Transition Probability of States on *-Algebras

Konrad Schmüdgen

Mathematisches Institut, Universität Leipzig

18.7.2018

Based on the paper "Transition probabilities of positive functionals on *-algebras", Journal of Operator Theory **73**(2015), 101-121

Contents

- 1. Transition probability in quantum mechanics
- 2. Definition of the transition probability for *-algebras
- 3. Transition probability for C^* -algebras
- 4. Results on the transition probability for *-algebras

Consider a quantum system realized on a Hilbert space $\mathcal H,$ states are unit vector φ,ψ of $\mathcal H$

Definition: Max Born (1925/26)			
Transition probability:	$ \langle \varphi,\psi\rangle ^2$		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Max Born

Max Born (1882–1970)

- born in Breslau
- introduced (1925) the relation $PQ QP = -i\hbar I$
- M. Born and P. Jordan (1925) found a representation of this relation by infinite matrices

- Professor in Göttingen (1921-1933), went to England
- 1939: British citizenship
- Nobelpreis for Physics 1954

Definitions

In what follows: A is a complex unital *-algebra

(a complex algebra with unit element 1 and involution $a
ightarrow a^+)$

Definition: *-representation

Let $(\mathcal{D}, \langle \cdot, \cdot \rangle)$ be a unitary space. A *-representation of A on \mathcal{D} is an algebra homomorphism $\pi \to L(\mathcal{D})$ satisfying $\pi(1) = I_{\mathcal{D}}$ and

$$\langle \pi(\mathbf{a})\varphi,\psi\rangle = \langle \varphi,\pi(\mathbf{a}^+)\psi\rangle, \quad \mathbf{a}\in \mathcal{A}, \ \varphi,\psi\in\mathcal{D}.$$

We write $\mathcal{D}(\pi) = \mathcal{D}$ and call \mathcal{D} the domain of π . Rep A: family of all *-representations of A

Definition: vector state

If π is a *-representation of A and $\varphi \in \mathcal{D}(\pi)$, $\|\varphi\| = 1$, then

$$f_{\varphi}(a) := \langle \pi(a) \varphi, \varphi \rangle, \quad a \in A,$$

is called a **vector state of** π .

Note that
$$f_{\varphi}(a^+a) = \|\pi(a)\varphi\|^2 \ge 0$$
 and $f_{\varphi}(1) = \|\varphi\|^2 = 1$.

Definition: state

State: linear functional f such that f(1) = 1 and $f(a^+a) \ge 0$, $a \in A$. S(A): set of states of A

By the GNS construction, each state f on A is a vector state of some representation π_f : $f(a) = \langle \pi_f(a)\varphi_f, \varphi_f \rangle$, $a \in A$.

Transition probability and Bures distance

Let $\pi \in \operatorname{Rep} A$ and $f \in \mathcal{S}(A)$.

 $S(\pi,f)$: set of vectors $\varphi \in \mathcal{D}(\pi)$ such that $f(a) = \langle \pi(a)\varphi, \varphi \rangle$, $a \in A$.

Definition: Transition probability (Uhlmann 1976)

Transition probability of two states $f, g \in \mathcal{S}(A)$ is

$$P_A(f,g) := \sup_{\pi \in \operatorname{Rep} A} \sup_{\varphi \in \mathcal{S}(\pi,f), \psi \in \mathcal{S}(\pi,g)} |\langle \varphi, \psi
angle|^2.$$

Definition: Bures distance (Bures 1969)

Bures distance of $f, g \in \mathcal{S}(A)$ is

$$d_A(f,g) := \inf_{\pi \in \operatorname{Rep} A} \inf_{\varphi \in \mathcal{S}(\pi,f), \psi \in \mathcal{S}(\pi,g)} \| \varphi - \psi \|.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Quantum information theory: $\sqrt{P_A(f,g)}$ - **fidelity**. Bures distance and the transition probability are related by

$$d_A(f,g)=2-2\sqrt{P_A(f,g)}, \quad f,g\in \mathcal{S}(A).$$

 d_A is a metric on $\mathcal{S}(A)$.

Basic properties: A unital C^* -algebra.

(i) $0 \le P_A(f,g) = P_A(g,f) \le 1$. (ii) $P_A(f,g) = 1$ if and only if f = g. (iii) $P_A(f,g) = 0$ if and only if f and g are orthogonal. (iv) $\lambda P_A(f_1,g) + (1-\lambda)P_A(f_2,g) \le P_A(\lambda f_1 + (1-\lambda)f_2,g)$ for $\lambda \in [0,1]$.

Theorem 1: P. M. Alberti (1983)

Let A be a **unital** C^* -algebra. For $f, g \in \mathcal{S}(A)$ we have

$$P_A(f,g) = \inf \left\{ f(a)g(a^{-1}): \ a \in A, a^{-1} \in A, a \geq 0
ight\}$$

Interwining space: $I(\pi_f, \pi_g) = \{ T \in \mathbf{B}(\mathcal{H}(\pi_f), \mathcal{H}(\pi_g)) : T\pi_f(a) = \pi_g(a)T, \ a \in A \}$

Theorem 2: P.M. Alberti (1983)

For states f, g on a **unital** C^* -algebra A we have

$$P_A(f,g) = \sup \{ |\langle T\varphi_f, \varphi_g \rangle|^2 : T \in I(\pi_f, \pi_g), ||T|| \le 1 \}.$$

Now let A be a **unital** *-algebra and $f, g \in \mathcal{S}(A)$.

Definition: Transition form

A linear functional on A is called a **transition form** from f to g if

$$|F(b^+a)|^2 \leq f(a^+a)g(a^+a), \ a \in A.$$

 $\mathcal{G}(f,g)$: set of transition forms

If $\varphi \in S(\pi, f), \psi \in S(\pi, g)$, then $F(a) := \langle \pi(a)\varphi, \psi \rangle$ is a transition form:

$$\begin{split} |F(b^+a)|^2 &= |\langle \pi(a)\varphi, \pi(b)\psi\rangle|^2 \\ &\leq \|\pi(a)\varphi\|^2 \,\|\pi(b)\psi\|^2 = f(a^+a)g(b^+b). \end{split}$$

Theorem 3: A. Uhlmann (1985) $P_A(f,g) = \sup \{ |F(1)|^2 : F \in \mathcal{G}(f,g) \}.$

Technical interlude

Let π be a *-representation. Then we define

$$\mathcal{D}(\overline{\pi}) := \cap_{a \in A} \mathcal{D}(\overline{\pi(a)}) , \quad \overline{\pi}(a) := \overline{\pi(a)} \lceil \mathcal{D}(\overline{\pi}), \quad a \in A, \\ \mathcal{D}(\pi^*) := \cap_{a \in A} \mathcal{D}(\pi(a)^*) , \quad \pi^*(a) := \pi(a^+)^* \lceil \mathcal{D}(\pi^*), \quad a \in A.$$

Definition:

- A *-representation π of a *-algebra A is called
- self-adjoint if $\pi = \pi^*$, equivalently, $\mathcal{D}(\pi) = \mathcal{D}(\pi^*)$,
- essentially self-adjoint if $\pi^* = (\pi^*)^*$, equivalently, $\mathcal{D}(\pi^{**}) = \mathcal{D}(\pi^*)$.

For symmetric operators we have $\overline{T} = T^{**}$, for *-representations $\overline{\pi} \neq \pi^{**}$ in general.

Usually, essential self-adjointness was defined by $\overline{\pi}$ (= $\overline{\pi}^*$) = π^* , but it seems to be better to define $\pi^* = (\pi^*)^*$.

Technical interlude- continued

Example: One-dimensional moment problem

Let $A = \mathbb{C}[x]$ be the *-algebra of polynomials in one variable.

 $f \in S(A)$ corresponds to a **moment sequence** $s = (s_n)$, $s_n = f(x^n)$. Assume that $f(p^2) > 0$, $p \in \mathbb{C}[x]$.

Suppose μ is a representing measure of s: $s_n = \int x^n d\mu(x), n \in \mathbb{N}_0$.

Let $\mathcal{D} = \mathbb{C}[x]$ with scalar product $\langle p, q \rangle = \int p(x)\overline{q(x)} d\mu, p, q \in \mathbb{C}[x]$ There is a *-representation of A on $\mathcal{D} = \mathbb{C}[x]$ s.t. $\pi(p)q = p \cdot q$.

 $\overline{\pi}$ is self-adjoint if and only if $(\overline{\pi(x)})^n$ is self-adjoint for all $n \in \mathbb{N}$. π is **essentially self-adjoint** iff $\overline{\pi(x)}$ is self-adjoint iff *s* is **determinate**.

Crucial assumption: π is essentially self-adjoint!

Definition: GNS representation π_f

Let $f \in S(A)$. There exists a unique *-representation π_f of A s. t.

 $\mathcal{D}(\pi_f) = \pi_f(A)\varphi_f$ and $f(a) = \langle \pi_f(a)\varphi_f, \varphi_f \rangle, a \in A.$

Theorem 4: "supremum is a maximum"

Let $f, g \in S(A)$ and let π be a *-representation such that f and g are vector functionals of π . Suppose π_f, π_g, π are **essentially self-adjoint**.

There exist $\varphi, \psi \in \mathcal{D}(\pi)$ s.t. $f(a) = \langle \pi(a)\varphi, \varphi \rangle$ and $g(a) = \langle \pi(a)\psi, \psi \rangle$,

$$P_A(f,g) = |\langle \varphi, \psi \rangle|^2.$$

The proof uses a deep result of P.M. Alberti on transition probabilities for von Neumann algebras.

The supremum in the definition on $P_A(f,g)$ is a maximum!

This holds for **each** essentially self-adjoint rep π for which f and g are vector functionals. For instance, $\pi = (\pi_f)^{**} \oplus (\pi_g)^{**}$.

Theorem 5:

Let $f, g \in \mathcal{S}(A)$. Suppose the GNS representations π_f and π_g are essentially self-adjoint. Suppose there exist a positive linear functional h on A and elements $b, c \in A$ such that $c^+b \in \sum A^2$ and

$$f(a) = h(b^+ab)$$
 and $g(a) = h(c^+ac)$, $a \in A$.

Then

$$P_A(f,g)=h(c^+b)^2.$$

Applications

Theorem 6: "states define by trace class operators"

Let π be an irreducible *-representation of A. Suppose $s, t \in \mathbf{B}_1(\mathcal{H}(\pi))_+$ define states on A by

$$f_s(a) = \operatorname{Tr} \pi(a)s, \quad f_t(a) = \operatorname{Tr} \pi(a)t \quad \text{for} \quad a \in A.$$

Suppose π_{f_s} , π_{f_t} , and π are essentially self-adjoint. Then

$$P_A(f_s, f_t) = (\operatorname{Tr} |t^{1/2} s^{1/2}|)^2 = (\operatorname{Tr} (s^{1/2} t s^{1/2})^{1/2})^2.$$
(1)

Formula (1) was discovered by Araki (1972) for von Neumann algebras.

Example: Schrödinger representation of the Weyl algebra

Let $A = \mathbb{C}\langle p = p^+, q = q^+ : pq - qp = -i \rangle$ be the Weyl algebra. The Schrödinger representation π of A,

$$(\pi(q)\varphi)(x) = x\varphi(x), \ (\pi(p)\varphi)(x) = -\mathrm{i} \varphi'(x), \ \ \varphi \in \mathcal{S}(\mathbb{R}),$$

is irreducible, self-adjoint. Suppose $s, t \in \mathbf{B}_1(L^2(\mathbb{R}))_+$ define states f_s, f_t on A such that π_{f_s} and π_{f_t} are essentially self-adjoint. Then

$$P_{A}(f_{s}, f_{t}) = (\operatorname{Tr} |t^{1/2}s^{1/2}|)^{2} = (\operatorname{Tr} (s^{1/2}ts^{1/2})^{1/2})^{2}.$$
(2)

Specialize $s = \varphi \otimes \varphi$ and $t = \psi \otimes \psi$ with $\varphi, \psi \in S(\mathbb{R})$. Then $f_s(a) = \langle \rho(a)\varphi, \varphi \rangle$, $f_t(a) = \langle \rho(a)\psi, \psi \rangle$ and (2) yields

$$P_A(f_s, f_t) = |\langle \varphi, \psi \rangle|^2.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Theorem 7: "states defined by integrals"

X: locally compact Hausdorff space, A: *-subalgebra of C(X) which contains 1 and separates points of X. μ : Radon measure on X such that $A \subseteq L^1(X, \mu)$ $\eta, \xi \in L^{\infty}(X, \mu)_+$ of norm 1. Define states f_{η} and f_{ξ} on A by

$$f_\eta(a) = \int_X a(x)\eta(x) \, d\mu(x), \quad f_\xi(a) = \int_X a(x)\xi(x) \, d\mu(x), \, a \in A.$$

Suppose π_{f_n} and $\pi_{f_{\varepsilon}}$ are essentially self-adjoint. Then

$$P_A(f_\eta, f_\xi) = \left(\int_X \eta(x)^{1/2} \xi(x)^{1/2} d\mu(x)\right)^2.$$

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Example: One-dimensional moment problem

Recall states f on the *-algebra $A = \mathbb{C}[x]$ correspond to **moment sequences**: $s = (s_n)$, $s_n = f(x^n)$. Assume that $f(p^2) > 0$, $p \in \mathbb{C}[x]$. Suppose μ is a representing measure of s: $s_n = \int x^n d\mu(x)$, $n \in \mathbb{N}_0$. Let $\mathcal{D} = \mathbb{C}[x]$ with scalar product $\langle p, q \rangle = \int p(x)\overline{q(x)} d\mu$, $p, q \in \mathbb{C}[x]$ and π_{μ} the *-representation of A on $\mathcal{D} = \mathbb{C}[x]$ s.t. $\pi(p)q = p \cdot q$. How to determine $P_A(f, g)$?

 μ : Radon measure on \mathbb{R} . Define $f_{\eta}(a) = \int a(x)\eta d\mu$, $f_{\xi}(a) = \int a(x)\xi d\mu$. If $\eta d\mu$, $\xi d\mu$ are **determinate**, $\pi_{f_{\mu_n}}$, $\pi_{f_{\mu_{\varepsilon}}}$ are essentially self-adjoint.

$$P_A(f_\eta, f_\xi) = \bigg(\int_X \eta(x)^{1/2} \xi(x)^{1/2} d\mu(x) \bigg)^2.$$

For **indeterminate measures**, this formula does not hold in general. Open problem: What is $P_A(f,g)$ for indeterminate moment functionals ?

A counter-example

Let A be the Weyl algebra and π is the Schrödinger representation.

For $\eta \in \mathcal{S}(\mathbb{R}), \|\eta\| = 1$, define the vector state f_{η} by $f_{\eta}(a) = \langle \pi(a)\eta, \eta \rangle$.

(*) There are disjoint open intervals $J_j(\eta) = (\alpha_j, \beta_j), j = 1, ..., r, s. t.$ $\eta(t) \neq 0$ for $t \in J(\eta) := \bigcup_i J_i(\eta)$ and $\eta^{(n)}(t) = 0$ for $t \in \mathbb{R}/J(\eta), n \in \mathbb{N}_0$.

Theorem 6:

Suppose unit vectors $\varphi,\psi\in C_0^\infty(\mathbb{R})$ satisfy condition (*). Then

$$P_{A}(f_{\varphi}, f_{\psi}) = \left(\sum_{k,j} \left| \int_{\mathcal{J}_{k}(\varphi) \cap \mathcal{J}_{j}(\psi)} \varphi(x) \overline{\psi(x)} \, dx \right| \right)^{2}. \tag{3}$$

- If $\mathcal{J}(\varphi)$ and $\mathcal{J}(\psi)$ are single intervals, then $P_{\mathcal{A}}(f_{\varphi}, f_{\psi}) = |\langle \varphi, \psi \rangle|^2$.
- Suppose $\mathcal{J}_j(\varphi) = \mathcal{J}_j(\psi)$ and $\varphi(x) = \epsilon_j \psi(x)$ on $\mathcal{J}_j(\varphi)$, $\epsilon_j \in \{1, -1\}$. (3) yields $P_A(f_{\varphi}, f_{\psi}) = \|\varphi\|^4$. We can choose ϵ_j such that $\langle \varphi, \psi \rangle = 0$.