Transition Probability of States on *-Algebras

Konrad Schmüdgen

Mathematisches Institut, Universität Leipzig
18.7.2018

Based on the paper
"Transition probabilities of positive functionals on *-algebras", Journal of Operator Theory 73(2015), 101-121

Contents

1. Transition probability in quantum mechanics
2. Definition of the transition probability for $*$-algebras
3. Transition probability for C^{*}-algebras
4. Results on the transition probability for $*$-algebras

Consider a quantum system realized on a Hilbert space \mathcal{H}, states are unit vector φ, ψ of \mathcal{H}

Definition: Max Born (1925/26)

Transition probability: $\quad|\langle\varphi, \psi\rangle|^{2}$

Max Born

Max Born (1882-1970)

- born in Breslau
- introduced (1925) the relation $P Q-Q P=-i \hbar I$
- M. Born and P. Jordan (1925) found a representation of this relation by infinite matrices
- Professor in Göttingen (1921-1933), went to England
- 1939: British citizenship
- Nobelpreis for Physics 1954

Definitions

In what follows: A is a complex unital $*$-algebra
(a complex algebra with unit element 1 and involution $a \rightarrow a^{+}$)

Definition: *-representation

Let $(\mathcal{D},\langle\cdot, \cdot\rangle)$ be a unitary space. A *-representation of A on \mathcal{D} is an algebra homomorphism $\pi \rightarrow L(\mathcal{D})$ satisfying $\pi(1)=I_{\mathcal{D}}$ and

$$
\langle\pi(a) \varphi, \psi\rangle=\left\langle\varphi, \pi\left(a^{+}\right) \psi\right\rangle, \quad a \in A, \varphi, \psi \in \mathcal{D} .
$$

We write $\mathcal{D}(\pi)=\mathcal{D}$ and call \mathcal{D} the domain of π.
Rep A : family of all *-representations of A

Definition: vector state

If π is a $*$-representation of A and $\varphi \in \mathcal{D}(\pi),\|\varphi\|=1$, then

$$
f_{\varphi}(a):=\langle\pi(a) \varphi, \varphi\rangle, \quad a \in A,
$$

is called a vector state of π.
Note that $f_{\varphi}\left(a^{+} a\right)=\|\pi(a) \varphi\|^{2} \geq 0$ and $f_{\varphi}(1)=\|\varphi\|^{2}=1$.

Definition: state

State: linear functional f such that $f(1)=1$ and $f\left(a^{+} a\right) \geq 0, a \in A$. $\mathcal{S}(A)$: set of states of A

By the GNS construction, each state f on A is a vector state of some representation $\pi_{f}: \quad f(a)=\left\langle\pi_{f}(a) \varphi_{f}, \varphi_{f}\right\rangle, a \in A$.

Transition probability and Bures distance

Let $\pi \in \operatorname{Rep} A$ and $f \in \mathcal{S}(A)$.
$S(\pi, f)$: set of vectors $\varphi \in \mathcal{D}(\pi)$ such that $f(a)=\langle\pi(a) \varphi, \varphi\rangle, \quad a \in A$.

Definition: Transition probability (Uhlmann 1976)

Transition probability of two states $f, g \in \mathcal{S}(A)$ is

$$
P_{A}(f, g):=\sup _{\pi \in \operatorname{Rep} A} \sup _{\varphi \in \mathcal{S}(\pi, f), \psi \in \mathcal{S}(\pi, g)}|\langle\varphi, \psi\rangle|^{2}
$$

Definition: Bures distance (Bures 1969)

Bures distance of $f, g \in \mathcal{S}(A)$ is

$$
d_{A}(f, g):=\inf _{\pi \in \operatorname{Rep} A} \inf _{\varphi \in \mathcal{S}(\pi, f), \psi \in \mathcal{S}(\pi, g)}\|\varphi-\psi\| .
$$

Quantum information theory: $\sqrt{P_{A}(f, g)}$ - fidelity. Bures distance and the transition probability are related by

$$
d_{A}(f, g)=2-2 \sqrt{P_{A}(f, g)}, \quad f, g \in \mathcal{S}(A) .
$$

d_{A} is a metric on $\mathcal{S}(A)$.
Basic properties: A unital C^{*}-algebra.
(i) $0 \leq P_{A}(f, g)=P_{A}(g, f) \leq 1$.
(ii) $P_{A}(f, g)=1$ if and only if $f=g$.
(iii) $P_{A}(f, g)=0$ if and only if f and g are orthogonal.
(iv) $\lambda P_{A}\left(f_{1}, g\right)+(1-\lambda) P_{A}\left(f_{2}, g\right) \leq P_{A}\left(\lambda f_{1}+(1-\lambda) f_{2}, g\right)$ for $\lambda \in[0,1]$.

Theorem 1: P. M. Alberti (1983)

Let A be a unital C^{*}-algebra. For $f, g \in \mathcal{S}(A)$ we have

$$
P_{A}(f, g)=\inf \left\{f(a) g\left(a^{-1}\right): a \in A, a^{-1} \in A, a \geq 0\right\}
$$

Interwining space:

$$
I\left(\pi_{f}, \pi_{g}\right)=\left\{T \in \mathbf{B}\left(\mathcal{H}\left(\pi_{f}\right), \mathcal{H}\left(\pi_{g}\right)\right): T \pi_{f}(a)=\pi_{g}(a) T, a \in A\right\}
$$

Theorem 2: P.M. Alberti (1983)

For states f, g on a unital C^{*}-algebra A we have

$$
P_{A}(f, g)=\sup \left\{\left|\left\langle T \varphi_{f}, \varphi_{g}\right\rangle\right|^{2}: T \in I\left(\pi_{f}, \pi_{g}\right),\|T\| \leq 1\right\} .
$$

Now let A be a unital $*$-algebra and $f, g \in \mathcal{S}(A)$.

Definition: Transition form

A linear functional on A is called a transition form from f to g if

$$
\left|F\left(b^{+} a\right)\right|^{2} \leq f\left(a^{+} a\right) g\left(a^{+} a\right), \quad a \in A
$$

$\mathcal{G}(f, g)$: set of transition forms
If $\varphi \in S(\pi, f), \psi \in S(\pi, g)$, then $F(a):=\langle\pi(a) \varphi, \psi\rangle$ is a transition form:

$$
\begin{aligned}
\left|F\left(b^{+} a\right)\right|^{2} & =|\langle\pi(a) \varphi, \pi(b) \psi\rangle|^{2} \\
& \leq\|\pi(a) \varphi\|^{2}\|\pi(b) \psi\|^{2}=f\left(a^{+} a\right) g\left(b^{+} b\right) .
\end{aligned}
$$

Theorem 3: A. UhImann (1985)

$P_{A}(f, g)=\sup \left\{|F(1)|^{2}: F \in \mathcal{G}(f, g)\right\}$.

Technical interlude

Let π be a *-representation. Then we define

$$
\begin{aligned}
\mathcal{D}(\bar{\pi}) & :=\cap_{a \in A} \mathcal{D}(\overline{\pi(a)}), \quad \bar{\pi}(a):=\overline{\pi(a)}\lceil\mathcal{D}(\bar{\pi}), \quad a \in A, \\
\mathcal{D}\left(\pi^{*}\right) & :=\cap_{a \in A} \mathcal{D}\left(\pi(a)^{*}\right), \quad \pi^{*}(a):=\pi\left(a^{+}\right)^{*}\left\lceil\mathcal{D}\left(\pi^{*}\right), \quad a \in A .\right.
\end{aligned}
$$

Definition:

A *-representation π of a $*$-algebra A is called

- self-adjoint if $\pi=\pi^{*}$, equivalently, $\mathcal{D}(\pi)=\mathcal{D}\left(\pi^{*}\right)$,
- essentially self-adjoint if $\pi^{*}=\left(\pi^{*}\right)^{*}$, equivalently, $\mathcal{D}\left(\pi^{* *}\right)=\mathcal{D}\left(\pi^{*}\right)$.

For symmetric operators we have $\bar{T}=T^{* *}$, for $*$-representations $\bar{\pi} \neq \pi^{* *}$ in general.
Usually, essential self-adjointness was defined by $\bar{\pi}\left(=\bar{\pi}^{*}\right)=\pi^{*}$, but it seems to be better to define $\pi^{*}=\left(\pi^{*}\right)^{*}$.

Technical interlude- continued

Example: One-dimensional moment problem

Let $A=\mathbb{C}[x]$ be the $*$-algebra of polynomials in one variable.
$f \in \mathcal{S}(A)$ corresponds to a moment sequence $s=\left(s_{n}\right), s_{n}=f\left(x^{n}\right)$.
Assume that $f\left(p^{2}\right)>0, p \in \mathbb{C}[x]$.
Suppose μ is a representing measure of s : $\quad s_{n}=\int x^{n} d \mu(x), n \in \mathbb{N}_{0}$.
Let $\mathcal{D}=\mathbb{C}[x]$ with scalar product $\langle p, q\rangle=\int p(x) \overline{q(x)} d \mu, p, q \in \mathbb{C}[x]$
There is a $*$-representation of A on $\mathcal{D}=\mathbb{C}[x]$ s.t. $\pi(p) q=p \cdot q$.
$\bar{\pi}$ is self-adjoint if and only if $(\overline{\pi(x)})^{n}$ is self-adjoint for all $n \in \mathbb{N}$.
π is essentially self-adjoint iff $\overline{\pi(x)}$ is self-adjoint iff s is determinate.
Crucial assumption: π is essentially self-adjoint!
Definition: GNS representation π_{f}
Let $f \in \mathcal{S}(A)$. There exists a unique $*$-representation π_{f} of A s. t.

$$
\mathcal{D}\left(\pi_{f}\right)=\pi_{f}(A) \varphi_{f} \quad \text { and } \quad f(a)=\left\langle\pi_{f}(a) \varphi_{f}, \varphi_{f}\right\rangle, a \in A .
$$

Theorem 4: "supremum is a maximum"

Let $f, g \in \mathcal{S}(A)$ and let π be a $*$-representation such that f and g are vector functionals of π. Suppose π_{f}, π_{g}, π are essentially self-adjoint. There exist $\varphi, \psi \in \mathcal{D}(\pi)$ s.t. $f(a)=\langle\pi(a) \varphi, \varphi\rangle$ and $g(a)=\langle\pi(a) \psi, \psi\rangle$,

$$
P_{A}(f, g)=|\langle\varphi, \psi\rangle|^{2} .
$$

The proof uses a deep result of P.M. Alberti on transition probabilities for von Neumann algebras.
The supremum in the definition on $P_{A}(f, g)$ is a maximum!
This holds for each essentially self-adjoint rep π for which f and g are vector functionals. For instance, $\pi=\left(\pi_{f}\right)^{* *} \oplus\left(\pi_{g}\right)^{* *}$.

Theorem 5:

Let $f, g \in \mathcal{S}(A)$. Suppose the GNS representations π_{f} and π_{g} are essentially self-adjoint. Suppose there exist a positive linear functional h on A and elements $b, c \in A$ such that $c^{+} b \in \sum A^{2}$ and

$$
f(a)=h\left(b^{+} a b\right) \quad \text { and } \quad g(a)=h\left(c^{+} a c\right), \quad a \in A .
$$

Then

$$
P_{A}(f, g)=h\left(c^{+} b\right)^{2} .
$$

Applications

Theorem 6: "states define by trace class operators"

Let π be an irreducible $*$-representation of A.
Suppose $s, t \in \mathbf{B}_{1}(\mathcal{H}(\pi))_{+}$define states on A by

$$
f_{s}(a)=\operatorname{Tr} \pi(a) s, \quad f_{t}(a)=\operatorname{Tr} \pi(a) t \quad \text { for } \quad a \in A .
$$

Suppose $\pi_{f_{s}}, \pi_{f_{t}}$, and π are essentially self-adjoint. Then

$$
\begin{equation*}
P_{A}\left(f_{s}, f_{t}\right)=\left(\operatorname{Tr}\left|t^{1 / 2} s^{1 / 2}\right|\right)^{2}=\left(\operatorname{Tr}\left(s^{1 / 2} t s^{1 / 2}\right)^{1 / 2}\right)^{2} . \tag{1}
\end{equation*}
$$

Formula (1) was discovered by Araki (1972) for von Neumann algebras.

Example: Schrödinger representation of the Weyl algebra

Let $A=\mathbb{C}\left\langle p=p^{+}, q=q^{+}: p q-q p=-i\right\rangle$ be the Weyl algebra. The Schrödinger representation π of A,

$$
(\pi(q) \varphi)(x)=x \varphi(x),(\pi(p) \varphi)(x)=-\mathrm{i} \varphi^{\prime}(x), \quad \varphi \in \mathcal{S}(\mathbb{R}),
$$

is irreducible, self-adjoint. Suppose $s, t \in \mathbf{B}_{1}\left(L^{2}(\mathbb{R})\right)_{+}$define states f_{s}, f_{t} on A such that $\pi_{f_{s}}$ and $\pi_{f_{t}}$ are essentially self-adjoint. Then

$$
\begin{equation*}
P_{A}\left(f_{s}, f_{t}\right)=\left(\operatorname{Tr}\left|t^{1 / 2} s^{1 / 2}\right|\right)^{2}=\left(\operatorname{Tr}\left(s^{1 / 2} t s^{1 / 2}\right)^{1 / 2}\right)^{2} . \tag{2}
\end{equation*}
$$

Specialize $s=\varphi \otimes \varphi$ and $t=\psi \otimes \psi$ with $\varphi, \psi \in \mathcal{S}(\mathbb{R})$. Then $f_{s}(a)=\langle\rho(a) \varphi, \varphi\rangle, f_{t}(a)=\langle\rho(a) \psi, \psi\rangle$ and (2) yields

$$
P_{A}\left(f_{s}, f_{t}\right)=|\langle\varphi, \psi\rangle|^{2} .
$$

Theorem 7: "states defined by integrals"

X : locally compact Hausdorff space,
A: *-subalgebra of $C(X)$ which contains 1 and separates points of X.
μ : Radon measure on X such that $A \subseteq L^{1}(X, \mu)$
$\eta, \xi \in L^{\infty}(X, \mu)_{+}$of norm 1. Define states f_{η} and f_{ξ} on A by

$$
f_{\eta}(a)=\int_{X} a(x) \eta(x) d \mu(x), \quad f_{\xi}(a)=\int_{X} a(x) \xi(x) d \mu(x), a \in A .
$$

Suppose $\pi_{f_{\eta}}$ and $\pi_{f_{\xi}}$ are essentially self-adjoint. Then

$$
P_{A}\left(f_{\eta}, f_{\xi}\right)=\left(\int_{X} \eta(x)^{1 / 2} \xi(x)^{1 / 2} d \mu(x)\right)^{2} .
$$

Example: One-dimensional moment problem

Recall states f on the $*$-algebra $A=\mathbb{C}[x]$ correspond to moment sequences: $s=\left(s_{n}\right), s_{n}=f\left(x^{n}\right)$. Assume that $f\left(p^{2}\right)>0, p \in \mathbb{C}[x]$. Suppose μ is a representing measure of $s: \quad s_{n}=\int x^{n} d \mu(x), n \in \mathbb{N}_{0}$. Let $\mathcal{D}=\mathbb{C}[x]$ with scalar product $\langle p, q\rangle=\int p(x) \overline{q(x)} d \mu, p, q \in \mathbb{C}[x]$ and π_{μ} the $*$-representation of A on $\mathcal{D}=\mathbb{C}[x]$ s.t. $\pi(p) q=p \cdot q$. How to determine $P_{A}(f, g)$?
μ : Radon measure on \mathbb{R}. Define $f_{\eta}(a)=\int a(x) \eta d \mu, f_{\xi}(a)=\int a(x) \xi d \mu$. If $\eta d \mu, \xi d \mu$ are determinate, $\pi_{f_{\mu_{\eta}}}, \pi_{f_{\mu \xi}}$ are essentially self-adjoint.

$$
P_{A}\left(f_{\eta}, f_{\xi}\right)=\left(\int_{X} \eta(x)^{1 / 2} \xi(x)^{1 / 2} d \mu(x)\right)^{2}
$$

For indeterminate measures, this formula does not hold in general.
Open problem: What is $P_{A}(f, g)$ for indeterminate moment functionals ?

A counter-example

Let A be the Weyl algebra and π is the Schrödinger representation.
For $\eta \in \mathcal{S}(\mathbb{R}),\|\eta\|=1$, define the vector state f_{η} by $f_{\eta}(a)=\langle\pi(a) \eta, \eta\rangle$.
(*) There are disjoint open intervals $J_{j}(\eta)=\left(\alpha_{j}, \beta_{j}\right), j=1, \ldots, r$, s. t. $\eta(t) \neq 0$ for $t \in J(\eta):=\cup_{j} J_{j}(\eta)$ and $\eta^{(n)}(t)=0$ for $t \in \mathbb{R} / J(\eta), n \in \mathbb{N}_{0}$.

Theorem 6:

Suppose unit vectors $\varphi, \psi \in C_{0}^{\infty}(\mathbb{R})$ satisfy condition (*). Then

$$
\begin{equation*}
P_{A}\left(f_{\varphi}, f_{\psi}\right)=\left(\sum_{k, j}\left|\int_{\mathcal{J}_{k}(\varphi) \cap \mathcal{J}_{j}(\psi)} \varphi(x) \overline{\psi(x)} d x\right|\right)^{2} \tag{3}
\end{equation*}
$$

- If $\mathcal{J}(\varphi)$ and $\mathcal{J}(\psi)$ are single intervals, then $P_{A}\left(f_{\varphi}, f_{\psi}\right)=|\langle\varphi, \psi\rangle|^{2}$.
- Suppose $\mathcal{J}_{j}(\varphi)=\mathcal{J}_{j}(\psi)$ and $\varphi(x)=\epsilon_{j} \psi(x)$ on $\mathcal{J}_{j}(\varphi), \epsilon_{j} \in\{1,-1\}$.
(3) yields $P_{A}\left(f_{\varphi}, f_{\psi}\right)=\|\varphi\|^{4}$. We can choose ϵ_{j} such that $\langle\varphi, \psi\rangle=0$.

