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E(X) = {Zzozo Xp€En - (En)nEw € {07 1}w}
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E(X) = {Zzozo Xp€En - (En)new € {07 1}w}
Theorem (Kakeya)

For any sequence x € I \ cpo

1. E(x) is a perfect compact set.

2. If |xn| > > s, |xi| for almost all n, then E(x) is
homeomorphic to the ternary Cantor set.

3. If |xn| < X s, |Xi| for almost all n, then E(x) is a finite union
of closed intervals. In the case of non-increasing sequence x,
the last inequality is also necessary for E(x) to be a finite
union of intervals.
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Theorem

For any sequence x € I \ coo, E(x) is one of the following sets:
1. a finite union of closed intervals;
2. homeomorphic to the Cantor set;
3. homeomorphic to the set T = E(c) for the sequence

¢= (5+(47;1)"):o:1

T. Banakh, A. Bartoszewicz, M. Filipczak, E. Szymonik Properties of some self-similar sets



We call a sequence multigeometric if it is of the form
(k07 kl7 SRR km7 k0q7 qu7 sy kmqa k0q27 k1q27 ceey kmq27 k0q3 s )

for some positive numbers ko, ..., kn and g € (0,1).
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a=(8,7,6,54; 1)
b=(7,6,5,4,3; %)
c=(3,2 %)

d=(3,2,2,2; i55)
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K(%iq) = {i anq” : (an)pzo € Z“’}
n=0
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Zq)—{Zanq annoezw}

K(X; g) can be found as a unique compact solution K C R of the
equation K =¥ + gK.
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K(X; q) = {Zanq annoezw}

K(X; g) can be found as a unique compact solution K C R of the
equation K =¥ + gK.

— {i knen : (€n)n=o € {0, 1}m+1}
=0
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Given a compact subset A C R containing more than one point let
diam A = sup{|a— b| : a,b € A}
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Given a compact subset A C R containing more than one point let
diam A = sup{|a— b| : a,b € A}

0(A)=inf{la—b|:a,be A, a# b}
A(A) =sup{la—b|:a,be A, (a,b)NA=10}
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Given a compact subset A C R containing more than one point let
diam A = sup{|a— b| : a,b € A}

0(A)=inf{la—b|:a,be A, a# b}
A(A) =sup{la—b|:a,be A, (a,b)NA=10}

N\ G))
1(4) = A(A) + diam A’
i(A) =inf{l/(B): BC A, 2<|B|<w}.
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Given a compact subset A C R containing more than one point let

diam A = sup{|a— b| : a,b € A}

0(A)=inf{la—b|:a,be A, a# b}
A(A) =sup{la—b|:a,be A, (a,b)NA=10}

N\ G))
1(4) = A(A) + diam A’
i(A) =inf{l/(B): BC A, 2<|B|<w}.

In particular, given a finite subset ¥ C R of cardinality || > 2, we
will write it as ¥ = {o1,...,0s} for real numbers o1 < -+ < 0.
Then we have

diam(X) = 05 — 01, d(X) = min(oi41 — o),
i<s

A(Z) = max(a,-+1 — O',').
i<s
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Theorem
Let ¥ = {o1,...,0s} for some real numbers o1 < --- < 0s. Then:

1. K(X;q) is an interval if and only if ¢ > I(X);
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Theorem
Let ¥ = {o1,...,0s} for some real numbers o1 < --- < 0s. Then:
1. K(X;q) is an interval if and only if ¢ > I(X);

2. K(X; q) is not a finite union of intervals if g < I(X) and
A(Z) € {02 — 01,05 — Us—l}f
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Theorem
Let ¥ = {o1,...,0s} for some real numbers o1 < --- < 0s. Then:
1. K(X;q) is an interval if and only if ¢ > I(X);

2. K(X; q) is not a finite union of intervals if g < I(X) and
A(X) € {02 — 01,05 —0s_1};
3. K(X; q) contains an interval if ¢ > i(X);
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Theorem
Let ¥ = {o1,...,0s} for some real numbers o1 < --- < 0s. Then:

1.
2.

K(X; q) is an interval if and only if ¢ > I(X);

K(X; q) is not a finite union of intervals if ¢ < I(¥X) and
A(Z) € {02 — 01,05 — Us—l}f
K(X; q) contains an interval if ¢ > i(X);

_ _x) 1 1 _ _Vd_
Ifd = Tam() < 372073 and = < Tva then for almost all
qge (\ZI 1!\%) the set K(X; q) has positive Lebesgue

measure and the set K(X;/q) contains an interval;
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Theorem
Let ¥ = {o1,...,0s} for some real numbers o1 < --- < 0s. Then:

1.
2.

K(X; q) is an interval if and only if ¢ > I(X);

K(X; q) is not a finite union of intervals if ¢ < I(¥X) and
A(Z) € {02 — 01,05 — Us—l}f
K(X; q) contains an interval if ¢ > i(X);

_ _x) 1 1 _ _Vd_
Ifd = Tam() < 372073 and = < Tva then for almost all
qge (\ZI 1!\%) the set K(X; q) has positive Lebesgue

measure and the set K(X;/q) contains an interval;
K(X; q) is a Cantor set of zero Lebesgue measure if g < ﬁ

or, more generally, if ¢" < \Tlnl for some n € N where
Lo ={XhZoaq" : (ak)ig € ="}
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Theorem
Let ¥ = {o1,...,0s} for some real numbers o1 < --- < 0s. Then:

1.
2.

K(X; q) is an interval if and only if ¢ > I(X);

K(X; q) is not a finite union of intervals if ¢ < I(¥X) and
A(Z) € {02 — 01,05 — Us—l}f
K(X; q) contains an interval if ¢ > i(X);

_ _x) 1 1 _ _Vd_
Ifd = Tam() < 372073 and = < Tva then for almost all
qge (\ZI 1!\%) the set K(X; q) has positive Lebesgue

measure and the set K(X;/q) contains an interval;

K(X; q) is a Cantor set of zero Lebesgue measure if g < ﬁ
or, more generally, if ¢" < \Tlnl for some n € N where

Yo = { koo k" : (a)ig € T}
Ifyo>{a,a+1,b+1,c+1,b+|X|,c+|X|} for some real

numbers a, b, c € R with b # c, then there is a strictly
decreasing sequence (qn)new with lim,_o0 gn = ﬁ such that

the sets K(X; qn) has Lebesgue mesure zero.
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Multigeometric sequences of the form
(k+m,....k+1kq)

with m > k we will call Ferens-like sequences. The achievement
set E (x) for a Ferens-like sequence coincides with the self-similar
set K(X; q) for the set

Y ={0,k,k+1,....,n—k,n},

where n = (m+ 1)(2k + m)/2. Sets K (¥; q) with X of this form
will be called Ferens-like fractals.
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xg = (4,3,2;q)
T =1{0,2,3,4,5,6,7,9}
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xg = (4,3,2;q)
T =1{0,2,3,4,5,6,7,9}
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xq = (6,5,4,3;q)
Y =1{0,3,...,15,18}
| =15

T. Banakh, A. Bartoszewicz, M. Filipczak, E. Szymonik Properties of some self-similar sets



xq = (6,5,4,3;q)
Y =1{0,3,...,15,18}
| =15
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