On finitely decomposable groups of automorphisms of a spherically homogeneous rooted tree.

Adam Woryna

Let $X = (X_0, X_1, ...)$ be an infinite sequence (the so called *changing alphabet*) of finite, nonempty sets X_i (sets of letters). For $i \ge 0$ let

$$X_{(i)}^* = \{x_0 x_1 \dots x_s \colon x_j \in X_{j+i}, \ 0 \leqslant j \leqslant s, \ s \geqslant 0\} \cup \{\epsilon\}$$

be a spherically homogeneous rooted tree of words (including the empty word ϵ) over the *i*-fold shift of X. We write

$$\mathcal{A}(i) = Aut(X_{(i)}^*)$$

for the group of automorphism of the tree $X_{(i)}^*$. Any automorphism $g \in \mathcal{A}(i)$ acts by permutation on the first level of $X_{(i)}^*$, i.e. there is a homomorphism $\mathcal{A}(i) \ni g \mapsto \sigma^g \in Sym(X_i)$. Beside that any letter $x \in X_i$ defines an automorphism $g_x \in \mathcal{A}(i+1)$ by the equality $g(xw) = g(x)g_x(w)$, $w \in X_{(i+1)}^*$. The mapping $g \mapsto ((g_x)_{x \in X_i}, \sigma^g)$ establishes an isomorphism (the so-called *wreath recursion*):

$$\mathcal{A}(i) \simeq \mathcal{A}(i+1) \wr Sym(X_i).$$
 (1)

Definition 1 An automorphism $g \in \mathcal{A}(0)$ is n-decomposable if there are n-generated subgroups $H(i) \subseteq \mathcal{A}(i)$ $(i \ge 0)$ such that $g \in H(0)$ and the wreath recursion (1) induces an embedding

$$H(i) \hookrightarrow H(i+1) \wr Sym(X_i)$$
 (2)

for every $i \ge 0$. An automorphism $g \in \mathcal{A}(0)$ is finitely decomposable if g is n-decomposable for some n. A group $G \subseteq \mathcal{A}(0)$ is n-decomposable if every its element is n-decomposable. A group $G \subseteq \mathcal{A}(0)$ is finitely decomposable if G is n-decomposable for some n.

Proposition 1 The set $\mathcal{FD} \subseteq \mathcal{A}(0)$ of finitely decomposable automorphisms is an uncountable, proper subgroup of $\mathcal{A}(0)$ and every finitely generated group $G \subseteq \mathcal{FD}$ is finitely decomposable.

Theorem 1 For every finitely generated residually finite group G there is a changing alphabet X such that the group $\mathcal{A}(0) = Aut(X_{(0)}^*)$ contains a 1-decomposable subgroup isomorphic to G.

We present some constructions of finitely decomposable groups $G \subseteq \mathcal{A}(0)$ and describe their properties.

References

- [1] R. Grigorchuk, V. Nekrashevych, V. Sushchansky. *Automata, Dynamical Systems and Groups*. Proseedings of Steklov Institute of Mathematics, 231:128-203, 2000.
- [2] V. Nekrashevych. *Self-similar groups*, volume 117 in Mathematical Surveys and Monographs. Amer. Math. Soc., Providence, RI, 2005.
- [3] A. Woryna. On permutation groups generated by time-varying Mealy automata. Publ. Math. Debrecen, vol. 67/1-2 (2005), 115-130.
- [4] A. Woryna. On generation of wreath products of cyclic groups by two-state time-varying Mealy automata. Internat. J. of Algebra and Computation, vol. 16 (2) 2006 397-415.