

Fourier Analysis for vector-measures

OSCAR BLASCO

Universidad Valencia

Integration, Vector Measures and Related Topics
Bedlewo
15-21 June 2014

Notation

Throughout X is a complex Banach space, G be a compact abelian group, $\mathcal{B}(G)$ for the Borel σ -algebra of G , m_G for the Haar measure of the group, $L^p(G)$ the space of measurable functions such that $\int_G |f|^p dm_G < \infty$.

Notation

Throughout X is a complex Banach space, G be a compact abelian group, $\mathcal{B}(G)$ for the Borel σ -algebra of G , m_G for the Haar measure of the group, $L^p(G)$ the space of measurable functions such that $\int_G |f|^p dm_G < \infty$.

$(\mathcal{M}(G, X), \|\cdot\|)$ stands for the space of regular vector measures normed with the semivariation and $\mathcal{M}_{ac}(G, X)$ for those such that $v \ll m_G$.

Notation

Throughout X is a complex Banach space, G be a compact abelian group, $\mathcal{B}(G)$ for the Borel σ -algebra of G , m_G for the Haar measure of the group, $L^p(G)$ the space of measurable functions such that $\int_G |f|^p dm_G < \infty$.

$(\mathcal{M}(G, X), \|\cdot\|)$ stands for the space of regular vector measures normed with the semivariation and $\mathcal{M}_{ac}(G, X)$ for those such that $v \ll m_G$.

$\mathcal{M}(G, X)$ coincides with $\mathcal{WC}(C(G), X)$, i.e. we identify v with a weakly compact operator $T_v : C(G) \rightarrow X$ and denote $T_v(\phi) = \int_G \phi dv$. Moreover $\|T_v\| = \|v\|$.

Notation

Throughout X is a complex Banach space, G be a compact abelian group, $\mathcal{B}(G)$ for the Borel σ -algebra of G , m_G for the Haar measure of the group, $L^p(G)$ the space of measurable functions such that $\int_G |f|^p dm_G < \infty$.

$(\mathcal{M}(G, X), \|\cdot\|)$ stands for the space of regular vector measures normed with the semivariation and $\mathcal{M}_{ac}(G, X)$ for those such that $v \ll m_G$.

$\mathcal{M}(G, X)$ coincides with $\mathcal{WC}(C(G), X)$, i.e. we identify v with a weakly compact operator $T_v : C(G) \rightarrow X$ and denote $T_v(\phi) = \int_G \phi dv$. Moreover $\|T_v\| = \|v\|$.

Let $1 < p \leq \infty$. A measure v is said to have bounded p -semivariation with respect to m_G if

$$\|v\|_{p, m_G} = \sup \left\{ \left\| \sum_{A \in \pi} \alpha_A v(A) \right\|_X : \pi \text{ partition}, \left\| \sum_{A \in \pi} \alpha_A \chi_A \right\|_{L^{p'}(G)} \leq 1 \right\}. \quad (1.1)$$

The case $p = \infty$ corresponds to $\|v(A)\| \leq C m_G(A)$ for $A \in \mathcal{B}(G)$ for some constant C and $\|v\|_{\infty, \lambda}$ is the infimum of such constants.

Notation

Throughout X is a complex Banach space, G be a compact abelian group, $\mathcal{B}(G)$ for the Borel σ -algebra of G , m_G for the Haar measure of the group, $L^p(G)$ the space of measurable functions such that $\int_G |f|^p dm_G < \infty$.

$(\mathcal{M}(G, X), \|\cdot\|)$ stands for the space of regular vector measures normed with the semivariation and $\mathcal{M}_{ac}(G, X)$ for those such that $v \ll m_G$.

$\mathcal{M}(G, X)$ coincides with $\mathcal{WC}(C(G), X)$, i.e. we identify v with a weakly compact operator $T_v : C(G) \rightarrow X$ and denote $T_v(\phi) = \int_G \phi dv$. Moreover $\|T_v\| = \|v\|$.

Let $1 < p \leq \infty$. A measure v is said to have bounded p -semivariation with respect to m_G if

$$\|v\|_{p, m_G} = \sup \left\{ \left\| \sum_{A \in \pi} \alpha_A v(A) \right\|_X : \pi \text{ partition}, \left\| \sum_{A \in \pi} \alpha_A \chi_A \right\|_{L^{p'}(G)} \leq 1 \right\}. \quad (1.1)$$

The case $p = \infty$ corresponds to $\|v(A)\| \leq C m_G(A)$ for $A \in \mathcal{B}(G)$ for some constant C and $\|v\|_{\infty, \lambda}$ is the infimum of such constants. We use the notation $\mathcal{M}_p(G, X)$ and this space can be identify with $\mathcal{L}(L^{p'}(G), X)$ and $\|v\|_{p, m_G} = \|T_v\|_{L^{p'}(G), X}$.

Motivation (part 1)

$L(v)$ for the space of functions integrable with respect to a vector measure v . If $f \in L^1(v)$ we denote

$$v_f(A) = \int_A f d\mathbf{v}.$$

Then v_f is a vector measure and $\|v_f\| = \|f\|_{L^1(v)}$. We write I_v the integration operator, i.e. $I_v : L^1(v) \rightarrow X$ is defined by $I_v(f) = v_f(G) = \int_G f d\mathbf{v}$

Motivation (part 1)

$L(v)$ for the space of functions integrable with respect to a vector measure v . If $f \in L^1(v)$ we denote

$$v_f(A) = \int_A f d\mathbf{v}.$$

Then v_f is a vector measure and $\|v_f\| = \|f\|_{L^1(v)}$. We write I_v the integration operator, i.e. $I_v : L^1(v) \rightarrow X$ is defined by $I_v(f) = v_f(G) = \int_G f d\mathbf{v}$
 Delgado y Miana (2009) introduced the notion of "**norm integral translation invariant**" vector measures, as those satisfying

$$\|I_v(\tau_a \phi)\| = \|I_v(\phi)\|, \phi \in \text{ simple function }, a \in G \quad (1.2)$$

where $\tau_a(\phi)(s) = \phi(s - a)$.

Motivation (part 1)

$L(v)$ for the space of functions integrable with respect to a vector measure v . If $f \in L^1(v)$ we denote

$$v_f(A) = \int_A f d\mathbf{v}.$$

Then v_f is a vector measure and $\|v_f\| = \|f\|_{L^1(v)}$. We write I_v the integration operator, i.e. $I_v : L^1(v) \rightarrow X$ is defined by $I_v(f) = v_f(G) = \int_G f d\mathbf{v}$
 Delgado y Miana (2009) introduced the notion of "**norm integral translation invariant**" vector measures, as those satisfying

$$\|I_v(\tau_a \phi)\| = \|I_v(\phi)\|, \phi \in \text{ simple function }, a \in G \quad (1.2)$$

where $\tau_a(\phi)(s) = \phi(s - a)$.

For any norm integral translation invariant measure v such that $v \ll m_G$ they showed that $L^1(v) \subset L^1(G)$.

Motivation (part 1)

$L(v)$ for the space of functions integrable with respect to a vector measure v . If $f \in L^1(v)$ we denote

$$v_f(A) = \int_A f d\mathbf{v}.$$

Then v_f is a vector measure and $\|v_f\| = \|f\|_{L^1(v)}$. We write I_v the integration operator, i.e. $I_v : L^1(v) \rightarrow X$ is defined by $I_v(f) = v_f(G) = \int_G f d\mathbf{v}$
 Delgado y Miana (2009) introduced the notion of "**norm integral translation invariant**" vector measures, as those satisfying

$$\|I_v(\tau_a \phi)\| = \|I_v(\phi)\|, \phi \in \text{simple function}, a \in G \quad (1.2)$$

where $\tau_a(\phi)(s) = \phi(s - a)$.

For any norm integral translation invariant measure v such that $v \ll m_G$ they showed that $L^1(v) \subset L^1(G)$. Hence convolution and Fourier transform of functions in $L^1(v)$ are well defined.

Motivation (part 1)

$L(v)$ for the space of functions integrable with respect to a vector measure v . If $f \in L^1(v)$ we denote

$$v_f(A) = \int_A f d\mathbf{v}.$$

Then v_f is a vector measure and $\|v_f\| = \|f\|_{L^1(v)}$. We write I_v the integration operator, i.e. $I_v : L^1(v) \rightarrow X$ is defined by $I_v(f) = v_f(G) = \int_G f d\mathbf{v}$
 Delgado y Miana (2009) introduced the notion of "**norm integral translation invariant**" vector measures, as those satisfying

$$\|I_v(\tau_a \phi)\| = \|I_v(\phi)\|, \phi \in \text{ simple function }, a \in G \quad (1.2)$$

where $\tau_a(\phi)(s) = \phi(s - a)$.

For any norm integral translation invariant measure v such that $v \ll m_G$ they showed that $L^1(v) \subset L^1(G)$. Hence convolution and Fourier transform of functions in $L^1(v)$ are well defined.

They showed that if $f \in L^1(G)$ and $g \in L^p(v)$ then $f * g \in L^p(v)$ for $1 \leq p < \infty$.

Motivation (part 1)

$L(v)$ for the space of functions integrable with respect to a vector measure v . If $f \in L^1(v)$ we denote

$$v_f(A) = \int_A f d\mathbf{v}.$$

Then v_f is a vector measure and $\|v_f\| = \|f\|_{L^1(v)}$. We write I_v the integration operator, i.e. $I_v : L^1(v) \rightarrow X$ is defined by $I_v(f) = v_f(G) = \int_G f d\mathbf{v}$
 Delgado y Miana (2009) introduced the notion of "**norm integral translation invariant**" vector measures, as those satisfying

$$\|I_v(\tau_a \phi)\| = \|I_v(\phi)\|, \phi \in \text{ simple function }, a \in G \quad (1.2)$$

where $\tau_a(\phi)(s) = \phi(s - a)$.

For any norm integral translation invariant measure v such that $v \ll m_G$ they showed that $L^1(v) \subset L^1(G)$. Hence convolution and Fourier transform of functions in $L^1(v)$ are well defined.

They showed that if $f \in L^1(G)$ and $g \in L^p(v)$ then $f * g \in L^p(v)$ for $1 \leq p < \infty$.

- Is there any weaker condition than the "**norm integral translation invariant**" which still allows the convolution to be developed for functions on $L^1(v)$?

Motivation (part 1)

$L(v)$ for the space of functions integrable with respect to a vector measure v . If $f \in L^1(v)$ we denote

$$v_f(A) = \int_A f d\mathbf{v}.$$

Then v_f is a vector measure and $\|v_f\| = \|f\|_{L^1(v)}$. We write I_v the integration operator, i.e. $I_v : L^1(v) \rightarrow X$ is defined by $I_v(f) = v_f(G) = \int_G f d\mathbf{v}$
 Delgado y Miana (2009) introduced the notion of "**norm integral translation invariant**" vector measures, as those satisfying

$$\|I_v(\tau_a \phi)\| = \|I_v(\phi)\|, \phi \in \text{ simple function }, a \in G \quad (1.2)$$

where $\tau_a(\phi)(s) = \phi(s - a)$.

For any norm integral translation invariant measure v such that $v \ll m_G$ they showed that $L^1(v) \subset L^1(G)$. Hence convolution and Fourier transform of functions in $L^1(v)$ are well defined.

They showed that if $f \in L^1(G)$ and $g \in L^p(v)$ then $f * g \in L^p(v)$ for $1 \leq p < \infty$.

- Is there any weaker condition than the "**norm integral translation invariant**" which still allows the convolution to be developed for functions on $L^1(v)$?
- Can one define convolution between general vector-measures and recover their results when applied to v_f for $f \in L^1(v)$?

Motivation (part 2)

The Fourier transform of $f \in L^1(v)$ was introduced by Calabuig, Galaz, Navarrete y Sanchez-Perez (2013) as the X -valued function

$$\hat{f}^v(\gamma) = \int_G f(t) \overline{\gamma(t)} dv(t), \gamma \in \Gamma \quad (1.3)$$

where Γ is the dual group of G and v is a vector measure.

Motivation (part 2)

The Fourier transform of $f \in L^1(\nu)$ was introduced by Calabuig, Galaz, Navarrete y Sanchez-Perez (2013) as the X -valued function

$$\hat{f}^\nu(\gamma) = \int_G f(t) \overline{\gamma(t)} d\nu(t), \gamma \in \Gamma \quad (1.3)$$

where Γ is the dual group of G and ν is a vector measure.

They showed, under the assumption $\nu \ll m_G$, that the fact $\hat{f}^\nu \in c_0(\Gamma, X)$ for any $f \in L^1(\nu)$ iff $\widehat{\chi_G}^\nu \in c_0(\Gamma, X)$

Motivation (part 2)

The Fourier transform of $f \in L^1(\nu)$ was introduced by Calabuig, Galaz, Navarrete y Sanchez-Perez (2013) as the X -valued function

$$\hat{f}^\nu(\gamma) = \int_G f(t) \overline{\gamma(t)} d\nu(t), \gamma \in \Gamma \quad (1.3)$$

where Γ is the dual group of G and ν is a vector measure.

They showed, under the assumption $\nu \ll m_G$, that the fact $\hat{f}^\nu \in c_0(\Gamma, X)$ for any $f \in L^1(\nu)$ iff $\widehat{\chi_G}^\nu \in c_0(\Gamma, X)$

They wanted to analyze the validity of Riemann-lebesgue lemma in this setting and left open the following questions:

Motivation (part 2)

The Fourier transform of $f \in L^1(\nu)$ was introduced by Calabuig, Galaz, Navarrete y Sanchez-Perez (2013) as the X -valued function

$$\hat{f}^\nu(\gamma) = \int_G f(t) \overline{\gamma(t)} d\nu(t), \gamma \in \Gamma \quad (1.3)$$

where Γ is the dual group of G and ν is a vector measure.

They showed, under the assumption $\nu \ll m_G$, that the fact $\hat{f}^\nu \in c_0(\Gamma, X)$ for any $f \in L^1(\nu)$ iff $\widehat{\chi_G}^\nu \in c_0(\Gamma, X)$

They wanted to analyze the validity of Riemann-lebesgue lemma in this setting and left open the following questions:

(a) Are there Banach spaces where $\widehat{\chi_G}^\nu \in c_0(\Gamma, X)$ for any vector measure with $\nu \ll m_G$?

Motivation (part 2)

The Fourier transform of $f \in L^1(\nu)$ was introduced by Calabuig, Galaz, Navarrete y Sanchez-Perez (2013) as the X -valued function

$$\hat{f}^\nu(\gamma) = \int_G f(t) \overline{\gamma(t)} d\nu(t), \gamma \in \Gamma \quad (1.3)$$

where Γ is the dual group of G and ν is a vector measure.

They showed, under the assumption $\nu \ll m_G$, that the fact $\hat{f}^\nu \in c_0(\Gamma, X)$ for any $f \in L^1(\nu)$ iff $\widehat{\chi_G}^\nu \in c_0(\Gamma, X)$

They wanted to analyze the validity of Riemann-lebesgue lemma in this setting and left open the following questions:

- Are there Banach spaces where $\widehat{\chi_G}^\nu \in c_0(\Gamma, X)$ for any vector measure with $\nu \ll m_G$?
- Are there natural subclasses of vector measures where Riemann-Lebesgue lemma holds?

Motivation (part 2)

The Fourier transform of $f \in L^1(v)$ was introduced by Calabuig, Galaz, Navarrete y Sanchez-Perez (2013) as the X -valued function

$$\hat{f}^v(\gamma) = \int_G f(t) \overline{\gamma(t)} dv(t), \gamma \in \Gamma \quad (1.3)$$

where Γ is the dual group of G and v is a vector measure.

They showed, under the assumption $v \ll m_G$, that the fact $\hat{f}^v \in c_0(\Gamma, X)$ for any $f \in L^1(v)$ iff $\widehat{\chi_G}^v \in c_0(\Gamma, X)$

They wanted to analyze the validity of Riemann-lebesgue lemma in this setting and left open the following questions:

- Are there Banach spaces where $\widehat{\chi_G}^v \in c_0(\Gamma, X)$ for any vector measure with $v \ll m_G$?
- Are there natural subclasses of vector measures where Riemann-Lebesgue lemma holds?
- Are there classes of operators that transform vector measures in vector measures satisfying Riemann-Lebesgue lemma?

Motivation (part 2)

The Fourier transform of $f \in L^1(v)$ was introduced by Calabuig, Galaz, Navarrete y Sanchez-Perez (2013) as the X -valued function

$$\hat{f}^v(\gamma) = \int_G f(t) \overline{\gamma(t)} dv(t), \gamma \in \Gamma \quad (1.3)$$

where Γ is the dual group of G and v is a vector measure.

They showed, under the assumption $v \ll m_G$, that the fact $\hat{f}^v \in c_0(\Gamma, X)$ for any $f \in L^1(v)$ iff $\widehat{\chi_G}^v \in c_0(\Gamma, X)$

They wanted to analyze the validity of Riemann-lebesgue lemma in this setting and left open the following questions:

- Are there Banach spaces where $\widehat{\chi_G}^v \in c_0(\Gamma, X)$ for any vector measure with $v \ll m_G$?
- Are there natural subclasses of vector measures where Riemann-Lebesgue lemma holds?
- Are there classes of operators that transform vector measures in vector measures satisfying Riemann-Lebesgue lemma?

Fourier transform of a vector measure. Riemann-Lebesgue lemma.

Let ν be a vector measure. We define the Fourier transform by

$$\hat{\nu}(\gamma) = I_\nu(\bar{\gamma}) = \int_G \bar{\gamma} d\nu.$$

Fourier transform of a vector measure. Riemann-Lebesgue lemma.

Let ν be a vector measure. We define the Fourier transform by

$$\hat{\nu}(\gamma) = I_\nu(\bar{\gamma}) = \int_G \bar{\gamma} d\nu.$$

Denote

$$\mathcal{M}_0(G, X) = \{\nu \in \mathcal{M}_{ac}(G, X) : \hat{\nu} \in c_0(\Gamma, X)\}$$

Does it hold the Riemann-Lebesgue Lemma: $\mathcal{M}_{ac}(G, X) = \mathcal{M}_0(G, X)$?

Fourier transform of a vector measure. Riemann-Lebesgue lemma.

Let v be a vector measure. We define the Fourier transform by

$$\hat{v}(\gamma) = I_v(\bar{\gamma}) = \int_G \bar{\gamma} d\nu.$$

Denote

$$\mathcal{M}_0(G, X) = \{v \in \mathcal{M}_{ac}(G, X) : \hat{v} \in c_0(\Gamma, X)\}$$

Does it hold the Riemann-Lebesgue Lemma: $\mathcal{M}_{ac}(G, X) = \mathcal{M}_0(G, X)$?

Of course NO! Let $G = \mathbb{T}$, $X = \ell^2(\mathbb{Z})$ and $v(A) = (\hat{\chi}_A(n))_{n \in \mathbb{Z}}$.

Fourier transform of a vector measure. Riemann-Lebesgue lemma.

Let v be a vector measure. We define the Fourier transform by

$$\hat{v}(\gamma) = I_v(\bar{\gamma}) = \int_G \bar{\gamma} d\nu.$$

Denote

$$\mathcal{M}_0(G, X) = \{v \in \mathcal{M}_{ac}(G, X) : \hat{v} \in c_0(\Gamma, X)\}$$

Does it hold the Riemann-Lebesgue Lemma: $\mathcal{M}_{ac}(G, X) = \mathcal{M}_0(G, X)$?

Of course NO! Let $G = \mathbb{T}$, $X = \ell^2(\mathbb{Z})$ and $v(A) = (\hat{\chi}_A(n))_{n \in \mathbb{Z}}$. Clearly

$T_v : C(\mathbb{T}) \rightarrow \ell^2(\mathbb{Z})$ corresponds $T(f) = (\hat{f}(n))_{n \in \mathbb{Z}}$.

Fourier transform of a vector measure. Riemann-Lebesgue lemma.

Let v be a vector measure. We define the Fourier transform by

$$\hat{v}(\gamma) = I_v(\bar{\gamma}) = \int_G \bar{\gamma} d\nu.$$

Denote

$$\mathcal{M}_0(G, X) = \{v \in \mathcal{M}_{ac}(G, X) : \hat{v} \in c_0(\Gamma, X)\}$$

Does it hold the Riemann-Lebesgue Lemma: $\mathcal{M}_{ac}(G, X) = \mathcal{M}_0(G, X)$?

Of course NO! Let $G = \mathbb{T}$, $X = \ell^2(\mathbb{Z})$ and $v(A) = (\hat{\chi}_A(n))_{n \in \mathbb{Z}}$. Clearly

$T_v : C(\mathbb{T}) \rightarrow \ell^2(\mathbb{Z})$ corresponds $T(f) = (\hat{f}(n))_{n \in \mathbb{Z}}$. Hence $\hat{v}(n) = e_n$ where (e_n) is the canonical basis and $\|\hat{v}(n)\| = 1$ for each $n \in \mathbb{Z}$.

Fourier transform of a vector measure. Riemann-Lebesgue lemma.

Let ν be a vector measure. We define the Fourier transform by

$$\hat{\nu}(\gamma) = I_\nu(\bar{\gamma}) = \int_G \bar{\gamma} d\nu.$$

Denote

$$\mathcal{M}_0(G, X) = \{\nu \in \mathcal{M}_{ac}(G, X) : \hat{\nu} \in c_0(\Gamma, X)\}$$

Does it hold the Riemann-Lebesgue Lemma: $\mathcal{M}_{ac}(G, X) = \mathcal{M}_0(G, X)$?

Of course NO! Let $G = \mathbb{T}$, $X = \ell^2(\mathbb{Z})$ and $\nu(A) = (\hat{\chi}_A(n))_{n \in \mathbb{Z}}$. Clearly

$T_\nu : C(\mathbb{T}) \rightarrow \ell^2(\mathbb{Z})$ corresponds $T(f) = (\hat{f}(n))_{n \in \mathbb{Z}}$. Hence $\hat{\nu}(n) = e_n$ where (e_n) is the canonical basis and $\|\hat{\nu}(n)\| = 1$ for each $n \in \mathbb{Z}$.

However....

Fourier transform of a vector measure. Riemann-Lebesgue lemma.

Let v be a vector measure. We define the Fourier transform by

$$\hat{v}(\gamma) = I_v(\bar{\gamma}) = \int_G \bar{\gamma} d\nu.$$

Denote

$$\mathcal{M}_0(G, X) = \{v \in \mathcal{M}_{ac}(G, X) : \hat{v} \in c_0(\Gamma, X)\}$$

Does it hold the Riemann-Lebesgue Lemma: $\mathcal{M}_{ac}(G, X) = \mathcal{M}_0(G, X)$?

Of course NO! Let $G = \mathbb{T}$, $X = \ell^2(\mathbb{Z})$ and $v(A) = (\hat{\chi}_A(n))_{n \in \mathbb{Z}}$. Clearly

$T_v : C(\mathbb{T}) \rightarrow \ell^2(\mathbb{Z})$ corresponds $T(f) = (\hat{f}(n))_{n \in \mathbb{Z}}$. Hence $\hat{v}(n) = e_n$ where (e_n) is the canonical basis and $\|\hat{v}(n)\| = 1$ for each $n \in \mathbb{Z}$.

However....

$$v \in \mathcal{M}_{ac}(G, X) \implies \langle \hat{v}, x' \rangle \in c_0(\Gamma), \quad x' \in X'. \quad (2.1)$$

Fourier transform of a vector measure. Riemann-Lebesgue lemma.

Let v be a vector measure. We define the Fourier transform by

$$\hat{v}(\gamma) = I_v(\bar{\gamma}) = \int_G \bar{\gamma} d\gamma.$$

Denote

$$\mathcal{M}_0(G, X) = \{v \in \mathcal{M}_{ac}(G, X) : \hat{v} \in c_0(\Gamma, X)\}$$

Does it hold the Riemann-Lebesgue Lemma: $\mathcal{M}_{ac}(G, X) = \mathcal{M}_0(G, X)$?

Of course NO! Let $G = \mathbb{T}$, $X = \ell^2(\mathbb{Z})$ and $v(A) = (\hat{\chi}_A(n))_{n \in \mathbb{Z}}$. Clearly

$T_v : C(\mathbb{T}) \rightarrow \ell^2(\mathbb{Z})$ corresponds $T(f) = (\hat{f}(n))_{n \in \mathbb{Z}}$. Hence $\hat{v}(n) = e_n$ where (e_n) is the canonical basis and $\|\hat{v}(n)\| = 1$ for each $n \in \mathbb{Z}$.

However....

$$v \in \mathcal{M}_{ac}(G, X) \implies \langle \hat{v}, x' \rangle \in c_0(\Gamma), \quad x' \in X'. \quad (2.1)$$

Solutions to the questions

Answering question (a): $\mathcal{M}_0(G, X) = \mathcal{M}_{ac}(G, X)$ if and only if X is finite dimensional.

Proposition

Let X be an infinite dimensional Banach space and $G = \mathbb{T}$. There exists a regular vector measure $v : \mathcal{B}(\mathbb{T}) \rightarrow X$ such that $v \ll m_{\mathbb{T}}$ and $\hat{v} \notin c_0(\mathbb{Z}, X)$.

Solutions to the questions

Answering question (a): $\mathcal{M}_0(G, X) = \mathcal{M}_{ac}(G, X)$ if and only if X is finite dimensional.

Proposition

Let X be an infinite dimensional Banach space and $G = \mathbb{T}$. There exists a regular vector measure $v : \mathcal{B}(\mathbb{T}) \rightarrow X$ such that $v \ll m_{\mathbb{T}}$ and $\hat{v} \notin c_0(\mathbb{Z}, X)$.

Some classes where it holds:

Proposition

If $v \in \mathcal{M}_{ac}(G, X)$ and v has relatively compact range then $v \in \mathcal{M}_0(G, X)$.

Solutions to the questions

Answering question (a): $\mathcal{M}_0(G, X) = \mathcal{M}_{ac}(G, X)$ if and only if X is finite dimensional.

Proposition

Let X be an infinite dimensional Banach space and $G = \mathbb{T}$. There exists a regular vector measure $v : \mathcal{B}(\mathbb{T}) \rightarrow X$ such that $v \ll m_{\mathbb{T}}$ and $\hat{v} \notin c_0(\mathbb{Z}, X)$.

Some classes where it holds:

Proposition

If $v \in \mathcal{M}_{ac}(G, X)$ and v has relatively compact range then $v \in \mathcal{M}_0(G, X)$.

Some operators that play a role:

Proposition

Let $T : X \rightarrow Y$ be a completely continuous operator (i.e. it maps weakly convergent sequences in X into norm convergent sequences in Y) and $v \in \mathcal{M}_{ac}(G, X)$. Then $T(v) \in \mathcal{M}_0(G, Y)$.

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?

Denote $V^1(G, X)$ the subspace of $\mathcal{M}_{ac}(G, X)$ with $|v|(G) < \infty$.

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?

Denote $V^1(G, X)$ the subspace of $\mathcal{M}_{ac}(G, X)$ with $|v|(G) < \infty$. Does it hold that $V^1(G, X) \subset \mathcal{M}_0(G, X)$?

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?

Denote $V^1(G, X)$ the subspace of $\mathcal{M}_{ac}(G, X)$ with $|v|(G) < \infty$. Does it hold that $V^1(G, X) \subset \mathcal{M}_0(G, X)$?

Again the answer is NO!

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?

Denote $V^1(G, X)$ the subspace of $\mathcal{M}_{ac}(G, X)$ with $|v|(G) < \infty$. Does it hold that $V^1(G, X) \subset \mathcal{M}_0(G, X)$?

Again the answer is NO! Let $G = \mathbb{T}$, $X = L^1(\mathbb{T})$ and $v(A) = \chi_A$.

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?

Denote $V^1(G, X)$ the subspace of $\mathcal{M}_{ac}(G, X)$ with $|v|(G) < \infty$. Does it hold that $V^1(G, X) \subset \mathcal{M}_0(G, X)$?

Again the answer is NO! Let $G = \mathbb{T}$, $X = L^1(\mathbb{T})$ and $v(A) = \chi_A$. Clearly

$T_v : C(\mathbb{T}) \rightarrow L^1(\mathbb{T})$ corresponds to the inclusion map. Hence $\hat{v}(n) = \phi_n$ where $\phi_n(t) = e^{int}$ and $\|\hat{v}(n)\| = 1$ for each $n \in \mathbb{Z}$.

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?

Denote $V^1(G, X)$ the subspace of $\mathcal{M}_{ac}(G, X)$ with $|v|(G) < \infty$. Does it hold that $V^1(G, X) \subset \mathcal{M}_0(G, X)$?

Again the answer is NO! Let $G = \mathbb{T}$, $X = L^1(\mathbb{T})$ and $v(A) = \chi_A$. Clearly

$T_v : C(\mathbb{T}) \rightarrow L^1(\mathbb{T})$ corresponds to the inclusion map. Hence $\hat{v}(n) = \phi_n$ where $\phi_n(t) = e^{int}$ and $\|\hat{v}(n)\| = 1$ for each $n \in \mathbb{Z}$.

However if X has the Radon Nikodym property then $V^1(G, X) \subset \mathcal{M}_0(G, X)$, since $dv = \mathbf{f} dm_G$ with $\mathbf{f} \in L^1(G, X)$ and $\hat{v}(n) = \hat{\mathbf{f}}(n) = \int_{\mathbb{T}} \mathbf{f}(e^{it}) e^{-int} dt$ for $n \in \mathbb{Z}$, which belongs to $c_0(\mathbb{Z}, X)$.

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?

Denote $V^1(G, X)$ the subspace of $\mathcal{M}_{ac}(G, X)$ with $|v|(G) < \infty$. Does it hold that $V^1(G, X) \subset \mathcal{M}_0(G, X)$?

Again the answer is NO! Let $G = \mathbb{T}$, $X = L^1(\mathbb{T})$ and $v(A) = \chi_A$. Clearly

$T_v : C(\mathbb{T}) \rightarrow L^1(\mathbb{T})$ corresponds to the inclusion map. Hence $\hat{v}(n) = \phi_n$ where $\phi_n(t) = e^{int}$ and $\|\hat{v}(n)\| = 1$ for each $n \in \mathbb{Z}$.

However if X has the Radon Nikodym property then $V^1(G, X) \subset \mathcal{M}_0(G, X)$, since $dv = \mathbf{f} dm_G$ with $\mathbf{f} \in L^1(G, X)$ and $\hat{v}(n) = \hat{\mathbf{f}}(n) = \int_{\mathbb{T}} \mathbf{f}(e^{it}) e^{-int} dt$ for $n \in \mathbb{Z}$, which belongs to $c_0(\mathbb{Z}, X)$.

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on G (in short, $X \in (RLP)_G$) if any vector measure v satisfying $v \ll m_G$ and $|v|(G) < \infty$ satisfies that $\hat{v} \in c_0(\mathbb{Z}, X)$, i.e. $V^1(G, X) \subset \mathcal{M}_0(G, X)$.

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?

Denote $V^1(G, X)$ the subspace of $\mathcal{M}_{ac}(G, X)$ with $|v|(G) < \infty$. Does it hold that $V^1(G, X) \subset \mathcal{M}_0(G, X)$?

Again the answer is NO! Let $G = \mathbb{T}$, $X = L^1(\mathbb{T})$ and $v(A) = \chi_A$. Clearly

$T_v : C(\mathbb{T}) \rightarrow L^1(\mathbb{T})$ corresponds to the inclusion map. Hence $\hat{v}(n) = \phi_n$ where $\phi_n(t) = e^{int}$ and $\|\hat{v}(n)\| = 1$ for each $n \in \mathbb{Z}$.

However if X has the Radon Nikodym property then $V^1(G, X) \subset \mathcal{M}_0(G, X)$, since $dv = f dm_G$ with $f \in L^1(G, X)$ and $\hat{v}(n) = \hat{f}(n) = \int_{\mathbb{T}} f(e^{it}) e^{-int} dt$ for $n \in \mathbb{Z}$, which belongs to $c_0(\mathbb{Z}, X)$.

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on G (in short, $X \in (RLP)_G$) if any vector measure v satisfying $v \ll m_G$ and $|v|(G) < \infty$ satisfies that $\hat{v} \in c_0(\mathbb{Z}, X)$, i.e. $V^1(G, X) \subset \mathcal{M}_0(G, X)$.

A related property *RLP* (defined for functions instead of measures and $G = \mathbb{T}$) but weaker was introduced and studied by Bu and Chill (2002).

Riemann-Lebesgue revisited

Does it hold the Riemann-Lebesgue lemma for measures of bounded variation?

Denote $V^1(G, X)$ the subspace of $\mathcal{M}_{ac}(G, X)$ with $|v|(G) < \infty$. Does it hold that $V^1(G, X) \subset \mathcal{M}_0(G, X)$?

Again the answer is NO! Let $G = \mathbb{T}$, $X = L^1(\mathbb{T})$ and $v(A) = \chi_A$. Clearly

$T_v : C(\mathbb{T}) \rightarrow L^1(\mathbb{T})$ corresponds to the inclusion map. Hence $\hat{v}(n) = \phi_n$ where $\phi_n(t) = e^{int}$ and $\|\hat{v}(n)\| = 1$ for each $n \in \mathbb{Z}$.

However if X has the Radon Nikodym property then $V^1(G, X) \subset \mathcal{M}_0(G, X)$, since $dv = \mathbf{f} dm_G$ with $\mathbf{f} \in L^1(G, X)$ and $\hat{v}(n) = \hat{\mathbf{f}}(n) = \int_{\mathbb{T}} \mathbf{f}(e^{it}) e^{-int} dt$ for $n \in \mathbb{Z}$, which belongs to $c_0(\mathbb{Z}, X)$.

Definition

We say that a Banach space satisfies the Riemann-Lebesgue property for measures on G (in short, $X \in (RLP)_G$) if any vector measure v satisfying $v \ll m_G$ and $|v|(G) < \infty$ satisfies that $\hat{v} \in c_0(\mathbb{Z}, X)$, i.e. $V^1(G, X) \subset \mathcal{M}_0(G, X)$.

A related property RLP (defined for functions instead of measures and $G = \mathbb{T}$) but weaker was introduced and studied by Bu and Chill (2002).

$$(RNP) \implies (wRNP) \implies (CCP) \implies (RLP).$$

Convolution of measures

Definition

Let v be a vector valued measure and $\mu \in M(G)$ we define the vector valued set function $\mu * v(A)$ given by

$$\mu * v(A) = \int_G \mu(A + t) dv(t) = I_v\left(\int_G \tau_t(\chi_A) d\mu\right), A \in \mathcal{B}(G).$$

Convolution of measures

Definition

Let v be a vector valued measure and $\mu \in M(G)$ we define the vector valued set function $\mu * v(A)$ given by

$$\mu * v(A) = \int_G \mu(A + t) dv(t) = I_v\left(\int_G \tau_t(\chi_A) d\mu\right), A \in \mathcal{B}(G).$$

If $d\mu_f = f dm_G$ for $f \in L^1(G)$ and $dv_g = g dm_G$ with $g \in L^1(G, X)$ then

$d(\mu_f * v_g) = (f * g) dm_G$ where $f * g \in L^1(G, X)$ with

$$f * g(s) = \int_G f(s - t) g(t) dm_G(t) = \int_G f(t) g(s - t) dm_G(t), \quad m_G - a.e.$$

Convolution of measures

Definition

Let v be a vector valued measure and $\mu \in M(G)$ we define the vector valued set function $\mu * v(A)$ given by

$$\mu * v(A) = \int_G \mu(A + t) dv(t) = I_v\left(\int_G \tau_t(\chi_A) d\mu\right), A \in \mathcal{B}(G).$$

If $d\mu_f = f dm_G$ for $f \in L^1(G)$ and $dv_g = g dm_G$ with $g \in L^1(G, X)$ then
 $d(\mu_f * v_g) = (f * g) dm_G$ where $f * g \in L^1(G, X)$ with

$$f * g(s) = \int_G f(s - t) g(t) dm_G(t) = \int_G f(t) g(s - t) dm_G(t), \quad m_G - \text{a.e.}$$

- $\mu * v$ is a vector measure and $\|\mu * v\| \leq \|\mu\|(G) \|v\|$.

Convolution of measures

Definition

Let v be a vector valued measure and $\mu \in M(G)$ we define the vector valued set function $\mu * v(A)$ given by

$$\mu * v(A) = \int_G \mu(A + t) dv(t) = I_v\left(\int_G \tau_t(\chi_A) d\mu\right), A \in \mathcal{B}(G).$$

If $d\mu_f = f dm_G$ for $f \in L^1(G)$ and $dv_g = g dm_G$ with $g \in L^1(G, X)$ then
 $d(\mu_f * v_g) = (f * g) dm_G$ where $f * g \in L^1(G, X)$ with

$$f * g(s) = \int_G f(s - t) g(t) dm_G(t) = \int_G f(t) g(s - t) dm_G(t), \quad m_G - \text{a.e.}$$

- $\mu * v$ is a vector measure and $\|\mu * v\| \leq |\mu|(G) \|v\|$.
- If $v \in \mathcal{M}(G, X)$ then $\mu * v \in \mathcal{M}(G, X)$.

Convolution of measures

Definition

Let v be a vector valued measure and $\mu \in M(G)$ we define the vector valued set function $\mu * v(A)$ given by

$$\mu * v(A) = \int_G \mu(A + t) dv(t) = I_v\left(\int_G \tau_t(\chi_A) d\mu\right), A \in \mathcal{B}(G).$$

If $d\mu_f = f dm_G$ for $f \in L^1(G)$ and $dv_g = g dm_G$ with $g \in L^1(G, X)$ then
 $d(\mu_f * v_g) = (f * g) dm_G$ where $f * g \in L^1(G, X)$ with

$$f * g(s) = \int_G f(s - t) g(t) dm_G(t) = \int_G f(t) g(s - t) dm_G(t), \quad m_G - \text{a.e.}$$

- $\mu * v$ is a vector measure and $\|\mu * v\| \leq |\mu|(G) \|v\|$.
- If $v \in \mathcal{M}(G, X)$ then $\mu * v \in \mathcal{M}(G, X)$.
- $\widehat{\mu * v}(\gamma) = \overline{\widehat{\mu}(\gamma)} \widehat{v}(\gamma), \quad \gamma \in \Gamma$.

Convolution between functions and vector measures

We denote $C(G, X)$ the space of X -valued continuous functions and $L^1(G, X)$ the Bochner integrable functions.

Convolution between functions and vector measures

We denote $C(G, X)$ the space of X -valued continuous functions and $L^1(G, X)$ the Bochner integrable functions.

For each $f \in L^1(G)$, $\mathbf{f} \in L^1(G, X)$ set

$$\mu_f(A) = \int_A f dm_G, \quad v_{\mathbf{f}}(A) = \int_A \mathbf{f} dm_G \in V^1(G, X).$$

Convolution between functions and vector measures

We denote $C(G, X)$ the space of X -valued continuous functions and $L^1(G, X)$ the Bochner integrable functions.

For each $f \in L^1(G)$, $\mathbf{f} \in L^1(G, X)$ set

$$\mu_f(A) = \int_A f dm_G, \quad v_{\mathbf{f}}(A) = \int_A \mathbf{f} dm_G \in V^1(G, X).$$

If v is a vector measure and $f \in L^1(G)$ we write that $f * v$ for $\mu_f * v$ and say that $f * v \in C(G, X)$ whenever there exists $\mathbf{f}_v \in C(G, X)$ such that $v_{\mathbf{f}_v} = \mu_f * v$, that is $d(f * v) = \mathbf{f}_v dm_G$.

Convolution between functions and vector measures

We denote $C(G, X)$ the space of X -valued continuous functions and $L^1(G, X)$ the Bochner integrable functions.

For each $f \in L^1(G)$, $\mathbf{f} \in L^1(G, X)$ set

$$\mu_f(A) = \int_A f dm_G, \quad v_{\mathbf{f}}(A) = \int_A \mathbf{f} dm_G \in V^1(G, X).$$

If v is a vector measure and $f \in L^1(G)$ we write that $f * v$ for $\mu_f * v$ and say that $f * v \in C(G, X)$ whenever there exists $\mathbf{f}_v \in C(G, X)$ such that $v_{\mathbf{f}_v} = \mu_f * v$, that is $d(f * v) = \mathbf{f}_v dm_G$.

For each $1 \leq p \leq \infty$ and $\mathbf{g} \in C(G, X)$ we denote

$$\|\mathbf{g}\|_{P_p(G, X)} = \|v_{\mathbf{g}}\|_{p, m_G} = \sup_{\|x'\|=1} \|\langle \mathbf{g}, x' \rangle\|_{L^p(G)}. \quad (3.1)$$

Convolution between functions and vector measures

We denote $C(G, X)$ the space of X -valued continuous functions and $L^1(G, X)$ the Bochner integrable functions.

For each $f \in L^1(G)$, $\mathbf{f} \in L^1(G, X)$ set

$$\mu_f(A) = \int_A f dm_G, \quad v_{\mathbf{f}}(A) = \int_A \mathbf{f} dm_G \in V^1(G, X).$$

If v is a vector measure and $f \in L^1(G)$ we write that $f * v$ for $\mu_f * v$ and say that $f * v \in C(G, X)$ whenever there exists $\mathbf{f}_v \in C(G, X)$ such that $v_{\mathbf{f}_v} = \mu_f * v$, that is $d(f * v) = \mathbf{f}_v dm_G$.

For each $1 \leq p \leq \infty$ and $\mathbf{g} \in C(G, X)$ we denote

$$\|\mathbf{g}\|_{P_p(G, X)} = \|v_{\mathbf{g}}\|_{p, m_G} = \sup_{\|x'\|=1} \|\langle \mathbf{g}, x' \rangle\|_{L^p(G)}. \quad (3.1)$$

We define $P_p(G, X)$ the closure of $C(G, X)$ in $\mathcal{M}_p(G, X)$ for $1 \leq p \leq \infty$ where we understand $\mathcal{M}_1(G, X) = \mathcal{M}(G, X)$.

Convolution between functions and vector measures

We denote $C(G, X)$ the space of X -valued continuous functions and $L^1(G, X)$ the Bochner integrable functions.

For each $f \in L^1(G)$, $\mathbf{f} \in L^1(G, X)$ set

$$\mu_f(A) = \int_A f dm_G, \quad v_{\mathbf{f}}(A) = \int_A \mathbf{f} dm_G \in V^1(G, X).$$

If v is a vector measure and $f \in L^1(G)$ we write that $f * v$ for $\mu_f * v$ and say that $f * v \in C(G, X)$ whenever there exists $\mathbf{f}_v \in C(G, X)$ such that $v_{\mathbf{f}_v} = \mu_f * v$, that is $d(f * v) = \mathbf{f}_v dm_G$.

For each $1 \leq p \leq \infty$ and $\mathbf{g} \in C(G, X)$ we denote

$$\|\mathbf{g}\|_{P_p(G, X)} = \|v_{\mathbf{g}}\|_{p, m_G} = \sup_{\|\mathbf{x}'\|=1} \|\langle \mathbf{g}, \mathbf{x}' \rangle\|_{L^p(G)}. \quad (3.1)$$

We define $P_p(G, X)$ the closure of $C(G, X)$ in $\mathcal{M}_p(G, X)$ for $1 \leq p \leq \infty$ where we understand $\mathcal{M}_1(G, X) = \mathcal{M}(G, X)$.

- If $f \in C(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{C(G)} \|v\|$.

Convolution between functions and vector measures

We denote $C(G, X)$ the space of X -valued continuous functions and $L^1(G, X)$ the Bochner integrable functions.

For each $f \in L^1(G)$, $\mathbf{f} \in L^1(G, X)$ set

$$\mu_f(A) = \int_A f dm_G, \quad v_{\mathbf{f}}(A) = \int_A \mathbf{f} dm_G \in V^1(G, X).$$

If v is a vector measure and $f \in L^1(G)$ we write that $f * v$ for $\mu_f * v$ and say that $f * v \in C(G, X)$ whenever there exists $\mathbf{f}_v \in C(G, X)$ such that $v_{\mathbf{f}_v} = \mu_f * v$, that is $d(f * v) = \mathbf{f}_v dm_G$.

For each $1 \leq p \leq \infty$ and $\mathbf{g} \in C(G, X)$ we denote

$$\|\mathbf{g}\|_{P_p(G, X)} = \|v_{\mathbf{g}}\|_{p, m_G} = \sup_{\|\mathbf{x}'\|=1} \|\langle \mathbf{g}, \mathbf{x}' \rangle\|_{L^p(G)}. \quad (3.1)$$

We define $P_p(G, X)$ the closure of $C(G, X)$ in $\mathcal{M}_p(G, X)$ for $1 \leq p \leq \infty$ where we understand $\mathcal{M}_1(G, X) = \mathcal{M}(G, X)$.

- If $f \in C(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{C(G)} \|v\|$.
- If $f \in L^1(G)$ then $f * v \in P_1(G, X)$ and $\|f * v\|_{P_1(G, X)} \leq \|f\|_{L^1(G)} \|v\|$.

Convolution between functions and vector measures

We denote $C(G, X)$ the space of X -valued continuous functions and $L^1(G, X)$ the Bochner integrable functions.

For each $f \in L^1(G)$, $\mathbf{f} \in L^1(G, X)$ set

$$\mu_f(A) = \int_A f dm_G, \quad v_{\mathbf{f}}(A) = \int_A \mathbf{f} dm_G \in V^1(G, X).$$

If v is a vector measure and $f \in L^1(G)$ we write that $f * v$ for $\mu_f * v$ and say that $f * v \in C(G, X)$ whenever there exists $\mathbf{f}_v \in C(G, X)$ such that $v_{\mathbf{f}_v} = \mu_f * v$, that is $d(f * v) = \mathbf{f}_v dm_G$.

For each $1 \leq p \leq \infty$ and $\mathbf{g} \in C(G, X)$ we denote

$$\|\mathbf{g}\|_{P_p(G, X)} = \|v_{\mathbf{g}}\|_{p, m_G} = \sup_{\|\mathbf{x}'\|=1} \|\langle \mathbf{g}, \mathbf{x}' \rangle\|_{L^p(G)}. \quad (3.1)$$

We define $P_p(G, X)$ the closure of $C(G, X)$ in $\mathcal{M}_p(G, X)$ for $1 \leq p \leq \infty$ where we understand $\mathcal{M}_1(G, X) = \mathcal{M}(G, X)$.

- If $f \in C(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{C(G)} \|v\|$.
- If $f \in L^1(G)$ then $f * v \in P_1(G, X)$ and $\|f * v\|_{P_1(G, X)} \leq \|f\|_{L^1(G)} \|v\|$.

Young's convolution type results

- If $f \in L^p(G)$ then $f * v \in P_p(G, X)$. Moreover $\|f * v\|_{P_p(G, X)} \leq \|f\|_{L^p(G)} \|v\|$.

Young's convolution type results

- If $f \in L^p(G)$ then $f * v \in P_p(G, X)$. Moreover $\|f * v\|_{P_p(G, X)} \leq \|f\|_{L^p(G)} \|v\|$.
- If $v \in \mathcal{M}_p(G, X)$ and $f \in L^{p'}(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{L^{p'}(G)} \|v\|_{p, m_G}, 1 < p < \infty$.

Young's convolution type results

- If $f \in L^p(G)$ then $f * v \in P_p(G, X)$. Moreover $\|f * v\|_{P_p(G, X)} \leq \|f\|_{L^p(G)} \|v\|$.
- If $v \in \mathcal{M}_p(G, X)$ and $f \in L^{p'}(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{L^{p'}(G)} \|v\|_{p, m_G}, 1 < p < \infty$.
- If $v \in \mathcal{M}_{ac}(G, X)$ and $f \in L^\infty(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{L^\infty(G)} \|v\|$.

Young's convolution type results

- If $f \in L^p(G)$ then $f * v \in P_p(G, X)$. Moreover $\|f * v\|_{P_p(G, X)} \leq \|f\|_{L^p(G)} \|v\|$.
- If $v \in \mathcal{M}_p(G, X)$ and $f \in L^{p'}(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{L^{p'}(G)} \|v\|_{p, m_G}, 1 < p < \infty$.
- If $v \in \mathcal{M}_{ac}(G, X)$ and $f \in L^\infty(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{L^\infty(G)} \|v\|$.
- If $v \in \mathcal{M}_p(G, X)$ and $f \in L^q(G)$ with $q' > p$ then $f * v \in P_r(G, X)$ for $1/r = 1/p - 1/q'$. Moreover $\|f * v\|_{P_r(G, X)} \leq \|f\|_{L^q(G)} \|v\|_{p, m_G}$.

Young's convolution type results

- If $f \in L^p(G)$ then $f * v \in P_p(G, X)$. Moreover $\|f * v\|_{P_p(G, X)} \leq \|f\|_{L^p(G)} \|v\|$.
- If $v \in \mathcal{M}_p(G, X)$ and $f \in L^{p'}(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{L^{p'}(G)} \|v\|_{p, m_G}, 1 < p < \infty$.
- If $v \in \mathcal{M}_{ac}(G, X)$ and $f \in L^\infty(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{L^\infty(G)} \|v\|$.
- If $v \in \mathcal{M}_p(G, X)$ and $f \in L^q(G)$ with $q' > p$ then $f * v \in P_r(G, X)$ for $1/r = 1/p - 1/q'$. Moreover $\|f * v\|_{P_r(G, X)} \leq \|f\|_{L^q(G)} \|v\|_{p, m_G}$.

In (CGNS) for $f \in L^1(G)$ and $g \in L^1(v)$ it was defined

$$f *^v g(t) = \int_G f(t-s)g(s)dv(s)$$

whenever $f(t-s)g(s) \in L^1(v)$.

Young's convolution type results

- If $f \in L^p(G)$ then $f * v \in P_p(G, X)$. Moreover $\|f * v\|_{P_p(G, X)} \leq \|f\|_{L^p(G)} \|v\|$.
- If $v \in \mathcal{M}_p(G, X)$ and $f \in L^{p'}(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{L^{p'}(G)} \|v\|_{p, m_G}, 1 < p < \infty$.
- If $v \in \mathcal{M}_{ac}(G, X)$ and $f \in L^\infty(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{L^\infty(G)} \|v\|$.
- If $v \in \mathcal{M}_p(G, X)$ and $f \in L^q(G)$ with $q' > p$ then $f * v \in P_r(G, X)$ for $1/r = 1/p - 1/q'$. Moreover $\|f * v\|_{P_r(G, X)} \leq \|f\|_{L^{q/p}(G)} \|v\|_{p, m_G}$.

In (CGNS) for $f \in L^1(G)$ and $g \in L^1(v)$ it was defined

$$f *^v g(t) = \int_G f(t-s)g(s)dv(s)$$

whenever $f(t-s)g(s) \in L^1(v)$.

- (CGNS) If $f \in L^p(G)$ and $g \in L^1(v)$ then $f *^v g \in P_p(G, X)$.

Young's convolution type results

- If $f \in L^p(G)$ then $f * v \in P_p(G, X)$. Moreover $\|f * v\|_{P_p(G, X)} \leq \|f\|_{L^p(G)} \|v\|$.
- If $v \in \mathcal{M}_p(G, X)$ and $f \in L^{p'}(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{L^{p'}(G)} \|v\|_{p, m_G}, 1 < p < \infty$.
- If $v \in \mathcal{M}_{ac}(G, X)$ and $f \in L^\infty(G)$ then $f * v \in C(G, X)$ and $\|f * v\|_{C(G, X)} \leq \|f\|_{L^\infty(G)} \|v\|$.
- If $v \in \mathcal{M}_p(G, X)$ and $f \in L^q(G)$ with $q' > p$ then $f * v \in P_r(G, X)$ for $1/r = 1/p - 1/q'$. Moreover $\|f * v\|_{P_r(G, X)} \leq \|f\|_{L^q(G)} \|v\|_{p, m_G}$.

In (CGNS) for $f \in L^1(G)$ and $g \in L^1(v)$ it was defined

$$f *^v g(t) = \int_G f(t-s)g(s)dv(s)$$

whenever $f(t-s)g(s) \in L^1(v)$.

- (CGNS) If $f \in L^p(G)$ and $g \in L^1(v)$ then $f *^v g \in P_p(G, X)$.
- If $v \in \mathcal{M}_{p_1}(G, X)$, $g \in L^{p_2}(G)$ and $f \in L^{p_3}(v)$ with $\frac{1}{p_1} + \frac{1}{p_2} \leq 1$ and $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} \geq 1$ then $f *^v g \in P_r(G, X)$ for $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = \frac{1}{r}$.

Invariance under homeomorphisms

Let ν be a vector measure, f measurable and an homeomorphism $H: G \rightarrow G$, let us define

$$f_H(s) = f(H^{-1}s) \text{ and } \nu_H(A) = \nu(H(A)), A \in \mathcal{B}(G).$$

Invariance under homeomorphisms

Let ν be a vector measure, f measurable and an homeomorphism $H: G \rightarrow G$, let us define

$$f_H(s) = f(H^{-1}s) \text{ and } \nu_H(A) = \nu(H(A)), A \in \mathcal{B}(G).$$

As usual for translations and reflection the function f_H will be denoted
 $\tau_a f(s) = f_a(s) = f(s - a)$ and $\tilde{f}(s) = f(-s)$.

Invariance under homeomorphisms

Let ν be a vector measure, f measurable and an homeomorphism $H: G \rightarrow G$, let us define

$$f_H(s) = f(H^{-1}s) \text{ and } \nu_H(A) = \nu(H(A)), A \in \mathcal{B}(G).$$

As usual for translations and reflection the function f_H will be denoted $\tau_a f(s) = f_a(s) = f(s-a)$ and $\tilde{f}(s) = f(-s)$.

Let ν be a vector measure and \mathcal{H} a family of homeomorphisms $H: G \rightarrow G$. We say that ν is

- **\mathcal{H} - invariant** whenever $\nu_H = \nu$ for any $H \in \mathcal{H}$, i.e.
 $I_{\nu_H}(f) = I_{\nu}(f), \quad f \in \text{ simple function}$

Invariance under homeomorphisms

Let v be a vector measure, f measurable and an homeomorphism $H: G \rightarrow G$, let us define

$$f_H(s) = f(H^{-1}s) \text{ and } v_H(A) = v(H(A)), A \in \mathcal{B}(G).$$

As usual for translations and reflection the function f_H will be denoted $\tau_a f(s) = f_a(s) = f(s-a)$ and $\tilde{f}(s) = f(-s)$.

Let v be a vector measure and \mathcal{H} a family of homeomorphisms $H: G \rightarrow G$. We say that v is

- **\mathcal{H} - invariant** whenever $v_H = v$ for any $H \in \mathcal{H}$, i.e.
 $I_{v_H}(f) = I_v(f)$, $f \in$ simple function
- [3, 2]"norm integral \mathcal{H} -invariant" whenever

$$\|I_{v_H}(f)\| = \|I_v(f)\|, \quad f \in \text{ simple function }, H \in \mathcal{H}.$$

Invariance under homeomorphisms

Let v be a vector measure, f measurable and an homeomorphism $H: G \rightarrow G$, let us define

$$f_H(s) = f(H^{-1}s) \text{ and } v_H(A) = v(H(A)), A \in \mathcal{B}(G).$$

As usual for translations and reflection the function f_H will be denoted $\tau_a f(s) = f_a(s) = f(s-a)$ and $\tilde{f}(s) = f(-s)$.

Let v be a vector measure and \mathcal{H} a family of homeomorphisms $H: G \rightarrow G$. We say that v is

- **\mathcal{H} - invariant** whenever $v_H = v$ for any $H \in \mathcal{H}$, i.e.
 $I_{v_H}(f) = I_v(f)$, $f \in$ simple function
- [3, 2]"norm integral \mathcal{H} -invariant" whenever

$$\|I_{v_H}(f)\| = \|I_v(f)\|, \quad f \in \text{ simple function }, H \in \mathcal{H}.$$

- "semivariation \mathcal{H} -invariant" whenever

$$\|v_f\| = \|(v_H)_f\|, \quad f \text{ simple function }, H \in \mathcal{H}.$$

Some description of such invariant properties

- Let $v \in \mathcal{M}(G, X)$ with $v(G) \neq 0$. Then v is translation invariant if and only if $v = v(G)m_G$.

Some description of such invariant properties

- Let $v \in \mathcal{M}(G, X)$ with $v(G) \neq 0$. Then v is translation invariant if and only if $v = v(G)m_G$.
- The standard $L^p(G)$ -valued measure $v(A) = \chi_A$ is norm integral translation invariant.

Some description of such invariant properties

- Let $v \in \mathcal{M}(G, X)$ with $v(G) \neq 0$. Then v is translation invariant if and only if $v = v(G)m_G$.
- The standard $L^p(G)$ -valued measure $v(A) = \chi_A$ is norm integral translation invariant.
- Let $v \in \mathcal{M}(G, X)$ and let $H : G \rightarrow G$ be an homeomorphism. The following statements are equivalent:

Some description of such invariant properties

- Let $v \in \mathcal{M}(G, X)$ with $v(G) \neq 0$. Then v is translation invariant if and only if $v = v(G)m_G$.
- The standard $L^p(G)$ -valued measure $v(A) = \chi_A$ is norm integral translation invariant.
- Let $v \in \mathcal{M}(G, X)$ and let $H : G \rightarrow G$ be an homeomorphism. The following statements are equivalent:
 - v is semivariation H -invariant.
 - $L^1(v) = L^1(v_H)$ isometrically.
 - $\|T_{v_H} \circ M_f\| = \|T_v \circ M_f\|, \forall f \in C(G)$ where $M_f : C(G) \rightarrow C(G)$ the multiplication operator $g \rightarrow fg$.

Some description of such invariant properties

- Let $v \in \mathcal{M}(G, X)$ with $v(G) \neq 0$. Then v is translation invariant if and only if $v = v(G)m_G$.
- The standard $L^p(G)$ -valued measure $v(A) = \chi_A$ is norm integral translation invariant.
- Let $v \in \mathcal{M}(G, X)$ and let $H : G \rightarrow G$ be an homeomorphism. The following statements are equivalent:
 - v is semivariation H -invariant.
 - $L^1(v) = L^1(v_H)$ isometrically.
 - $\|T_{v_H} \circ M_f\| = \|T_v \circ M_f\|, \forall f \in C(G)$ where $M_f : C(G) \rightarrow C(G)$ the multiplication operator $g \rightarrow fg$.
- Let $1 \leq p < \infty$ and let $v \in \mathcal{M}(G, X)$ be semivariation translation invariant with $v(G) \neq 0$. Then $L^p(v) \subset L^p(G)$ and

$$\|f\|_{L^p(G)} \leq \|f\|_{L^p(v)} \|v(G)\|^{-1/p}.$$

Semivariation invariant measures

Proposition

Let $v_f(A) = \int_A f(s) dm_G(s)$ with $f \in L^\infty(G, X)$ non constant function satisfying that $\|f(t)\| = 1$, $t \in G$ and there exists $A \in \mathcal{B}(G)$ and $a \in G$ for which $v_f(A) = 0$, $v_f(A+a) \neq 0$. Then v_f is semivariation translation invariant but not norm integral translation invariant.

Semivariation invariant measures

Proposition

Let $v_f(A) = \int_A f(s) dm_G(s)$ with $f \in L^\infty(G, X)$ non constant function satisfying that $\|f(t)\| = 1$, $t \in G$ and there exists $A \in \mathcal{B}(G)$ and $a \in G$ for which $v_f(A) = 0$, $v_f(A+a) \neq 0$. Then v_f is semivariation translation invariant but not norm integral translation invariant.

Proof.

Note that $\tau_t v_f = v_{\tau_t f}$ and $\tau_t f \in L^\infty(G, X)$ for each $t \in G$. In particular $\tau_t v_f$ is of bounded variation and $d|\tau_t v_f| = \tau_t \|f\| dm_G = dm_G$. Hence $L^1(v) = L^1(\tau_t v) = L^1(m_G)$ for any $t \in G$. Hence v is semivariation translation invariant.

Semivariation invariant measures

Proposition

Let $v_f(A) = \int_A f(s) dm_G(s)$ with $f \in L^\infty(G, X)$ non constant function satisfying that $\|f(t)\| = 1$, $t \in G$ and there exists $A \in \mathcal{B}(G)$ and $a \in G$ for which $v_f(A) = 0$, $v_f(A+a) \neq 0$. Then v_f is semivariation translation invariant but not norm integral translation invariant.

Proof.

Note that $\tau_t v_f = v_{\tau_t f}$ and $\tau_t f \in L^\infty(G, X)$ for each $t \in G$. In particular $\tau_t v_f$ is of bounded variation and $d|\tau_t v_f| = \tau_t \|f\| dm_G = dm_G$. Hence $L^1(v) = L^1(\tau_t v) = L^1(m_G)$ for any $t \in G$. Hence v is semivariation translation invariant.

On the other hand $I_v(g) = \int_G g f dm_G$ and we have $\|I_v(\tau_a \chi_A)\| \neq 0$ while $\|I_v(\chi_A)\| = 0$. \square

Semivariation invariant measures

Proposition

Let $v_f(A) = \int_A f(s) dm_G(s)$ with $f \in L^\infty(G, X)$ non constant function satisfying that $\|f(t)\| = 1$, $t \in G$ and there exists $A \in \mathcal{B}(G)$ and $a \in G$ for which $v_f(A) = 0$, $v_f(A+a) \neq 0$. Then v_f is semivariation translation invariant but not norm integral translation invariant.

Proof.

Note that $\tau_t v_f = v_{\tau_t f}$ and $\tau_t f \in L^\infty(G, X)$ for each $t \in G$. In particular $\tau_t v_f$ is of bounded variation and $d|\tau_t v_f| = \tau_t \|f\| dm_G = dm_G$. Hence $L^1(v) = L^1(\tau_t v) = L^1(m_G)$ for any $t \in G$. Hence v is semivariation translation invariant.

On the other hand $I_v(g) = \int_G g f dm_G$ and we have $\|I_v(\tau_a \chi_A)\| \neq 0$ while $\|I_v(\chi_A)\| = 0$.
□

$X = \mathbb{C}$, $G = \mathbb{T}$, $f(s) = \chi_{[0,1/2)}(e^{2\pi i s}) - \chi_{[1/2,1)}(e^{2\pi i s})$, $A = \{e^{2\pi i s} : 1/4 \leq s < 3/4\}$ and $a = e^{i\pi/2}$ to have a particular example.

Final applications

If $L^1(v) \subset L^1(G)$ then we can define

$$f *_G g(t) = \int_G g(t-s)f(s)dm_G(s) = \int_G \tau_s g(t)f(s)dm_G(s)$$

for $f, g \in L^1(v)$.

Theorem

Let $1 \leq p < \infty$ and let $v \in \mathcal{M}(G, X)$ semivariation translation invariant. If $f \in L^1(G)$ and $g \in L^p(v)$ then $f *_G g \in L^p(v)$ with $\|f *_G g\|_{L^p(v)} \leq \|f\|_{L^1(G)} \|g\|_{L^p(v)}$.

Final applications

If $L^1(v) \subset L^1(G)$ then we can define

$$f *_G g(t) = \int_G g(t-s)f(s)dm_G(s) = \int_G \tau_s g(t)f(s)dm_G(s)$$

for $f, g \in L^1(v)$.

Theorem

Let $1 \leq p < \infty$ and let $v \in \mathcal{M}(G, X)$ semivariation translation invariant. If $f \in L^1(G)$ and $g \in L^p(v)$ then $f *_G g \in L^p(v)$ with $\|f *_G g\|_{L^p(v)} \leq \|f\|_{L^1(G)} \|g\|_{L^p(v)}$.

Proof.

Note that for $f, g \in C(G)$ then $f *_G g \in C(G) \subset L^p(v)$. Consider the $L^p(v)$ -valued Riemann integral $f *_G g = \int_G \tau_s g f(s) dm_G(s)$. Using Minkowsky's inequality and the fact $L^p(v) = L^p(\tau_s v)$,

$$\|f *_G g\|_{L^p(v)} \leq \int_G \|\tau_s g\|_{L^p(v)} |f(s)| dm_G(s) = \|f\|_{L^1(G)} \|g\|_{L^p(v)}.$$

Final applications

If $L^1(v) \subset L^1(G)$ then we can define

$$f *_G g(t) = \int_G g(t-s)f(s)dm_G(s) = \int_G \tau_s g(t)f(s)dm_G(s)$$

for $f, g \in L^1(v)$.

Theorem

Let $1 \leq p < \infty$ and let $v \in \mathcal{M}(G, X)$ semivariation translation invariant. If $f \in L^1(G)$ and $g \in L^p(v)$ then $f *_G g \in L^p(v)$ with $\|f *_G g\|_{L^p(v)} \leq \|f\|_{L^1(G)} \|g\|_{L^p(v)}$.

Proof.

Note that for $f, g \in C(G)$ then $f *_G g \in C(G) \subset L^p(v)$. Consider the $L^p(v)$ -valued Riemann integral $f *_G g = \int_G \tau_s g f(s) dm_G(s)$. Using Minkowsky's inequality and the fact $L^p(v) = L^p(\tau_s v)$,

$$\|f *_G g\|_{L^p(v)} \leq \int_G \|\tau_s g\|_{L^p(v)} |f(s)| dm_G(s) = \|f\|_{L^1(G)} \|g\|_{L^p(v)}.$$

To extend to general functions, we use that $C(G)$ is dense in $L^1(v)$ and the fact that $L^1(v) \subset L^1(G)$. □

- Bu, S.; Chill, R. *Banach spaces with the Riemann-Lebesgue or the analytic Riemann-Lebesgue property*, Bull. London Math. Soc. **34** (2002), 569–581.
- Calabuig, J.M.; Galaz-Fontes, F.; Navarrete, E.M.; Sanchez-Perez, E. A. *Fourier transforms and convolutions on L^p of a vector measure on a compact Haussdorff abelian group*, J. Fourier. Anal. Appl. **19** (2013), 312-332.
- Delgado, O, Miana, P. *Algebra estructure for L^p of a vector measure*, J. Math. Anal. Appl. **358** (2009), 355-563.