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Notation

Throughout X is a complex Banach space, G be a compact abelian group, B(G) for
the Borel σ -algebra of G , mG for the Haar measure of the group, Lp(G) the space of
mesurable functions such that

∫
G |f |pdmG < ∞.

(M (G ,X ),‖ · ‖) stands for the space of regular vector measures normed with the
semivariation and Mac (G ,X ) for those such that ν <<mG .
M (G ,X ) coincides with W C (C(G),X ), i.e. we identify ν with a weakly compact
operator Tν : C(G)→ X and denote Tν (φ) =

∫
G φdν. Moreover ‖Tν‖= ‖ν‖.

Let 1 < p ≤ ∞. A measure ν is said to have bounded p-semivariation with respect to
mG if

‖ν‖p,mG
= sup

{∥∥∥∥∥∑
A∈π

αAν(A)

∥∥∥∥∥
X

: π partition ,‖ ∑
A∈π

αAχA‖Lp′ (G)
≤ 1

}
. (1.1)

The case p = ∞ corresponds to ‖ν(A)‖ ≤ CmG (A) for A ∈B(G) for some constant C
and ‖ν‖∞,λ is the infimum of such constants. We use the notation Mp(G ,X ) and this

space can be identify with L (Lp
′
(G),X ) and ‖ν‖p,mG

= ‖Tν‖Lp′ (G),X
.
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Motivation (part 1)

L(ν) for the space of functions integrable with respect to a vector measure ν. If
f ∈ L1(ν) we denote

νf (A) =
∫
A
fdν .

Then νf is a vector measure and ‖νf ‖= ‖f ‖L1(ν). We write Iν the integration

operator, i.e. Iν : L1(ν)→ X is defined by Iν (f ) = νf (G) =
∫
G fdν

Delgado y Miana (2009) introduced the notion of ”norm integral translation invariant”
vector measures, as those satisfying

‖Iν (τaφ)‖= ‖Iν (φ)‖,φ ∈ simple function ,a ∈ G (1.2)

where τa(φ)(s) = φ(s−a).
For any norm integral translation invariant measure ν such that ν <<mG they showed
that L1(ν)⊂ L1(G). Hence convolution and Fourier transform of functions in L1(ν)
are well defined.
They showed that if f ∈ L1(G) and g ∈ Lp(ν) then f ∗g ∈ Lp(ν) for 1≤ p < ∞.

Is there any weaker condition than the ”norm integral translation invariant”
which still allows the convolution to be developed for functions on L1(ν)?

Can one define convolution between general vector-measures and recover their
results when applied to νf for f ∈ L1(ν)?
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Motivation (part 2)

The Fourier transform of f ∈ L1(ν) was introduced by Calabuig, Galaz, Navarrete y
Sanchez-Perez (2013) as the X -valued function

f̂ ν (γ) =
∫
G
f (t)γ(t)dν(t),γ ∈ Γ (1.3)

where Γ is the dual group of G and ν is a vector measure.

They showed, under the assumption ν <<mG , that the fact f̂ ν ∈ c0(Γ,X ) for any
f ∈ L1(ν) iff χ̂G

ν ∈ c0(Γ,X )
They wanted to analyze the validity of Riemman-lebesgue lemma in this setting and
left open the following questions:
(a) Are there Banach spaces where χ̂ν

G ∈ c0(Γ,X ) for any vector measure with
ν <<mG ?.
(b) Are there natural subclasses of vector measures where Riemman-Lebesgue lemma
holds?
(c) Are there classes of operators that transform vector measures in vector measures
satisfying Riemman-Lebesgue lemma?
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Fourier transform of a vector measure. Riemman-Lebesgue lemma.

Let ν be a vector measure. We define the Fourier transform by

ν̂(γ) = Iν (γ̄) =
∫
G

γ̄dν .

Denote
M0(G ,X ) = {ν ∈Mac (G ,X ) : ν̂ ∈ c0(Γ,X )}

Does it hold the Riemman-Lebesgue Lemma: Mac (G ,X ) = M0(G ,X ).?
Of course NO! Let G = T, X = `2(Z) and ν(A) = (χ̂A(n))n∈Z. Clearly

Tν : C(T)→ `2(Z) corresponds T (f ) = (f̂ (n))n∈Z . Hence ν̂(n) = en where (en) is the
canonical basis and ‖ν̂(n)‖= 1 for each n ∈ Z.
However....

ν ∈Mac (G ,X ) =⇒ 〈ν̂ ,x ′〉 ∈ co(Γ), x ′ ∈ X ′. (2.1)
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Solutions to the questions

Answering question (a): M0(G ,X ) = Mac (G ,X ) if and only if X is finite dimensional.

Proposition

Let X be an infinite dimensional Banach space and G = T. There exists a regular
vector measure ν : B(T)→ X such that ν <<mT and ν̂ /∈ c0(Z,X ).

Some classes where it holds:

Proposition

If ν ∈Mac (G ,X ) and ν has relatively compact range then ν ∈M0(G ,X ).

Some operators that play a role:

Proposition

Let T : X → Y be a completely continuous operator (i.e. it maps it maps weakly
convergent sequences in X into norm convergent sequences in Y ) and ν ∈Mac (G ,X ).
Then T (ν) ∈M0(G ,Y ).
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Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?

Denote V 1(G ,X ) the subspace of Mac (G ,X ) with |ν |(G) < ∞. Does it hold that
V 1(G ,X )⊂M0(G ,X )?.
Again the answer is NO! Let G = T, X = L1(T) and ν(A) = χA. Clearly
Tν : C(T)→ L1(T) corresponds to the inclusion map. Hence ν̂(n) = φn where
φn(t) = e int and ‖ν̂(n)‖= 1 for each n ∈ Z.
However if X has the Radon Nikodym property then V 1(G ,X )⊂M0(G ,X ), since

dν = fdmG with f ∈ L1(G ,X ) and ν̂(n) = f̂(n) =
∫
T f(e it)e−intdt for n ∈ Z, which

belongs to co(Z,X ).

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on
G (in short, X ∈ (RLP)G ) if any vector measure ν satisfying ν <<mG and |ν |(G) < ∞

satisfies that ν̂ ∈ c0(Γ,X ), i.e. V 1(G ,X )⊂M0(G ,X ) .

A related property RLP (defined for functions instead of measures and G = T) but
weaker was introduced and studied by Bu and Chill (2002).

(RNP) =⇒ (wRNP) =⇒ (CCP) =⇒ (RLP).

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?
Denote V 1(G ,X ) the subspace of Mac (G ,X ) with |ν |(G) < ∞.

Does it hold that
V 1(G ,X )⊂M0(G ,X )?.
Again the answer is NO! Let G = T, X = L1(T) and ν(A) = χA. Clearly
Tν : C(T)→ L1(T) corresponds to the inclusion map. Hence ν̂(n) = φn where
φn(t) = e int and ‖ν̂(n)‖= 1 for each n ∈ Z.
However if X has the Radon Nikodym property then V 1(G ,X )⊂M0(G ,X ), since

dν = fdmG with f ∈ L1(G ,X ) and ν̂(n) = f̂(n) =
∫
T f(e it)e−intdt for n ∈ Z, which

belongs to co(Z,X ).

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on
G (in short, X ∈ (RLP)G ) if any vector measure ν satisfying ν <<mG and |ν |(G) < ∞

satisfies that ν̂ ∈ c0(Γ,X ), i.e. V 1(G ,X )⊂M0(G ,X ) .

A related property RLP (defined for functions instead of measures and G = T) but
weaker was introduced and studied by Bu and Chill (2002).

(RNP) =⇒ (wRNP) =⇒ (CCP) =⇒ (RLP).

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?
Denote V 1(G ,X ) the subspace of Mac (G ,X ) with |ν |(G) < ∞. Does it hold that
V 1(G ,X )⊂M0(G ,X )?.

Again the answer is NO! Let G = T, X = L1(T) and ν(A) = χA. Clearly
Tν : C(T)→ L1(T) corresponds to the inclusion map. Hence ν̂(n) = φn where
φn(t) = e int and ‖ν̂(n)‖= 1 for each n ∈ Z.
However if X has the Radon Nikodym property then V 1(G ,X )⊂M0(G ,X ), since

dν = fdmG with f ∈ L1(G ,X ) and ν̂(n) = f̂(n) =
∫
T f(e it)e−intdt for n ∈ Z, which

belongs to co(Z,X ).

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on
G (in short, X ∈ (RLP)G ) if any vector measure ν satisfying ν <<mG and |ν |(G) < ∞

satisfies that ν̂ ∈ c0(Γ,X ), i.e. V 1(G ,X )⊂M0(G ,X ) .

A related property RLP (defined for functions instead of measures and G = T) but
weaker was introduced and studied by Bu and Chill (2002).

(RNP) =⇒ (wRNP) =⇒ (CCP) =⇒ (RLP).

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?
Denote V 1(G ,X ) the subspace of Mac (G ,X ) with |ν |(G) < ∞. Does it hold that
V 1(G ,X )⊂M0(G ,X )?.
Again the answer is NO!

Let G = T, X = L1(T) and ν(A) = χA. Clearly
Tν : C(T)→ L1(T) corresponds to the inclusion map. Hence ν̂(n) = φn where
φn(t) = e int and ‖ν̂(n)‖= 1 for each n ∈ Z.
However if X has the Radon Nikodym property then V 1(G ,X )⊂M0(G ,X ), since

dν = fdmG with f ∈ L1(G ,X ) and ν̂(n) = f̂(n) =
∫
T f(e it)e−intdt for n ∈ Z, which

belongs to co(Z,X ).

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on
G (in short, X ∈ (RLP)G ) if any vector measure ν satisfying ν <<mG and |ν |(G) < ∞

satisfies that ν̂ ∈ c0(Γ,X ), i.e. V 1(G ,X )⊂M0(G ,X ) .

A related property RLP (defined for functions instead of measures and G = T) but
weaker was introduced and studied by Bu and Chill (2002).

(RNP) =⇒ (wRNP) =⇒ (CCP) =⇒ (RLP).

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?
Denote V 1(G ,X ) the subspace of Mac (G ,X ) with |ν |(G) < ∞. Does it hold that
V 1(G ,X )⊂M0(G ,X )?.
Again the answer is NO! Let G = T, X = L1(T) and ν(A) = χA.

Clearly
Tν : C(T)→ L1(T) corresponds to the inclusion map. Hence ν̂(n) = φn where
φn(t) = e int and ‖ν̂(n)‖= 1 for each n ∈ Z.
However if X has the Radon Nikodym property then V 1(G ,X )⊂M0(G ,X ), since

dν = fdmG with f ∈ L1(G ,X ) and ν̂(n) = f̂(n) =
∫
T f(e it)e−intdt for n ∈ Z, which

belongs to co(Z,X ).

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on
G (in short, X ∈ (RLP)G ) if any vector measure ν satisfying ν <<mG and |ν |(G) < ∞

satisfies that ν̂ ∈ c0(Γ,X ), i.e. V 1(G ,X )⊂M0(G ,X ) .

A related property RLP (defined for functions instead of measures and G = T) but
weaker was introduced and studied by Bu and Chill (2002).

(RNP) =⇒ (wRNP) =⇒ (CCP) =⇒ (RLP).

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?
Denote V 1(G ,X ) the subspace of Mac (G ,X ) with |ν |(G) < ∞. Does it hold that
V 1(G ,X )⊂M0(G ,X )?.
Again the answer is NO! Let G = T, X = L1(T) and ν(A) = χA. Clearly
Tν : C(T)→ L1(T) corresponds to the inclusion map. Hence ν̂(n) = φn where
φn(t) = e int and ‖ν̂(n)‖= 1 for each n ∈ Z.

However if X has the Radon Nikodym property then V 1(G ,X )⊂M0(G ,X ), since

dν = fdmG with f ∈ L1(G ,X ) and ν̂(n) = f̂(n) =
∫
T f(e it)e−intdt for n ∈ Z, which

belongs to co(Z,X ).

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on
G (in short, X ∈ (RLP)G ) if any vector measure ν satisfying ν <<mG and |ν |(G) < ∞

satisfies that ν̂ ∈ c0(Γ,X ), i.e. V 1(G ,X )⊂M0(G ,X ) .

A related property RLP (defined for functions instead of measures and G = T) but
weaker was introduced and studied by Bu and Chill (2002).

(RNP) =⇒ (wRNP) =⇒ (CCP) =⇒ (RLP).

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?
Denote V 1(G ,X ) the subspace of Mac (G ,X ) with |ν |(G) < ∞. Does it hold that
V 1(G ,X )⊂M0(G ,X )?.
Again the answer is NO! Let G = T, X = L1(T) and ν(A) = χA. Clearly
Tν : C(T)→ L1(T) corresponds to the inclusion map. Hence ν̂(n) = φn where
φn(t) = e int and ‖ν̂(n)‖= 1 for each n ∈ Z.
However if X has the Radon Nikodym property then V 1(G ,X )⊂M0(G ,X ), since

dν = fdmG with f ∈ L1(G ,X ) and ν̂(n) = f̂(n) =
∫
T f(e it)e−intdt for n ∈ Z, which

belongs to co(Z,X ).

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on
G (in short, X ∈ (RLP)G ) if any vector measure ν satisfying ν <<mG and |ν |(G) < ∞

satisfies that ν̂ ∈ c0(Γ,X ), i.e. V 1(G ,X )⊂M0(G ,X ) .

A related property RLP (defined for functions instead of measures and G = T) but
weaker was introduced and studied by Bu and Chill (2002).

(RNP) =⇒ (wRNP) =⇒ (CCP) =⇒ (RLP).

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?
Denote V 1(G ,X ) the subspace of Mac (G ,X ) with |ν |(G) < ∞. Does it hold that
V 1(G ,X )⊂M0(G ,X )?.
Again the answer is NO! Let G = T, X = L1(T) and ν(A) = χA. Clearly
Tν : C(T)→ L1(T) corresponds to the inclusion map. Hence ν̂(n) = φn where
φn(t) = e int and ‖ν̂(n)‖= 1 for each n ∈ Z.
However if X has the Radon Nikodym property then V 1(G ,X )⊂M0(G ,X ), since

dν = fdmG with f ∈ L1(G ,X ) and ν̂(n) = f̂(n) =
∫
T f(e it)e−intdt for n ∈ Z, which

belongs to co(Z,X ).

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on
G (in short, X ∈ (RLP)G ) if any vector measure ν satisfying ν <<mG and |ν |(G) < ∞

satisfies that ν̂ ∈ c0(Γ,X ), i.e. V 1(G ,X )⊂M0(G ,X ) .

A related property RLP (defined for functions instead of measures and G = T) but
weaker was introduced and studied by Bu and Chill (2002).

(RNP) =⇒ (wRNP) =⇒ (CCP) =⇒ (RLP).

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?
Denote V 1(G ,X ) the subspace of Mac (G ,X ) with |ν |(G) < ∞. Does it hold that
V 1(G ,X )⊂M0(G ,X )?.
Again the answer is NO! Let G = T, X = L1(T) and ν(A) = χA. Clearly
Tν : C(T)→ L1(T) corresponds to the inclusion map. Hence ν̂(n) = φn where
φn(t) = e int and ‖ν̂(n)‖= 1 for each n ∈ Z.
However if X has the Radon Nikodym property then V 1(G ,X )⊂M0(G ,X ), since

dν = fdmG with f ∈ L1(G ,X ) and ν̂(n) = f̂(n) =
∫
T f(e it)e−intdt for n ∈ Z, which

belongs to co(Z,X ).

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on
G (in short, X ∈ (RLP)G ) if any vector measure ν satisfying ν <<mG and |ν |(G) < ∞

satisfies that ν̂ ∈ c0(Γ,X ), i.e. V 1(G ,X )⊂M0(G ,X ) .

A related property RLP (defined for functions instead of measures and G = T) but
weaker was introduced and studied by Bu and Chill (2002).

(RNP) =⇒ (wRNP) =⇒ (CCP) =⇒ (RLP).

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?
Denote V 1(G ,X ) the subspace of Mac (G ,X ) with |ν |(G) < ∞. Does it hold that
V 1(G ,X )⊂M0(G ,X )?.
Again the answer is NO! Let G = T, X = L1(T) and ν(A) = χA. Clearly
Tν : C(T)→ L1(T) corresponds to the inclusion map. Hence ν̂(n) = φn where
φn(t) = e int and ‖ν̂(n)‖= 1 for each n ∈ Z.
However if X has the Radon Nikodym property then V 1(G ,X )⊂M0(G ,X ), since

dν = fdmG with f ∈ L1(G ,X ) and ν̂(n) = f̂(n) =
∫
T f(e it)e−intdt for n ∈ Z, which

belongs to co(Z,X ).

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on
G (in short, X ∈ (RLP)G ) if any vector measure ν satisfying ν <<mG and |ν |(G) < ∞

satisfies that ν̂ ∈ c0(Γ,X ), i.e. V 1(G ,X )⊂M0(G ,X ) .

A related property RLP (defined for functions instead of measures and G = T) but
weaker was introduced and studied by Bu and Chill (2002).

(RNP) =⇒ (wRNP) =⇒ (CCP) =⇒ (RLP).

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Convolution of measures

Definition

Let ν be a vector valued measure and µ ∈M(G) we define the vector valued set
function µ ∗ν(A) given by

µ ∗ν(A) =
∫
G

µ(A+ t)dν(t) = Iν (
∫
G

τt(χA)dµ),A ∈B(G).

If dµf = fdmG for f ∈ L1(G) and dνg = gdmG with g ∈ L1(G ,X ) then
d(µf ∗νg) = (f ∗g)dmG where f ∗g ∈ L1(G ,X ) with

f ∗g(s) =
∫
G
f (s− t)g(t)dmG (t) =

∫
G
f (t)g(s− t)dmG (t), mG −a.e.

µ ∗ν is a vector measure and ‖µ ∗ν‖ ≤ |µ|(G)‖ν‖.
If ν ∈M (G ,X ) then µ ∗ν ∈M (G ,X ).

µ̂ ∗ν(γ) = ˆ̄µ(γ)ν̂(γ), γ ∈ Γ.
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Convolution betwen functions and vector measures

We denote C(G ,X ) the space of X -valued continuous functions and L1(G ,X ) the
Bochner integrable functions.

For each f ∈ L1(G), f ∈ L1(G ,X ) set

µf (A) =
∫
A
fdmG , νf (A) =

∫
A

fdmG ∈ V 1(G ,X ).

If ν is a vector measure and f ∈ L1(G) we write that f ∗ν for µf ∗ν and say that
f ∗ν ∈ C(G ,X ) whenever there exists fν ∈ C(G ,X ) such that νfν

= µf ∗ν, that is
d(f ∗ν) = fνdmG .
For each 1≤ p ≤ ∞ and g ∈ C(G ,X ) we denote

‖g‖Pp(G ,X ) = ‖νg‖p,mG
= sup
‖x ′‖=1

‖〈g,x ′〉‖Lp(G). (3.1)

We define Pp(G ,X ) the closure of C(G ,X ) in Mp(G ,X ) for 1≤ p ≤ ∞ where we
understand M1(G ,X ) = M (G ,X ).

If f ∈ C(G) then f ∗ν ∈ C(G ,X ) and ‖f ∗ν‖C(G ,X ) ≤ ‖f ‖C(G)‖ν‖.

If f ∈ L1(G) then f ∗ν ∈ P1(G ,X ) and ‖f ∗ν‖P1(G ,X ) ≤ ‖f ‖L1(G)‖ν‖.
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Young’s convolution type results

If f ∈ Lp(G) then f ∗ν ∈ Pp(G ,X ). Moreover ‖f ∗ν‖Pp(G ,X ) ≤ ‖f ‖Lp(G)‖ν‖.

If ν ∈Mp(G ,X ) and f ∈ Lp
′
(G) then f ∗ν ∈ C(G ,X ) and

‖f ∗ν‖C(G ,X ) ≤ ‖f ‖Lp′ (G)
‖ν‖p,mG

,1 < p < ∞.

If ν ∈Mac (G ,X ) and f ∈ L∞(G) then f ∗ν ∈ C(G ,X ) and
‖f ∗ν‖C(G ,X ) ≤ ‖f ‖L∞(G)‖ν‖.
If ν ∈Mp(G ,X ) and f ∈ Lq(G) with q′ > p then f ∗ν ∈ Pr (G ,X ) for
1/r = 1/p−1/q′. Moreover ‖f ∗ν‖Pr (G ,X ) ≤ ‖f ‖Lqq(G)‖ν‖p,mG

.

In (CGNS) for f ∈ L1(G) and g ∈ L1(ν) it was defined

f ∗ν g(t) =
∫
G
f (t− s)g(s)dν(s)

whenever f (t− s)g(s) ∈ L1(ν).

(CGNS) If f ∈ Lp(G) and g ∈ L1(ν) then f ∗ν g ∈ Pp(G ,X ).

If ν ∈Mp1 (G ,X ), g ∈ Lp2 (G) and f ∈ Lp3 (ν) with 1
p1

+ 1
p2
≤ 1 and

1
p1

+ 1
p2

+ 1
p3
≥ 1 then f ∗ν g ∈ Pr (G ,X ) for 1

p1
+ 1

p2
+ 1

p3
= 1

r ′ .
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Invariance under homeomorphisms

Let ν be a vector measure, f measurable and an homeomorphism H : G → G , let us
define

fH(s) = f (H−1s) and νH(A) = ν(H(A)),A ∈B(G).

As usual for translations and reflection the function fH will be denoted
τaf (s) = fa(s) = f (s−a) and f̃ (s) = f (−s).
Let ν be a vector measure and H a family of homeomorphisms H : G → G . We say
that ν is

H - invariant whenever νH = ν for any H ∈H , i.e.
IνH (f ) = Iν (f ), f ∈ simple function

[3, 2]”norm integral H -invariant” whenever

‖IνH (f )‖= ‖Iν (f )‖, f ∈ simple function ,H ∈H .

”semivariation H -invariant” whenever

‖νf ‖= ‖(νH)f ‖, f simple function ,H ∈H .
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Some description of such invariant properties

Let ν ∈M (G ,X ) with ν(G) 6= 0. Then ν is translation invariant if and only if
ν = ν(G)mG .

The standard Lp(G)-valued measure ν(A) = χA is norm integral translation
invariant.

Let ν ∈M (G ,X ) and let H : G → G be an homeomorphism. The following
statements are equivalent:
(i) ν is semivariation H-invariant.
(ii) L1(ν) = L1(νH) isometrically.
(iii) ‖TνH

◦Mf ‖= ‖Tν ◦Mf ‖,∀f ∈ C(G) where Mf : C(G)→ C(G) the
multiplication operator g → fg .

Let 1≤ p < ∞ and let ν ∈M (G ,X ) be semivariation translation invariant with
ν(G) 6= 0. Then Lp(ν)⊂ Lp(G) and

‖f ‖Lp(G) ≤ ‖f ‖Lp(ν)‖ν(G)‖−1/p .
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Semivariation invariant measures

Proposition

Let νf (A) =
∫
A f(s)dmG (s) with f ∈ L∞(G ,X ) non constant function satisfying that

‖f(t)‖= 1, t ∈ G and there exists A ∈B(G) and a ∈ G for which
νf (A) = 0, νf (A+a) 6= 0. Then νf is semivariation translation invariant but not norm
integral translation invariant.

Proof.

Note that τtνf = ντt f and τt f ∈ L∞(G ,X ) for each t ∈ G . In particular τtνf is of
bounded variation and d |τtνf |= τt‖f‖dmG = dmG . Hence L1(ν) = L1(τtν) = L1(mG )
for any t ∈ G . Hence ν is semivariation translation invariant.
On the other hand Iν (g) =

∫
G g fdmG and we have ‖Iν (τaχA)‖ 6= 0 while ‖Iν (χA)‖= 0.

�

X = C, G = T, f(s) = χ[0,1/2)(e2π is)−χ[1/2,1)(e2π is), A = {e2π is : 1/4≤ s < 3/4} and

a = e iπ/2) to have a particular example.

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Semivariation invariant measures

Proposition

Let νf (A) =
∫
A f(s)dmG (s) with f ∈ L∞(G ,X ) non constant function satisfying that

‖f(t)‖= 1, t ∈ G and there exists A ∈B(G) and a ∈ G for which
νf (A) = 0, νf (A+a) 6= 0. Then νf is semivariation translation invariant but not norm
integral translation invariant.

Proof.

Note that τtνf = ντt f and τt f ∈ L∞(G ,X ) for each t ∈ G . In particular τtνf is of
bounded variation and d |τtνf |= τt‖f‖dmG = dmG . Hence L1(ν) = L1(τtν) = L1(mG )
for any t ∈ G . Hence ν is semivariation translation invariant.

On the other hand Iν (g) =
∫
G g fdmG and we have ‖Iν (τaχA)‖ 6= 0 while ‖Iν (χA)‖= 0.

�

X = C, G = T, f(s) = χ[0,1/2)(e2π is)−χ[1/2,1)(e2π is), A = {e2π is : 1/4≤ s < 3/4} and

a = e iπ/2) to have a particular example.

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Semivariation invariant measures

Proposition

Let νf (A) =
∫
A f(s)dmG (s) with f ∈ L∞(G ,X ) non constant function satisfying that

‖f(t)‖= 1, t ∈ G and there exists A ∈B(G) and a ∈ G for which
νf (A) = 0, νf (A+a) 6= 0. Then νf is semivariation translation invariant but not norm
integral translation invariant.

Proof.

Note that τtνf = ντt f and τt f ∈ L∞(G ,X ) for each t ∈ G . In particular τtνf is of
bounded variation and d |τtνf |= τt‖f‖dmG = dmG . Hence L1(ν) = L1(τtν) = L1(mG )
for any t ∈ G . Hence ν is semivariation translation invariant.
On the other hand Iν (g) =

∫
G g fdmG and we have ‖Iν (τaχA)‖ 6= 0 while ‖Iν (χA)‖= 0.

�

X = C, G = T, f(s) = χ[0,1/2)(e2π is)−χ[1/2,1)(e2π is), A = {e2π is : 1/4≤ s < 3/4} and

a = e iπ/2) to have a particular example.

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Semivariation invariant measures

Proposition

Let νf (A) =
∫
A f(s)dmG (s) with f ∈ L∞(G ,X ) non constant function satisfying that

‖f(t)‖= 1, t ∈ G and there exists A ∈B(G) and a ∈ G for which
νf (A) = 0, νf (A+a) 6= 0. Then νf is semivariation translation invariant but not norm
integral translation invariant.

Proof.

Note that τtνf = ντt f and τt f ∈ L∞(G ,X ) for each t ∈ G . In particular τtνf is of
bounded variation and d |τtνf |= τt‖f‖dmG = dmG . Hence L1(ν) = L1(τtν) = L1(mG )
for any t ∈ G . Hence ν is semivariation translation invariant.
On the other hand Iν (g) =

∫
G g fdmG and we have ‖Iν (τaχA)‖ 6= 0 while ‖Iν (χA)‖= 0.

�

X = C, G = T, f(s) = χ[0,1/2)(e2π is)−χ[1/2,1)(e2π is), A = {e2π is : 1/4≤ s < 3/4} and

a = e iπ/2) to have a particular example.

Oscar Blasco Fourier Analysis for vector-measures



Introduction
Fourier transform and the Riemann-Lebesgue lemma

Convolution for vector measures
Invariance under homeomorphisms

References

Final applications

If L1(ν)⊂ L1(G) then we can define

f ∗G g(t) =
∫
G
g(t− s)f (s)dmG (s) =

∫
G

τsg(t)f (s)dmG (s)

for f ,g ∈ L1(ν).

Theorem

Let 1≤ p < ∞ and let ν ∈M (G ,X ) semivariation translation invariant. If f ∈ L1(G)
and g ∈ Lp(ν) then f ∗G g ∈ Lp(ν) with ‖f ∗G g‖Lp(ν) ≤ ‖f ‖L1(G)‖g‖Lp(ν).

Proof.

Note that for f ,g ∈ C(G) then f ∗G g ∈ C(G)⊂ Lp(ν). Consider the Lp(ν)-valued
Riemann integral f ∗G g =

∫
G τsgf (s)dmG (s). Using Minkowsky’s inequality and the

fact Lp(ν) = Lp(τsν),

‖f ∗G g‖Lp(ν) ≤
∫
G
‖τsg‖Lp(ν)|f (s)|dmG (s) = ‖f ‖L1(G)‖g‖Lp(ν).

To extend to general functions, we use that C(G) is dense in L1(ν) and the fact that
L1(ν)⊂ L1(G). �
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Proof.

Note that for f ,g ∈ C(G) then f ∗G g ∈ C(G)⊂ Lp(ν). Consider the Lp(ν)-valued
Riemann integral f ∗G g =

∫
G τsgf (s)dmG (s). Using Minkowsky’s inequality and the

fact Lp(ν) = Lp(τsν),

‖f ∗G g‖Lp(ν) ≤
∫
G
‖τsg‖Lp(ν)|f (s)|dmG (s) = ‖f ‖L1(G)‖g‖Lp(ν).

To extend to general functions, we use that C(G) is dense in L1(ν) and the fact that
L1(ν)⊂ L1(G). �
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