On existence of a wreath product of symmetric group and cyclic group in the symmetric group S_{p^n}

Witold Tomaszewski, Gliwice

Abstract

In this talk we show that if p is a prime and n is positive integer then in symmetric group S_{p^n} there exists a subgroup which is isomorphic tho a wreath product of the group $S_{\frac{k^p-k}{p}}$ and a cyclic group of order p. The construction is following. Every integer number $a \in \{0,\ldots,p^n-1\}$ can be expressed as a n-tuple (a_0,\ldots,a_n) , where $a_0,\ldots,a_n\in\{0,\ldots,p-1\}$ (it is n-digits representation of a in basis p). Then every permutation from S_{p^n} acts on such tuples. Precisely for every permutation $\sigma \in S_{p^n}$ there exists functions H_1,\ldots,H_n , which map $\{0,\ldots,p-1\}^n$ into $\{0,\ldots,p-1\}$, such that $\sigma(a_0,\ldots,a_n)=(H_1(a_0,\ldots,a_n),\ldots,H_n(a_0,\ldots,a_n))$. We will shortly write $\sigma=(H_1,\ldots,H_n)$. Let us denote $\bar{a}=(a_0,\ldots,a_n)$ and $\bar{a}^\delta=(a_1,\ldots,a_n,a_0)$. Then multiplication of permutations $\sigma=(H_1,\ldots,H_n)$ and $\sigma'=(H'_1,\ldots,H'_n)$ is defined as follow:

$$\sigma\sigma'(\bar{a}) = (H_1(H_1'(\bar{a}), \dots, H_n'(\bar{a}^{\delta^{n-1}})), \dots, H_n(H_1'(\bar{a}), \dots, H_n'(\bar{a}^{\delta^{n-1}})))$$

Let us consider a subgroup

$$G = \{ \sigma = (H_1, \dots, H_n) : H_1 = \dots = H_n \}$$

So if $\sigma \in G$ then there exists a function H mapping $\{0, \ldots, p-1\}^n$ into $\{0, \ldots, p-1\}$, such that $\sigma = (H, \ldots, H)$. To describe a structure of G it is enough to describe a structure of the group \bar{G} of invertible elements of the monoid which consists of all functions mapping $\{0, \ldots, p-1\}^n$ into $\{0, \ldots, p-1\}$ with the operation

$$HH'(\bar{a}) = H(H'(\bar{a}), H'(\bar{a}^{\delta}), \dots, H'(\bar{a}^{\delta^{n-1}}))$$

Main Theorem The group \bar{G} is isomorphic to the semidirect product $S_n \wedge T$, where $T = S_{\frac{k^p-k}{p}} \wr C_p$ (C_p is a cyclic group of order p).