^{\beta}(\varphi), E_{\beta}^{\beta}(\psi)) \leq \mathbf{d}_{p}(\varphi, \psi)$.
(3) $\varphi \in L^{p}(\Omega, \mathcal{B}, \mathbf{P}; M)$ if and only if $E_{\beta}^{\beta}(\varphi) = \varphi$. Hence
 $E_{\beta}^{\beta}(E_{\beta}^{\beta}(\varphi)) = E_{\beta}^{\beta}(\varphi)$.
(4) When $\mathcal{B} = \{\emptyset, \Omega\}, E_{\beta}^{\beta}(\varphi) = E^{\beta}(\varphi)$.

э

∃ ► < ∃ ►</p>

When (M, d) is a global NPC space or CAT(0) space, (i.e., for any $x_0, x_1 \in M$ there exists a $y \in M$ such that

$$d^{2}(y,z) \leq \frac{d^{2}(x_{0},z) + d^{2}(x_{1},z)}{2} - \frac{d^{2}(x_{0},x_{1})}{4} \quad \text{for all } z \in M),$$

the canonical barycentric map λ on $\mathcal{P}^1(M)$ is

$$\lambda(\mu) := \underset{z \in M}{\operatorname{arg\,min}} \int_{M} [d^{2}(z, x) - d^{2}(y, x)] \, d\mu(x), \quad \mu \in \mathcal{P}^{1}(M),$$

independently of the choice of $y \in M$.

Sturm's² definition in the case of a global NPC space is

$$\mathbf{E}_{\mathcal{B}}(\varphi) := \arg\min_{\psi \in L^2(\Omega, \mathcal{B}, \mathbf{P}; M)} \mathbf{d}_2(\varphi, \psi)$$

for $\varphi \in L^2(\Omega; M)$, and $\mathbb{E}_{\mathcal{B}}$ extends continuously to $L^1(\Omega; M)$.

²K.-T. Sturm, Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature, *Ann. Probab.* **30** (2002), 1195–1222.

Fumio Hiai (Tohoku University)

Convergence theorems

Theorem

Assume that (Ω, \mathcal{A}) is a standard Borel space and (M, d) is a global NPC space. Then for every $p \in [1, \infty)$ and $\varphi \in L^p(\Omega; M)$,

$$\mathbf{E}_{\mathcal{B}}(\boldsymbol{\varphi}) = \boldsymbol{E}_{\mathcal{B}}^{\lambda}(\boldsymbol{\varphi}).$$

Remark

Unlike the usual conditional expectation, the β -conditional expectation is not associative in general, that is, for sub- σ -algebras $C \subset \mathcal{B} \subset \mathcal{A}$,

$$E_{C}^{\beta}(E_{\beta}^{\beta}(\varphi)) \neq E_{C}^{\beta}(\varphi).$$

글 🖌 🔺 글 🕨

Martingale convergence theorem

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a standard Borel probability space, and $\{\mathcal{B}_n\}_{n=1}^{\infty}$ be a sequence of sub- σ -algebras of \mathcal{A} such that

 $\mathcal{B}_1 \subset \mathcal{B}_2 \subset \cdots$ or $\mathcal{B}_1 \supset \mathcal{B}_2 \supset \cdots$.

Let \mathcal{B}_{∞} be the sub- σ -algebra generated by $\bigcup_{n=1}^{\infty} \mathcal{B}_n$ or $\mathcal{B}_{\infty} := \bigcap_{n=1}^{\infty} \mathcal{B}_n$.

Theorem

Assume that $(\Omega, \mathcal{A}, \mathbf{P})$ and $\{\mathcal{B}_n\}_{n=1}^{\infty}$ are as stated above. Let $\beta : \mathcal{P}^p(M) \to M$ be as before. Then for every $\varphi \in L^p(\Omega; M)$, as $n \to \infty$,

$$d_{p}(E^{\beta}_{\mathcal{B}_{n}}(\varphi), E^{\beta}_{\mathcal{B}_{\infty}}(\varphi)) \longrightarrow 0,$$

$$d(E^{\beta}_{\mathcal{B}_{n}}(\varphi)(\omega), E^{\beta}_{\mathcal{B}_{\infty}}(\varphi)(\omega)) \longrightarrow 0 \text{ a.e.}$$

Assume that $\mathcal{B}_1 \subset \mathcal{B}_2 \subset \cdots$. Since $E^{\beta}_{\mathcal{B}_m}(E^{\beta}_{\mathcal{B}_n}(\varphi)) = E^{\beta}_{\mathcal{B}_m}(\varphi) \ (m < n)$ does not hold, we follow Sturm's² idea to define martingales of *M*-valued random variables.

Definition

For $\varphi \in L^p(\Omega; M)$ and $k \ge 1$, we can define

$$E^{\beta}[\varphi||(\mathcal{B}_{n})_{n\geq k}] := \lim_{m \to \infty} E^{\beta}_{\mathcal{B}_{k}} \circ \cdots \circ E^{\beta}_{\mathcal{B}_{m}}(\varphi)$$
$$= \lim_{m \to \infty} E^{\beta}_{\mathcal{B}_{k}} \circ \cdots \circ E^{\beta}_{\mathcal{B}_{m}}(E^{\beta}_{\mathcal{B}_{\infty}}\varphi)$$

in metric \mathbf{d}_p . Call $E^{\beta}[\varphi || (\mathcal{B}_n)_{n \geq k}]$ the filtered β -conditional expectation with respect to $(\mathcal{B}_n)_{n \geq k}$.

Proposition

Let $\varphi, \psi \in L^p(\Omega; M)$.

- (1) $E^{\beta}[\varphi || (\mathcal{B}_n)_{n \geq k}] \in L^{p}(\Omega, \mathcal{B}_k, \mathbf{P}; M)$ for all $k \geq 1$.
- (2) For every $k \ge 1$, $\varphi \in L^p(\Omega, \mathcal{B}_k, \mathbf{P}; M)$ if and only if $E^{\beta}[\varphi||(\mathcal{B}_n)_{n\ge k}] = \varphi$.
- $(3) \ \mathbf{d}_p(E^{\beta}[\varphi||(\mathcal{B}_n)_{n\geq k}], E^{\beta}[\psi||(\mathcal{B}_n)_{n\geq k}]) \leq \mathbf{d}_p(\varphi, \psi) \text{ for all } k \geq 1.$

(4) Associativity: For every $l \ge k \ge 1$,

$$E^{\beta}[E^{\beta}[\varphi||(\mathcal{B}_{n})_{n\geq k}]||(\mathcal{B}_{n})_{n\geq k}] = E^{\beta}[\varphi||(\mathcal{B}_{n})_{n\geq k}].$$

Definition

A sequence $\{\varphi_k\}_{k=1}^{\infty}$ in $L^p(\Omega; M)$ is called a filtered β -martingale with respect to $\{\mathcal{B}_n\}_{n=1}^{\infty}$ if $\varphi_k \in L^p(\Omega, \mathcal{B}_k, \mathbf{P}; M)$ for every $k \ge 1$ and

$$E^{\beta}[\varphi_{k+1}||(\mathcal{B}_n)_{n\geq k}] = \varphi_k, \qquad k\geq 1,$$

equivalently, $E^{\beta}[\varphi_{l}||(\mathcal{B}_{n})_{n\geq k}] = \varphi_{k}$ for all $l \geq k \geq 1$.

Theorem

Let $\{\varphi_k\}_{k=1}^{\infty}$ be a filtered β -martingale with respect to $\{\mathcal{B}_n\}$. Then the following are equivalent:

- (i) there exists a $\varphi \in L^{p}(\Omega; M)$ such that $\varphi_{k} = E^{\beta}[\varphi||(\mathcal{B}_{n})_{n \geq k}]$ for all $k \geq 1$;
- (ii) φ_k converges to some $\varphi_{\infty} \in L^p(\Omega, \mathcal{B}_{\infty}, \mathbf{P}; M)$ in metric \mathbf{d}_p as $k \to \infty$.

Remark

Assume that (M, d) is a global NPC space (or more generally, a complete length space) and it is locally compact. It is known ² that if $\{\varphi_k\}$ in $L^p(\Omega; M)$ is a filtered martingale and $\sup_k d_p(z, \varphi_k) < \infty$ for some $z \in M$, then there exists a \mathcal{B}_{∞} -measurable function $\varphi_{\infty} : \Omega \to M$ such that $\varphi_k(\omega) \to \varphi_{\infty}(\omega)$ **P**-a.e. But it is unknown that this holds in our general setting.

Fumio Hiai (Tohoku University)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Ergodic theorem

Let *T* be a **P**-preserving measurable transformation on $(\Omega, \mathcal{A}, \mathbf{P})$. Let $\beta : \mathcal{P}^p(M) \to M$ be as before. For each $\varphi \in L^p(\Omega; M)$, consider the empirical measures (random probability measures) of φ

$$\mu_n^{\varphi}(\omega) := \frac{1}{n} \sum_{k=0}^{n-1} \delta_{\varphi(T^k \omega)}, \qquad n \in \mathbb{N},$$

i.e., for Borel sets $B \subset M$,

$$\mu_n^{\varphi}(\omega)(B) = \frac{\#\{k \in \{0, 1, \dots, n-1\} : \varphi(T^k \omega) \in B\}}{n},$$

and consider the sequence of *M*-valued functions $\beta(\mu_n^{\varphi}) : \omega \in \Omega \mapsto \beta(\mu_n^{\varphi}(\omega)) \in M$ for $n \in \mathbb{N}$.

Lemma

For every $\varphi, \psi \in L^p(\Omega; M)$, $\beta(\mu_n^{\varphi}) \in L^p(\Omega; M)$ and

$$\mathbf{d}_p(\beta(\mu_n^{\varphi}),\beta(\mu_n^{\psi})) \leq \mathbf{d}_p(\varphi,\psi), \qquad n \in \mathbb{N}.$$

Extending the ergodic theorems in ^{3 4},

³T. Austin, A *CAT*(0)-valued pointwise ergodic theorem, *J. Topol. Anal.* **3** (2011), 145–152.

⁴A. Navas, An L^1 ergodic theorem with values in a non-positively curved space via a canonical barycenter map, *Ergod. Th. Dynam. Sys.*, **33** (2013), 609–623.

Theorem

There exists a map

 $\Gamma: L^p(\Omega; M) \longrightarrow \{\varphi \in L^p(\Omega; M) : \varphi \circ T = \varphi\}$

such that for every $\varphi, \psi \in L^p(\Omega; M)$,

(i)
$$d(\beta(\mu_n^{\varphi}(\omega)), \Gamma(\varphi)(\omega)) \to 0$$
 a.e. as $n \to \infty$,

(ii)
$$\mathbf{d}_p(\beta(\mu_n^{\varphi}), \Gamma(\varphi)) \to \mathbf{0} \text{ as } n \to \infty,$$

(iii) $\mathbf{d}_p(\Gamma(\varphi), \Gamma(\psi)) \leq \mathbf{d}_p(\varphi, \psi).$

Furthermore, if *T* is ergodic, then $\Gamma(\varphi)$ is a constant $E^{\beta}(\varphi)$, the β -expectation of φ .

3 K 4 3 K

Theorem

Assume that (Ω, \mathcal{A}) is a standard Borel space, and let $I := \{A \in \mathcal{A} : T^{-1}A = A\}$, the sub- σ -algebra consisting of *T*-invariant sets. Then for every $\varphi \in L^p(\Omega; M)$,

$$\Gamma(\varphi) = E_{I}^{\beta}(\varphi),$$

the β -conditional expectation of φ with respect to I.

Example

Let $\mathbb{P} = \mathbb{P}(\mathcal{H})$ be the set of positive invertible operators on a Hilbert space \mathcal{H} , with the Thompson metric $d_{\mathrm{T}}(A, B) := ||\log A^{-1/2}BA^{-1/2}||$. The Karcher barycenter $G : \mathcal{P}^{1}(\mathbb{P}) \to \mathbb{P}$ determined by

$$X = G\left(\frac{1}{n}\sum_{i=1}^{n}\delta_{A_{i}}\right) \iff \sum_{i=1}^{n}\log(X^{-1/2}A_{i}X^{-1/2}) = 0$$

is a contractive barycentric map and monotone for the Löwner order $A \leq B$. For $\varphi \in L^p(\Omega; \mathbb{P})$ with $1 \leq p < \infty$, note that

$$G(\mu_n^{\varphi}(\omega)) = G\left(\frac{1}{n}\sum_{k=0}^{n-1}\delta_{\varphi(T^k\omega)}\right) = G(\varphi(\omega),\varphi(T\omega),\ldots,\varphi(T^{n-1}\omega)),$$

which is the Karcher mean of $\varphi(T^k\omega)$ $(0 \le k \le n-1)$. We have

 $\lim_{n\to\infty} G(\varphi,\varphi\circ T,\ldots,\varphi\circ T^{n-1}) = \Gamma(\varphi) \text{ a.e. and in metric } \mathbf{d}_p.$

When (Ω, \mathcal{A}) is a standard Borel space, $\Gamma(\varphi) = E_{\mathcal{I}}^{G}(\varphi)$. Moreover, Γ is monotone and $\Gamma(\varphi^{-1}) = \Gamma(\varphi)^{-1}$ follows from $G(\mu^{-1}) = G(\mu)^{-1}$.

• • • • • • • •

Large deviation principle

A sequence (μ_n) of Borel probability measures on a metric space X is said to satisfy the LDP with a rate function I if for every $\Gamma \in \mathcal{B}(X)$,

$$-\inf_{x\in\Gamma^{\circ}}I(x)\leq\liminf_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq\limsup_{n\to\infty}\frac{1}{n}\log\mu_n(\Gamma)\leq-\inf_{x\in\overline{\Gamma}}I(x),$$

where Γ° and Γ denote the interior and the closure of $\Gamma.$

- $(\Omega, \mathcal{A}, \mathbf{P})$ is a probability space.
- Σ is a Polish space.
- $\mathcal{P}(\Sigma)$ becomes a Polish space with the weak topology.
- $\mathbf{X} = (X_1, X_2, ...)$ is a sequence of i.i.d. random variables $X_n : \Omega \to \Sigma$, with distribution $\mu_0 \in \mathcal{P}(\Sigma)$.
- The empirical measure of X is

$$\mu_n^{\mathrm{X}}(\omega) := \frac{1}{n} \sum_{i=1}^n \delta_{X_i(\omega)}, \qquad n \in \mathbb{N}.$$

Fumio Hiai (Tohoku University)

• The distribution $\widehat{\mu}_n$ of $\mu_n^{\mathrm{X}} : \Omega \to \mathcal{P}(\Sigma)$ is

$$\widehat{\mu}_n(\Gamma) := \mathbf{P}(\mu_n^{\mathbf{X}} \in \Gamma) = \mu_0^{\times n} \left(\left\{ (x_1, \dots, x_n) \in \Sigma^n : \frac{1}{n} \sum_{i=1}^n \delta_{x_i} \in \Gamma \right\} \right)$$

for Borel sets $\Gamma \subset \mathcal{P}(\Sigma)$.

Sanov theorem

A sequence of the distributions $\hat{\mu}_n$ of the empirical measures μ_n^X satisfies the LDP with the relative entropy functional $S(\cdot || \mu_0)$ as the good rate function, where the relative entropy is

$$S(\mu||\mu_0) := \begin{cases} \int_{\Sigma} \log \frac{d\mu}{d\mu_0} d\mu & \text{if } \mu \ll \mu_0 \text{ (absolutely continuous),} \\ \infty & \text{otherwise.} \end{cases}$$

- Let X = (X₁, X₂,...) be a sequence of i.i.d. *M*-valued random variables such that the distribution μ₀ of X_n is in P[∞](M), i.e., X_n ∈ L[∞](Ω; M). Then there is a bounded Polish subset Σ of *M* such that X_n's are Σ-valued random variables.
- Let $\beta : \mathcal{P}^p(M) \to M$ be as before. Then $\mathcal{P}(\Sigma) \subset \mathcal{P}^p(M)$ and $\beta|_{\mathcal{P}(\Sigma)} : \mathcal{P}(\Sigma) \to M$ is continuous in the weak topology.
- The push-forward of $\widehat{\mu}_n$ by $\beta|_{\mathcal{P}(\Sigma)}$ is the distribution of $\beta(\mu_n^X)$, i.e., for every $\Gamma \in \mathcal{B}(M)$,

$$\begin{split} \widehat{\mu}_n(\{\mu \in \mathcal{P}(\Sigma) : \beta(\mu) \in \Gamma\}) &= \mathbb{P}(\beta(\mu_n^X) \in \Gamma) \\ &= \mathbb{P}\Big(\Big\{\omega \in \Omega : \beta\Big(\frac{1}{n} \sum_{i=1}^n \delta_{X_i(\omega)}\Big) \in \Gamma\Big\}\Big). \end{split}$$

- A B N A B N - B

Applying the contraction principle for LDP to the Sanov theorem and the continuous map $\beta : \mathcal{P}(\Sigma) \to M$,

Theorem

Let X_1, X_2, \ldots be a sequence of i.i.d. *M*-valued random variables having the distribution $\mu_0 \in \mathcal{P}^{\infty}(M)$. Then a sequence of the distributions of the β -values $\beta(\mu_n^X) = \beta(\frac{1}{n}\sum_{i=1}^n \delta_{X_i})$ satisfies the LDP with the good rate function

$$I(x) := \inf\{S(\mu||\mu_0) : \mu \in \mathcal{P}(\Sigma), x = \beta(\mu)\}, \qquad x \in M.$$

That is, for every $\Gamma \in \mathcal{B}(M)$,

$$-\inf_{x\in\Gamma^{\circ}} I(x) \leq \liminf_{n\to\infty} \frac{1}{n} \log P(\beta(\mu_n^X) \in \Gamma)$$
$$\leq \limsup_{n\to\infty} \frac{1}{n} \log P(\beta(\mu_n^X) \in \Gamma) \leq -\inf_{x\in\overline{\Gamma}} I(x).$$

The above LDP implies the strong law of large numbers for X_n .⁵

Corollary

Let X_1, X_2, \ldots be a sequence of i.i.d. *M*-valued random variables having the distribution $\mu_0 \in \mathcal{P}^{\infty}(M)$. Then

$$\beta\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i(\omega)}\right) \longrightarrow \beta(\mu_0) \text{ a.e. as } n \to \infty.$$

⁵K.-T. Sturm, Probability measures on metric spaces of nonpositive curvature, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 357–390, *Contemporary Mathematics* **338**, Amer. Math. Soc., Providence, RI, 2003.

Thank you for your attention!

3 🕨 🖌 3