No-splitting property and boundaries of random groups

Piotr Przytycki (joint with François Dahmani and Vincent Guirardel)

The density model for random groups was introduced by Gromov. We adopt the following language from a survey by Ollivier.

Definition. Let F_n be the free group on $n \geq 2$ generators s_1, \ldots, s_n . For any integer L let $R_L \subset F_n$ be the set of reduced words of length L in these generators.

Let 0 < d < 1. A random set of relators at density d, at length L is a $\lfloor (2n-1)^{dL} \rfloor$ tuple of elements of R_L , randomly picked among all elements of R_L .

A random group at density d, at length L is the group G presented by $\langle S|R\rangle$, where $S = \{s_1, \ldots, s_n\}$ and R is a random set of relators at density d, at length L.

We say that a property of R, or of G, occurs with overwhelming probability (shortly, w.o.p.) at density d if its probability of occurrence tends to 1 as $L \to \infty$, for fixed d.

Gromov proved that a random group at density less than $\frac{1}{2}$ is with overwhelming probability word-hyperbolic, with aspherical presentation complex. Consequently w.o.p. at density less than $\frac{1}{2}$ a random group is torsion free, of cohomological dimension 2, and its Euler characteristic is positive.

We address the following question. At density less than $\frac{1}{2}$, what is the boundary at infinity of a random group G?

Since G is 2-dimensional, its boundary has topological dimension 1 (by the work of Bestvina and Mess). 1-dimensional boundaries have been studied by Kapovich and Kleiner. From their work it follows that if we can prove that w.o.p. a random group does not split, then w.o.p. its boundary is the Menger curve.

In fact, at density $d < \frac{1}{24}$, it is known that w.o.p. the boundary of a random group is the Menger curve, by a direct approach of Champetier. Moreover, from Żuk's theorem it follows that a random group G at density greater than $\frac{1}{3}$ satisfies w.o.p. Kazhdan's property (T), hence it does not split and its boundary is also the Menger curve. We generalize this.

Theorem. Let $0 < d < \frac{1}{2}$. Then with overwhelming probability, the boundary of a random group at density d is the Menger curve.

This a consequence of the following, which is our main theorem.

Theorem. Let 0 < d < 1. Then with overwhelming probability, a random group at density d satisfies property (FA), i.e. G does not split as a free product with amalgamation and does not admit an epimorphism onto \mathbf{Z} .