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Comparing the cofinal structure of partial orders

Let (P, <) and (Q, <) be partially ordered sets.

Definition
f:P— Qis Tukey if AC P unbounbed = f(A) unbounded

@ P is Tukey reducible to @ if f exists.
P=<Q.

@ P and Q are Tukey equivalent if P < Q and Q@ <X P.
P~Q

Example: N

@ N < P iff P contains a sequence all of whose subsequences are
unbounded.

® P <N iff P has a countable cofinal set.
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Theorem (Fremlin 4+ Edgar,Wheeler)

If X is Banach space with separable dual, then
Q 7 (Bx)~ {0}, if X is reflexive,
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o Let o7 % (Bx)={L C Bx, L weakly compact} endowed with
multiple relations L <. L' if L C L'+ eBx.

o o/ ¥ (Bx) = o/ % (By) now means that there exist functions
fe : o/ # (Bx) — o/ # (By) such that

Ve 36 fo: (A H(Bx),<¢) — (A A (By),<s) is Tukey.

Theorem 2 (APR)

Under the axiom of analytic determinacy, either
Q /¢ (Bx) ~ {0},
Q@ o/ (Bx)~Nor o/ #(Bx)~NN (conjecture)
Q@ &4 (Bx)~#(Q)
Q ¥ (Bx) ~ Fin(R)

~ o~ o~ o~
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A H (Bx) ~
Q@ {0}, if X is reflexive,
@ NV if X is nonreflexive with PCP, like J*.
@ 7 (Q) if X has separable dual but not PCP, like cp.
Q@ Fin(R) if X has nonseparable dual but ¢; ¢ X.
@ N if X is nonreflexive SWCG space, like L1[0,1], ¢1(£>).
Q 7 (Q) if X =/{1(c).
Q@ Fin(R) if X = C[0,1].
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Axiom of analytic determinacy

For a set AC NV | consider the game G, in which Player | and
Player Il play alternatively natural numbers,and Player | wins if the
final sequence belongs to A.

@ From an ultrafilter, one gets a set A such that none of the
players a winning strategy on Ga.

@ |If Ais Borel, then one of the players has a winning strategy in
Ga

Axiom of Analytic Determinacy (X1D)

If A is either analytic or coanalytic, then one player has a winning
strategy in Gau.
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Let #(Bx) = {L C Bx, L weakly compact} ordered by C

Theorem 1 (APR)
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(X1D) If X is Banach, and A C X is countable, either

V.

In other models of set theory, there exists an unconditional basis A
not fitting in the list. More precisely, if there exists a coanalytic
set of size @, then there exists A with Z(A) ~ Fin(wy).
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(X£1D) If X is Banach, and A C X is countable, either
Q Z(A)~ {0}

(A) ~

H(A) ~
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@ Z(A) ~ Fin(R)

9%
0%

v

By Grothendieck, C € Z(A) iff limplimy, x5 (xm) = limp lim, x5 (xm)
when x,, € C.



Tukey classification of ¢ (Bx)

(X1D) If X is Banach, and A C X is countable, either

V.

By Grothendieck, C € Z(A) iff limplimy, x;:(xm) = limm lim, x5 (xm)
when x,, € C. This allows to express %Z(A) = I+ where | is an
analytic family of subsets of A.



Tukey classification of ¢ (Bx)

(X1D) If X is Banach, and A C X is countable, either

v

By Grothendieck, C € Z(A) iff limplimy, x5 (xm) = limm lim, x5 (xm)
when x,, € C. This allows to express Z(A) = I+ where [ is an
analytic family of subsets of A.

I+ ={aCcN:Vbel anbis finite}.



Combinatorial result behind Theorem 1

I ={acCN:Vbel anbis finite}

(X1D) If I is an analytic family of subsets of N, then /* is Tukey
equivalent to either {0}, N, NN, #/(Q) or Fin(R).

Proof:

@ By a modification of a result of Todorcevic, either we get a
special copy of the dyadic tree (gives Fin(R)) or / and I+ are
countably separated.

@ By results of A. and Todorcevic, if / and /* are countably
separated, we can identify /* with J#(E) and then apply
Fremlin's theorem.
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Non countably separated families

Theorem (essentially Todorcevic, via Feng)

(X1D) If I is analytic family of subsets of N,
O Either / and I+ are countably separated,

@ Or there exists an injective u: 2<® — N which sends
0-chains to / and 1-chains to /+

e Condition (1) is equivalent to /- = %Z(E) where E is separable
metrizable space containing N. This leads to Fremlin.

e Condition (2) leads to I+ ~ I ~ Fin(2?).
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e Let o7 # (Bx)={L C Bx,L weakly compact} endowed with
multiple relations L <¢ L' if L C L' +¢eBx.

o o/ ¥ (Bx) = o/ #(By) now means that there exist functions
fe 1 o/ # (Bx) — o/ # (By) such that
Ve 36 fo: (A H(Bx),<¢) — (o H (By),<s) is Tukey.

Theorem 2 (APR)

(X1D) For X separable, either
Q@ &% (Bx)~ {0},
@ N= /% (Bx) 3N
Q@ o (Bx)~ 2 (Q)
O . (Bx) ~ Fin(R)

v

Proof: Theorem 1 4+ Ramsey (Louveau, Milliken, A.-Todorcevic...)
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[llustration of the use of Ramsey

o At a stage, we have #(Q) < ¥ (Bx) and we want to prove
A (Q) = o/ # (Bx).

@ The proof of Theorem 1 provides an injection u:Q — Bx
that identifies relatively compact subsets of Q and relatively
weakly compact subsets of Bx.

e We want to find a homogeneous 6 > 0 such that u(S) is d-far
from weakly compact whenever S C Q is not rel. compact.

@ We would color S acording to the § necessary. Do we have a
Ramsey theorem that allows to homogenize? The one recently
found by A. and Todorcevic does the job.
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Unconditional bases

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family Ag of
closed and discrete subsets of E such that each infinite closed
discrete subset of E contains an infinite set from Ag.

From an adequate A one constructs an unconditional basis B(A)

with the norm
1Y Anenll =sup Y Al

ApcA

It happens that R(B(Ag)) ~ 2#(E) so one applies Fremlin. From
E with |E| = @1, one gets B with Z(B) ~ Fin(w;)



