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Comparing the cofinal structure of partial orders

Let (P,≤) and (Q,≤) be partially ordered sets.

Definition

f : P −→ Q is Tukey

if A⊂ P unbounbed ⇒ f (A) unbounded

1 P is Tukey reducible to Q if f exists.
P � Q.

2 P and Q are Tukey equivalent if P � Q and Q � P.
P ∼ Q

Example: N

1 N� P iff P contains a sequence all of whose subsequences are
unbounded.

2 P � N iff P has a countable cofinal set.
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Tukey classification of K (E )

Let K (E ) = {L⊂ E ,L compact} ordered by ⊂

Theorem(Fremlin)

Let E be a coanalytic separable metrizable space. Then, either

1 K (E )∼K ( /0)

∼ {0}, (E compact)

2 K (E )∼K (N)

∼ N, (E locally compact)

3 K (E )∼K (R\Q)

∼ NN, (E Polish)

4 K (E )∼K (Q)

If X is a Banach space with separable dual, (BX ,weak) is a
coanalytic metrizable space.
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Tukey classification of K (BX )

If X is a Banach space with separable dual, (BX ,weak) is a
coanalytic metrizable space.

Let K (BX ) = {L⊂ BX ,L weakly compact} ordered by ⊂

Theorem (Fremlin + Edgar,Wheeler)

If X is Banach space with separable dual, then

1 K (BX )∼ {0}, if X is reflexive,

2 K (BX )∼ NN if X is nonreflexive with PCP,

3 K (BX )∼K (Q) otherwise.
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Tukey classification of A K (BX )

Let A K (BX ) = {L⊂ BX ,L weakly compact}

endowed with
multiple relations L≤ε L

′ if L⊂ L′+ εBX .

A K (BX )�A K (BY ) now means that there exist functions
fε : A K (BX )−→A K (BY ) such that

∀ε ∃δ fε : (A K (BX ),≤ε )−→ (A K (BY ),≤δ ) is Tukey.
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Let A K (BX ) = {L⊂ BX ,L weakly compact} endowed with
multiple relations L≤ε L
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A K (BX )�A K (BY ) now means that there exist functions
fε : A K (BX )−→A K (BY ) such that
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A few examples

A K (BX )∼

1 {0}, if X is reflexive,

2 NN if X is nonreflexive with PCP, like J∗.
3 K (Q) if X has separable dual but not PCP, like c0.

4 Fin(R) if X has nonseparable dual but `1 6⊂ X .

5 N if X is nonreflexive SWCG space, like L1[0,1], `1(`2).

6 K (Q) if X = `1(c0).

7 Fin(R) if X = C [0,1].
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Axiom of analytic determinacy

For a set A⊂ NN , consider the game GA in which Player I and
Player II play alternatively natural numbers,and Player I wins if the
final sequence belongs to A.

1 From an ultrafilter, one gets a set A such that none of the
players a winning strategy on GA.

2 If A is Borel, then one of the players has a winning strategy in
GA

Axiom of Analytic Determinacy (Σ1
1D)

If A is either analytic or coanalytic, then one player has a winning
strategy in GA.
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Tukey classification of K (BX )

Let K (BX ) = {L⊂ BX ,L weakly compact} ordered by ⊂

Theorem 1 (APR)

(Σ1
1D) If X is separable Banach space, either

1 K (BX )∼ {0},
2 K (BX )∼ NN

3 K (BX )∼K (Q)

4 K (BX )∼ Fin(R)
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In other models of set theory, there exists an unconditional basis A
not fitting in the list. More precisely, if there exists a coanalytic
set of size ω1, then there exists A with R(A)∼ Fin(ω1).
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Tukey classification of K (BX )

Theorem 1a

(Σ1
1D) If X is Banach, and A⊂ X is countable, either

1 R(A)∼ {0},
2 R(A)∼ N
3 R(A)∼ NN

4 R(A)∼K (Q)

5 R(A)∼ Fin(R)

By Grothendieck, C ∈R(A) iff limn limm x∗n(xm) = limm limn x
∗
n(xm)

when xm ∈ C . This allows to express R(A) = I⊥ where I is an
analytic family of subsets of A.

I⊥ = {a⊂ N : ∀b ∈ I a∩b is finite}.



Combinatorial result behind Theorem 1

I⊥ = {a⊂ N : ∀b ∈ I a∩b is finite}

Theorem

(Σ1
1D) If I is an analytic family of subsets of N, then I⊥ is Tukey

equivalent to either {0}, N, NN, K (Q) or Fin(R).

Proof:

1 By a modification of a result of Todorcevic, either we get a
special copy of the dyadic tree (gives Fin(R)) or I and I⊥ are
countably separated.

2 By results of A. and Todorcevic, if I and I⊥ are countably
separated, we can identify I⊥ with K (E ) and then apply
Fremlin’s theorem.



The dyadic tree

The dyadic tree 2<ω is the set of finite sequences of 0’s and 1’s.

∅

0 1

00 01 10 11

001000 110010 011 100 101 111
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A 0-chain is a subset {x1,x2, . . .} ⊂ 2<ω in which xn+1 = x_n 0_yn
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The dyadic tree

A 1-chain is a subset {x1,x2, . . .} ⊂ 2<ω in which xn+1 = x_n 1_yn



Non countably separated families

Theorem (essentially Todorcevic, via Feng)

(Σ1
1D) If I is analytic family of subsets of N,

1 Either I and I⊥ are countably separated,

2 Or there exists an injective u : 2<ω −→ N which sends
0-chains to I and 1-chains to I⊥

Condition (1) is equivalent to I⊥ = R(E ) where E is separable
metrizable space containing N.

This leads to Fremlin.

Condition (2) leads to I⊥ ∼ I ∼ Fin(2ω ).
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(Σ1
1D) If I is analytic family of subsets of N,

1 Either I and I⊥ are countably separated,

2 Or there exists an injective u : 2<ω −→ N which sends
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Tukey classification of A K (BX )

Let A K (BX ) = {L⊂ BX ,L weakly compact}

endowed with
multiple relations L≤ε L

′ if L⊂ L′+ εBX .

A K (BX )�A K (BY ) now means that there exist functions
fε : A K (BX )−→A K (BY ) such that

∀ε ∃δ fε : (A K (BX ),≤ε )−→ (A K (BY ),≤δ ) is Tukey.

Theorem 2 (APR)

(Σ1
1D) For X separable, either

1 A K (BX )∼ {0},
2 N�A K (BX )� NN

3 A K (BX )∼K (Q)

4 A K (BX )∼ Fin(R)

Proof: Theorem 1 + Ramsey (Louveau, Milliken, A.-Todorcevic...)
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Illustration of the use of Ramsey

At a stage, we have K (Q)�K (BX ) and we want to prove
K (Q)�A K (BX ).

The proof of Theorem 1 provides an injection u : Q−→ BX

that identifies relatively compact subsets of Q and relatively
weakly compact subsets of BX .

We want to find a homogeneous δ > 0 such that u(S) is δ -far
from weakly compact whenever S ⊂Q is not rel. compact.

We would color S acording to the δ necessary. Do we have a
Ramsey theorem that allows to homogenize? The one recently
found by A. and Todorcevic does the job.
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Unconditional bases

Question

How to produce unconditional bases B such that R(B) is Tukey
equivalent to any of {0}, N, NN, K (Q), Fin(R)?

Definition

An adequate family A is a family of sets such that a ∈ A iff all
finite subsets of a belong to A.

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family A of closed
and discrete subsets of E

such that each infinite closed discrete
subset of E contains an infinite set from A.



Unconditional bases

Question

How to produce unconditional bases B such that R(B) is Tukey
equivalent to any of {0}, N, NN, K (Q), Fin(R)?

Definition

An adequate family A is a family of sets such that a ∈ A iff all
finite subsets of a belong to A.

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family A of closed
and discrete subsets of E

such that each infinite closed discrete
subset of E contains an infinite set from A.



Unconditional bases

Question

How to produce unconditional bases B such that R(B) is Tukey
equivalent to any of {0}, N, NN, K (Q), Fin(R)?

Definition

An adequate family A is a family of sets such that a ∈ A iff all
finite subsets of a belong to A.

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family A of closed
and discrete subsets of E

such that each infinite closed discrete
subset of E contains an infinite set from A.



Unconditional bases

Question

How to produce unconditional bases B such that R(B) is Tukey
equivalent to any of {0}, N, NN, K (Q), Fin(R)?

Definition

An adequate family A is a family of sets such that a ∈ A iff all
finite subsets of a belong to A.

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family A of closed
and discrete subsets of E such that each infinite closed discrete
subset of E contains an infinite set from A.



Unconditional bases

Definition

An adequate family A is a family of sets such that a ∈ A iff all
finite subsets of a belong to A.

Theorem (A., based on Talagrand)

Iff E is coanalytic, then there exists an adequate family AE of
closed and discrete subsets of E such that each infinite closed
discrete subset of E contains an infinite set from AE .

From an adequate A one constructs an unconditional basis B(A)
with the norm
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It happens that R(B(AE ))∼K (E ) so one applies Fremlin. From
E with |E |= ω1, one gets B with R(B)∼ Fin(ω1)
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